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Abstract-The problem of steady penetration by a semi-infinite, rigid penetrator into an infinite, 
rigid/perfectly plastic target has been studied. The rod is assumed to be cylindrical, with a 
hemispherical nose, and the target is assumed to obey the Von-Mises yield criterion with the 
associated flow rule. Contact between target and penetrator has been assumed to be smooth and 
frictionless. Results computed and presented graphically include the velocity field in the target, the 
tangential velocity of target particles on the penetrator nose, normal pressure over the penetrator 
nose, and the dependence of the axial resisting force on penetrator speed and target strength. 

INTRODUCTION 

IN SIMPLE THEORIES of penetration the material properties of target and penetrator are 
often represented only by constant characteristic stresses, as for example in Tate [ 1, 21. 
Although this approach leads to results that are qualitatively correct, it can be difficult to 
use quantitatively. Some of the problems have to do with actual deformations in target 
and penetrator including lateral motion, and others are associated with the fact that the 
plastic flow stress is determined only by the deviatoric components of stress whereas the 
spherical or pressure component, which may be quite large ahead of the penetrator and 
contributes significantly to the retardation of the penetrator, is unrelated to flow stress. 
These and other matters have been discussed recently in some detail by Wright [3]. It 
would be desirable to account for lateral motion and hydrostatic effects in some simple 
way, but at present the details are insufficiently known to suggest high quality approxi- 
mations that might be suitable. In developing an engineering model for penetration and 
perforation, Ravid and Bodner [4] have attempted to meet this difficulty by assuming 
simple kinematics for the flow around the penetrator and then adjusting some unknown 
parameters so as to minimize the plastic dissipation. They characterize this procedure as 
being “a modification of the upper bound theorem of plasticity to include dynamic 
effects,” but even if such a modified theorem is actually valid, at present there is no way 
to tell how close such a bound might be. 

In this article a detailed numerical solution to an idealized penetration problem is 
presented in an attempt to shed some light on these matters. The approach taken is as 
follows. Suppose that the penetrator is in the intermediate stages of penetration so that 
the active target/penetrator interface is at least one or two penetrator diameters away 
from either target face, and the remaining penetrator is still much longer than several 
diameters and is still traveling at a speed close to its striking velocity. 

This situation is idealized here in several ways. First, it is assumed that the rod is 
semi-infinite in length and that the target is infinite with a semi-infinite hole. Furthermore, 
it is assumed that the rate of penetration and all flow fields are steady as seen from the 
nose of the penetrator. These approximations are reasonable if the major features of the 
plastic flow field become constant within a diameter or so of the nose of the penetrator, 
and will be justified a posteriori by the calculation. 

Next, it is assumed that no shear stress can be transmitted across the target/penetrator 
interface. This is justified on the grounds that a thin layer of material at the interface 
either melts or is severely degraded by adiabatic shear. This assumption, together with 
the previous one, makes it possible to decompose the problem into two parts in which 
either a rigid rod penetrates a deformable target or a deformable rod is upset at the 
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bottom of a hole in a rigid target. Of course, in the combined case the contour of the 
hole is unknown, but if it can be chosen so that normal stresses match in the two cases 
along the whole boundary between penetrator and target, then the complete solution is 
known irrespective of the relative motion at the boundary. Even without matching the 
normal stresses, it would seem that valuable qualitative information about the flow field 
and distribution of stresses can be gained if the chosen contour is reasonably close to 
those that are actually observed in experiments. 

Finally, the deforming material is assumed to be rigid/perfectly plastic. This assumption 
should be adequate for examining the flow and stress fields near the penetrator nose, but 
will lose accuracy with increasing distance, since it forces the effects of compressibility 
and wave propagation to be ignored. 

In this study only the case of the deforming target and a rigid penetrator is considered, 
where the penetrator is assumed to have a circular cylindrical body and a hemispher- 
ical nose. 

