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STEADY-STATE PENETRATION OF VISCOPLASTIC TARGETS 

R. C. BATRA 
Department of Engineering Mechanics, University of Missouri-Rolla, Rolla, MO 65401-0249, U.S.A. 

Abstract-The problem of steady-state penetration by a semi-infinite, rigid cylindrical penetrator 
with an ellipsoidal nose into an infinite, rigid-viscoplastic target has been studied. The target 
material is assumed to obey a generalized form of Von Mises yield criterion to account for the 
strain-rate dependence. Contact between target and penetrator is assumed to be smooth. Computed 
results show that the deformation field adjacent to the nose of the penetrator is significantly 
different in the ellipsoidal case from what it is when the nose is hemispherical. Results presented 
graphically include the dependence of the axial resisting force on penetrator speed, the ratio of the 
major to minor axes of its ellipsoidal nose, and the strain-rate hardening parameter of the target. 
Also depicted are the normal pressure over the penetrator nose and the velocity field in different 
parts of the target. 

INTRODUCTION 

In simple theories of penetration, the material properties of target and penetrator are often 
represented only by constant characteristic stresses, as for example in Tate Cl]. Although 
this approach leads to results that are qualitatively correct, it can be difficult to use 
quantitatively. Some of the problems have to do with actual deformations in target and 
penetrator including lateral motion, and others are associated with the fact that the plastic 
flow stress is determined only by the deviatoric components of stress whereas the spherical 
or pressure component, which may be quite large ahead of the penetrator and contributes 
significantly to the retardation of the penetrator, is unrelated to flow stress (e.g. see Wright 
[2]). In developing an engineering model for penetration and perforation, Ravid and 
Bodner [3] assumed simple kinematics for the flow around the penetrator and then 
adjusted the unknown parameters by utilizing an upper bound theorem of plasticity 
modified to include dynamic effects. 

In [4], Batra and Wright have presented a detailed numerical solution to the following 
idealized penetration problem. It was assumed that 

(1) the rod is semi-infinite in length and that the target is infinite with a semi-infinite hole, 
(2) the rate of penetration and all flow fields are steady as seen from the nose of the 

penetrator, 
(3) no shear stress can be transmitted across the target-penetrator interface, 
(4) the deforming material was taken to be rigid-perfectly plastic. 

They studied the problem of the deforming target and a rigid penetrator having a circular 
cylindrical body and a hemispherical nose. 

Batra and Wright’s calculations revealed that strain rates in the target material that is 
ahead of the penetrator are of the order of lo5 set-‘. Since many materials used in such 
applications have strain-rate sensitive properties, we extend herein the previous work to 
viscoplastic materials. Also, the penetrator nose is taken to be ellipsoidal. As in the previous 
work [4], the objective here is to study the idealized penetration problem in detail and 
possibly shed some light on the aforementioned factors. The problem studied herein 
simulates approximately the following situation: the penetrator is in the intermediate stages 
of penetration so that the active target-penetrator interface is at least one or two penetrator 
diameters away from either target face, and the remaining penetrator is still much longer 
than several diameters and is still traveling at a speed close to its striking velocity. For 
this case the first two assumptions stated in the second paragraph above are quite 
reasonable and are also made in this work. It should be emphasized that we have not 
incorporated any fracture or failure criterion in our work. Thus the material is presumed 
to undergo unlimited plastic deformations. 
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FORMULATION OF THE PROBLEM 
We presume that the deformations of the target appear to be independent of time to an 

observer situated on the penetrator nose and moving with it at a uniform velocity ooe, e 
being a unit vector along the direction of motion of the rigid penetrator. We use a 
cylindrical co-ordinate system attached to the center of the penetrator nose, with z-axis 
pointing into the target. 

Equations governing the target deformations are: 

divv = 0, (1) 

p(v . grad)v = div G. (2) 

Here v is the velocity of a target particle as seen by an observer situated on the penetrator, 
p is the mass density and u is the Cauchy stress tensor. Equation (1) implies that the 
deformations of the target are isochoric, and eqn (2) expresses the balance of linear 
momentum. We neglect the elastic deformations of the target and assume that its material 
obeys the following constitutive relation for 0: 

d = -pl + 2/.@)D, I # 0, (3) 

2p(Z) = %I( 1 + bl)“/J5 I, (4) 

D = [gradv + (grad~)~]/2, (5) 

I2 = +trD2. (6) 

In these equations, p is the hydrostatic pressure that is not determined by the deformation 
history of the target, D is the stretching tensor, rro is the yield stress in simple tension or 
compression, parameters b and m describe the strain-rate hardening of the material, and 
tr(D’) equals the sum of the diagonal terms of the square matrix D2. Equation (3) can 
also be viewed as a constitutive relatjon for an incompressible viscous fluid with viscosity 
coefficient equal to cro( 1 + bl)m/(2J3 I). Implicit in eqn (3) is the assumption that the Von 
Mises yield surface is given by 

tr(s*) = + a;(1 + bl)‘“, (7) 

s = u + pl. (8) 