FORMULATION OF THE PROBLEM 

With respect to a set of cylindrical coordinate axes fixed to the center of the 
hemispherical nose of the rigid cylindrical penetrator, equations governing the deformations 
of the target are 

div v = 0, (1.1) 

div u = pi (1.2) 

= p( v . grad)v. (l-3) 

Here c is the Cauchy stress tensor, p is the mass density of the target material, v is the 
veIocity of a target particle relative to the penetrator, which has absolute velocity uoe, e 
being a unit vector along the axis and in the direction of motion of the penetrator, The 
operators grad and div signify the gradient and divergence operators on fields defined in 
the present configuration. Equation (1.1) expresses the balance of mass and implies that 
the target undergoes only volume preserving deformations so that the mass density of the 
target stays constant. Equation (1.2) expresses the balance of linear momentum in the 
absence of body forces and holds in all Galilean coordinate systems. In particular it holds 
in one that translates at the constant velocity of the penetrator. Equation (1.3) holds only 
in such a translating system where all field variables are independent of time. The target 
material is assumed to obey the Von-Mises yield criterion and the associated flow rule. 
That is (Prager and Hodge [5]), 

(2.1) 

D = (grad v + (grad v)r)/2, 

i = f tr (D’). 

(2.2) 

(2.3) 

In eqns (2) p is the hydrostatic pressure (which, of course, cannot be determined by the 
deformation because of the assumption of incompressibility), 1 is the identity matrix, D 
is the strain rate tensor, co is the flow stress of the target material in simple compression 
and tr (D’) equals the sum of the diagonal terms of the square matrix D*. Equation (2. I) 
is the constitutive relation of an incompressible Navier-Stokes fluid with viscosity 
coefficient equal to ~o/2~. Equations (2), when substituted into (1.3), give the field 
equation 

-grad p + uo div ((grad v + (grad ~)~)/2l64 = p(v l grad)v (3) 

which together with (1.1) is to be solved for p and v subject to suitable boundary 
conditions. Before stating these, the following non~men~on~ variables will be introduced: 

0 = a/al), v = V/Q, 
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The pair (r, z) denotes the cylindrical coordinates of a point with respect to axes attached 
to the center of the hemispherical nose with the positive z axis pointing into the target 
material. Rewriting eqns ( 1.1) and (1.3) in terms of nondimensional variables, dropping 
the superimposed bars, and agreeing to denote the gradient and divergence operators in 
nondimensional coordinates by grad and div, we arrive at the following set of equations: 

div v = 0, 

-grad p + div ((grad v + (grad v)r)/260 = LY(V - grad)v, (4.2) 

where (Y = puf/uo is a nondimensional number. 
Boundary conditions must be given both for the penetrator/target interface and for 

points remote from the penetrator. As stated in the introduction the interface conditions 
are 

t.(an) = 0, 

v-n = 0, (5) 

where n is a unit normal on the surface and t is a unit tangent on the surface. At points 
far away from the penetrator, 

Iv + uoel - 0 as 1x1 = (r2 + z2)“2 - co, z>--00, (6.1) 

(ml - 0 as z---co, (6.2) 

where e is a unit vector in the positive z direction, as before. The boundary conditions 
(5) state that the contact surfaces between target and penetrator are smooth and there is 
no interpenetration of the target material into the penetrator or vice versa. The boundary 
condition (6.1) is equivalent to the statement that target particles at a large distance from 
the penetrator appear to be moving at a uniform speed with respect to it. Equation (6.2) 
states that far to the rear the traction field vanishes. Note that the governing eqns (3) are 
nonlinear in v and that a solution of (1.1) and (1.3) under the stated boundary conditions, 
if there is one, will depend on the rates at which the quantities in (6) tend towards zero. 

FINITE ELEMENT FORMULATION OF THE PROBLEM 

In order to solve the problem numerically, it is possible to consider only a finite region 
of the target, and since deformations of the target are axisymmetric, only the target region 
shown in Fig. 1 is studied. Whether the region considered is adequate or not can be 
easily decided by solving the problem for two different values of the parameter a. If the 
two solutions so obtained are essentially equal to each other in the vicinity of the 
penetrator, then the region studied is sufficient and the effect of boundary conditions at 
the outer surface EFA has a negligible effect on the deformations of the target material 
in close proximity to the penetrator. The boundary conditions imposed on the finite 
region are 

~22 = 0, o, = 0 on the bottom surface AB, 

t-an = 0, v-n = 0 on the common interface BCD, 

urz = 0, V, = 0 on the axis of symmetry DE, 

V, = 0, o, = - 1.0 on the boundary surface EFA. 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

A weak formulation of the problem is now obtained. Let 4 be a smooth, vector valued 
function defined on the region R of the target (shown enclosed by ABCDEFA in Fig. l), 
where 4 satisfies the velocity boundary conditions included in eqns (7.1)-(7.3) and 
4 = 0 on the surface EFA. In addition let # be a bounded, scalar valued function defined 
on R. Taking the inner product of both sides of eqn (4.1) with # and of equation (4.2) 
with 4, integrating the resulting equations over R, using the divergence theorem, the 
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A 

Fig. 1. The region to be studied. 

stress boundary conditions in (7) and the stated boundary conditions for 9, we arrive at 
the following equations: 

J +(div v)dV = 0, (8.1) 
R 

s p(div 4)dJ’ - s 1 - D: (grad #J + (grad 4)r)dV = (Y 
R R 2ti s 

R {(v*grad)v} *r#~ dV. (8.2) 

The boundary value problem defined by eqns (4) and (7) is equivalent to the statement 
that eqns (8) hold for every 9 and # such that grad 4 and 1c/ are square integrable over 
R, C#B satisfies the stated homogeneous boundary conditions, and v satisfies all the velocity 
boundary conditions stated in (7). 

An approximate solution of eqns (8) has been obtained by using the finite element 
method (see Becker, Carey, and Oden [6] for details). Since eqn (8.2) is nonlinear in v, 
the following iterative technique has been used: 

s $(div v”)dV = 0, 
R 

s p”(div 4)d I/ - 
R s 

R + Dm: (grad 4 + (grad 9)*)dv 

=(Y s R w-’ . grad)v”} - 4 d V, (9) 

where m is the iteration number. For cx < 2, the initial solution was taken to be zero 
everywhere, and for (Y 2 2, the solution for a smaller value of LY was taken as the initial 
solution. The iterative process was stopped when, at each nodal point, 

llVrn - vm-III I 0.01 I(vm-‘Il, (10) 

where the norm is defined by II v/I = (vf + II,) 2 ‘I2 Whereas for problems with (Y < 2, it . 
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took nearly 30 iterations for the convergence criterion (10) to be satisfied, problems with 
(Y 2 2 required as many as 50 iterations. 

COMPUTATION AND DISCUSSION OF RESULTS 

A computer code employing six-noded isoparametric triangular elements has been 
written to solve the problem described above. Both the trial solution (v, p) and the test 
functions (4, +) are taken to belong to the same space of functions. Whereas, for the 
triangular element, v is defined in terms of its values at all six nodal points, the pressure 
field p is defined only in terms of its values at the comer nodes. The integrations in eqns 
(9) are performed by using the four-point Gaussian quadrature rule. Since the curved 
surface of the penetrator nose is not a natural coordinate surface for the cylindrical 
geometry, it was found to be easiest to enforce the boundary conditions there by using a 
Lagrange multiplier technique. 

The accuracy of the developed code has been established by solving a hypothetical 
flow problem for an incompressible Navier-Stokes fluid with uniform viscosity. A body 
force field was calculated so as to satisfy the balance of linear momentum exactly for an 
assumed, analytically known velocity field, where the assumed velocities had the essential 
features of those expected in the penetrator problem. Then the code was used to compute 
the velocity and pressure fields for that body force. As can be seen from the results for 
this problem given in the Appendix, the computed fields agree very well with those 
known analytically. An important difference between the test problem and the penetration 
problem is that in the former the shear viscosity is taken to be constant, whereas in the 
latter, it depends on the rate of deformation. Since only a simple modification in the 
computer code is needed to incorporate this feature, it seems reasonable to assume that 
the computed solution is close to an analytical solution of the problem. Results presented 
below have been obtained by using the finite element grid shown in Fig. 2. 

Figure 3 shows the velocity field in the target material for (Y = 4.0. The velocity fields 
for other values of (Y have a similar pattern. In target points that lie to the rear of the 
center of the penetrator nose, the flow quickly becomes essentially parallel to the axis of 
the penetrator. Target points that lie ahead of the penetrator nose and within one 
penetrator diameter from it have a noticeable radial component of velocity. The 
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Fig. 2. Finite element grid used. 
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Fig. 3. Velocity field in the target material (01 = 4.0). 

distribution of normal traction on the penetrator nose for various values of CY is plotted 
in Fig. 4. (See Table 1 for identification of the various lines in this and subsequent 
figures.) Whereas the stress increases with cx at the nose tip, it decreases at the sides of 
the nose. The value of the normal stress for 0 = 45” seems to be independent of CY, at 
least for the range of values of (Y studied. For (Y = 6.15 the normal stress at approximately 
0 = 83” becomes negative, indicating a tendency for the target material to separate from 
the penetrator nose. Since our formulation of the problem does not allow for separation 
to occur, we seem to have reached the upper limit for the validity of the calculation, at 
least for the hemispherical nose shape. 
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Fig. 4. Normal stress distribution on the hemispherical nose of the penetrator. 
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Table 1. Legend for figures 

Curve Type Q 

. . . ..***.**..** 0.72 

2.00 -mm-- 

4.00 

5.43 ___----_ 

6.15 -.-. 
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The total nondimensional force (average stress/flow stress) that acts on the penetrator 
nose in the negative axial direction is given by 

s *12 

F= 
0 ( n l an) sin 28 dB. 

Figure 5, which is a plot of F versus ty, shows that F increases only weakly and nearly 
linearly with cy. A close approximation to the line is given by the equation 

F = 3.903 + O.O773a, (11) 

so that in typical impact problems, where the rate of penetration lies roughly in the range 
2 s (Y I 6, the retarding force varies only from about 4.1-4.4 times the product of cavity 
area and compressive flow stress in the target material. Of course this range may change 
with nose shape, but it does seem to indicate why the choice of constant target resistance 
in the simple theory of Tate [ 1, 21 gives such good qualitative results. Note also that, for 
the same range of cy, the centerline stress on the penetrator nose, as shown in Fig. 4, 
varies from about 5.3-8.8 or as much as twice the average value. 

That a significant cont~bution to the axial force is made by the spherical component 
of the Cauchy stress (r is clear from Fig. 6, which shows values of nondimensional p in 
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Fig. 5. Axial force vs cy. 
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Fig. 6. Contours of p in the target. 

the target. Whereas the deviator+ components of u have magnitudes comparable to the 
flow stress uo, the spherical component p is more than 8 times go near the nose tip. 
Figure 7 shows the principal stress components -urz along the axis in front of the 
penetrator and demonstrates that stress falls rapidly with distance. The stress near three 
radii for the smaller values of CY cannot be accurately calculated since the velocity gradient 
there is extremely small. 

o.o,c 
0.0 1 .o 2.0 3.0 4.0 5.0 

DISTANCE FROM THE NOSE 

Fig. 7. Variation of -nzz at points of the target along the axis ahead of the penetrator. 
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Fig. 8. Tangential velocity distribution on the hemispherical nose of the penetrator. 

Figure 8 shows that the nondimensional velocity of target particles, tangential to the 
penetrator nose, is essentially independent of CY, and Fig. 9 shows that the same is true 
for the axial velocity of target particles along r = 0 ahead of the penetrator. Note that 
the velocity falls more rapidly than stress ahead of the penetrator so that target 
deformation extends only to about one or two radii away from the nose, whereas the 
stress is still significant at three radii. The nondimensional values of fi, computed for CY 
= 6.15, become as large as 2.0 or 2.5 at points close to the nose tip. Since true strain 
rates scale with uo/ro, actual rates in the target may easily bc of the order of lo5 S-I or 

.1.0+ 

0.0’ 1 .o 2.0 3.0 4.0 5.0 6.0 

DISTANCE FROM THE NOSE TIP 

Fig. 9. Variation of the z velocity of target particles along the axis ahead of the penetrator. 
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Fig. 10. Variation of u, with r on the surface z = 0. 

more for reasonable values of u. and ro. Thus, strain rate effects may become importan 
in some cases. This should be borne in mind especially for small scale experimenta 
studies, which will accentuate rate effects and tend to make target materials appea 
stronger in small scale than in full scale. 

Figures 10 and 11 show the variation of u, with r at z = 0 and z = - 1.595, respectively 
These results indicate that more of the target material at the sides of the penetrato 
deforms at higher values of CY, even though this is not true ahead of the penetrator a 
noted in the discussion of Fig. 9. In both Figs. 10 and 11 the nondimensional velocit: 
near the penetrator decreases in absolute value with increasing cy in order to satisfy thi 

-1.2-+ I I I , r 
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Fig. Il. Variation of u, with r on the surface z = -1.595. 
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balance of mass. That is to say, since the deformations of the target are volume preserving, 
the areas between each curve and 8, = -1.0 must be constant and just large enough to 
account for the rate of increase of hole volume as the ~netrator advances into the target. 
Thus the effect of inertia is to spread the deformation farther to the sides, for which 
rompensation must be made closer in so as to maintain incompressibility. 

In a recent article, Pidsley [7] described an unsteady calculation for one impact 
velocity in which both target and penetrator were assumed to be compressible and elastic/ 
perfectly plastic. He shows that, after a few diameters penetration, the rate of penetration 
slows down and approaches a steady state. Figure 12 compares his values of pressure 
with the present values of pressure and axial stress along the centerline ahead of the 
penetrator for nearly the same values of a. Compressibility and thermal expansion 
apparently have the effect of reducing the pressure directly in front of the penetrator and 
increasing it at distances greater than one penetrator radius or so, but even so, the results 
seem to be broadly similar. The fact that the lower pressure contours in Fig. 6 run out 
to the boundary, rather than closing smoothly as his do, is probably only an artifact due 
to the proximity of the boundary EFA. It has not been possible to compare velocity fields 
at all. 

In his article Pidsley [7] also notes that if the equation of motion for steady flow is 
integrated along the central streamline, there is a contribution from transverse gradients 
of shear stress, unlike the case for a perfect fluid. This fact, which was also noted by 
Wright 131, may be expressed in the following formula: 

4pv2 + p - s,, - 2 
s 

0z 2 dz = -a,,(O). (12) 

Each term is evaluated on r = 0, s, is the deviatoric component of stress, and z is 
measured from the tip of the nose. Figure 13 shows the contributions from the various 
components in this formula as computed for cy = 5.43. Since the target material becomes 
nearly rigid a short distance away from the penetrator nose, the computation of the 
integrand in (12), which requires differences and divisions with small numbers, is 
unreliable for z > 0.6 or so, so that after that point, the upper bounding line was simply 
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Fig, 12. Comparison of stresses calcutated in this paper and in Pidstey 171. 
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Fig. 13. Contributions to the integral formula (12). 

extended horizontally. Note that the integral term in (12) contributes substantially to the 
total and that the deviatoric component stays nearly constant at approximately 0.75 
(compared to the theoretically exact value of 3) out of a total of 8.5. 

Since the target deformation is essentially zero at some distance inside the boundary 
EFA, and since defo~ations are essentially inde~ndent of .z near the boundary AB, it 
seems reasonable to assume that the target region chosen for computations is sufficient 
to obtain a good description of the deformation in the vicinity of the penetrator nose. 

CONCLUSIONS 

For the range of values of cy studied, noticeable deformation of the target material 
occurs only at points that are less than three penetrator radii away from the penetrator, 
and the target seems to deform farther to the side than ahead of the penetrator. The 
target material adjacent to the sides of the penetrator appears to extrude rear-wards in a 
uniform block that is separated from the bulk of the stationary target by a narrow region 
with a sharp velocity gradient, but the highest strain rates occur just ahead of the 
penetrator nose. This calculation of backward extrusion of a uniform block gives at least 
a partial justification to the velocity field assumed by Ravid and Bodner f4] in their work 
involving targets of finite thickness. We are not aware of any experimental work that 
sheds more light on this. 

Maximum normal stresses occur at the nose tip, as might be expected, and fall off 
rapidly away from that point. At the higher values of cy, flow separation seems to be 
indicated at the sides of the nose. The retarding force was found to be a weak linear 
function of cu, and gradients of shear stress were found to make a strong contribution to 
the momentum integral along the axial streamline. 

The kinematics and stress fields found in this study should prove useful in devising or 
checking the results from simpler engineering theories of penetration. 
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APPENDIX 

We established the validity of the finite element code by solving the folio~ng h~thetic~ problem. Consider 
the Bow of a homogeneous and in~mpr~ible Navier-Stokes fluid of unit mass density and unit viscosity. The 
governing equations are obtained from (I) and (2) by setting p = 1, rO/e = 1 and adding the body force 
vector g to the left-hand side of eqn (1.2). A solution of these equations is 

u,= r(1 -r), u, = -2(2 - 3r), a = z, (Al-l) 

g,=3+r(l-r)(l-2r), (A1.2) 

g, = I - 3z/r + 3zr(l - r) + ~(2 - 3r)‘. (At.3) 

Here u, and u, are, respectively, the radial and axial components of the velocity, and g, and g, equal the radial 
and axial components of the body force per unit mass. 

A rather coarse grid, shown in Fig. Al, was used to compute the solution. On surfaces AB, BC and CD, 
both n, and v, as given by eqn (A 1.1) were prescribed, on the surface AD, v, and the normal traction (equal to 
a,,) were specified. The computed results obtained after six iterations are compared in Table Al with the 
analytical solution at various points of the grid. Recall that the pressure field is computed at nodal points on the 
comers of an element but can be interpolated at any other point. We note that, whereas computed values of II, 
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Fig. Al. Grid used to solve the test problem. 
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Table A 1. Comparison of analytical and numerical solution 

ANALYTICAL VALUES COMPUTED VALUES 
Point 

"r 
V 
z -P "r 

V 
z 

-P 

N 0.18750 0.31250 0.250 0.18667 0.30954 0.27116 

P 0.2500 0.12500 0.250 0.24962 0.12490 0.2510 

Q 0.250 0.250 0.500 0.25103 0.249993 0.48991 

R 0.250 0.3750 0.750 0.25372 0.37503 0.72261 

S 0.18750 -0 18750 0.750 0.18984 -0.18761 0.6804 

T 0.18750 0.93750 0.750 0.18966 0.93637 0.8016 

and u, differ at most by one percent from their analytical values, the computed value of p at the point S differs 
from the analytical value by 9.3%. Of course, the refinement of the grid will result in values of p closer to the 
analytical values. We believe that the values given in Table Al do establish the validity of the code. 