The tensor s is the deviatoric stress tensor. 
Ravid and Bodner [3] have used a constitutive relation similar to eqn (3) and assumed 

that 

2P(4 = aou + c l%?o (2%/w5L (9) 

where C is a material constant and is taken to be zero for strain rates lower than unity. 
The constitutive relation for a Bingham solid [S] results by taking M = 1 and interpreting 
b properly. Zienkiewicz et al. [6] took 

and asserted that it corresponds to Perzyna’s viscoplastic model. In eqn (10) y and n are 
temperature-dependent material constants. Our choice [eqns (3,4)] was motivated by the 
desire to generalize the power law model used by Burns [7] and Shawki et al. [S] so that 
it is also valid for quasistatic tests. This generalized constitutive model that also includes 
thermal softening and strain-hardening has been used by Wright and Batra [9], and Batra 
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[lo] to study adiabatic shear bands. For the simple shearing stress state, a curve fit to 
Costin et al.‘s [ 11 J experimental data gives b = lo4 and ~tz = 0.025 for a hard steel. 

Equation (1) and equations obtained by substitution of eqns (3)-(5) into eqn (2) are the 
field equations which together with suitable boundary conditions are to be solved for p 
and v. Before stating the boundary conditions, we non-dimensionalize the variables as 
follows: 

r = r/+0, z = z/r,, ii = v/&, b = bu,,fr,. (11) 

Here (r,z) denote the co-ordinates of a point with respect to the cylindrical co-ordinate 
system chosen, and r, is the radius of the cylindrical body of the penetrator. The field 
equations written in terms of the non-dimensional variables are: 

divv = 0 (12) 

-grad p + div {p[(grad v -i- (grad v)~]) = a(v * grad)v, (13) 

where 

is a non-dimensional number. In writing eqns (12)-(14), we have dropped the superimposed 
bars and have used grad and div to denote the gradient and divergence operators in non- 
dimensional co-ordinates. 

For the boundary condition on the ~netrator-target interface, we assume that 

t*(m) = 0, (16) 

V’II = 0, (17) 

where II and t are, respectively, a unit normal and a unit tangent vector on the interface. 
The boundary condition (16) represents smooth contact between the penetrator and target. 
This appears reaonable since a thin layer of material at the interface either melts or 
is severely degraded by adiabatic shear. The boundary condition (17) represents no 
interpenetration of the target material into the penetrator and vice versa. At points far 
away from the penetrator we require that 

Jv + el -b 0 as (r2 + z2)1’2 --t co, 2 > -00, (18) 

IanI 3 0 as z-+-co, r > ro, (19) 

where e is a unit vector along the positive z-axis, as before. That is, the target material 
ahead of the penetrator nose and far away from it appears to approach the penetrator 
with a uniform velocity and the one behind the nose but very far from it is virtually 
traction free. 

Note that the field eqns (13) are nonlinear in v. A solution of eqns (12) and (13) under 
the boundary conditions (16)-(19), if there exists one, will depend upon the rate at which 
quantities in (18) and (19) decay to zero. Even for the prescribed rate of decay, the solution 
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may not be unique. We will gloss over these rather difficult questions and seek an 
approximate solution of these equations numerically. The hope is that the numerical 
solution is meaningful for the physical problem at hand. 

FINITE ELEMENT FORMULATION OF THE PROBLEM 

We replace the infinite target region by the bounded region R shown in Fig. 1 and the 
boundary conditions (18) and (19) by 

crzz = 0, 0, = 0 on the surface AB, 

rrrz = 0, u, = 0 on the axis of symmetry DE, 

ur=o, uz= -1.0 on the bounding surface EFA. (20) 

That the region considered is adequate is justified by the computed results presented below 
which show that noticeable deformations of the target occur only in the region surrounding 
the penetrator and at target particles whose distance form the penetrator is at most 2r,. 

Referring the reader to [12] for details, we simply note that a weak formulation of the 
problem defined by eqns (12), (13), (16) (17) and (20) is that equations 

s 
$(div v) du = 0, (21) 

R 

p(div 4) do - ,n(Z){D: [grad 4 + grad +)‘I} du = c1 [(v . grad)v] . $ du (22) 
JR JR 

Fig. 1. The region modeled. 
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hold for every smooth functions $ and 4 defined on R such that 4, = 0 on AB and DE; 
4 = 0 on EFA and #-II = 0 on the target-penetrator interface BCD. Since eqns (21) and 
(22) are nonlinear in v, the following iterative technique has been employed: 

s I//(div vi) du = 0, 
R 

(23) 

s p’jdiv 4) da - ,u@- ‘)(D’: [grad 4 + (grad 4)7) du = a [(v’-’ egrad)v’] * # du, 
R s R (241 

where i is the iteration number. The solution was taken to have converged, if at each nodal 
point, 

where 

Iv]* = v,’ + vf. 

COMPUTATION AND DISCUSSION OF RESULTS 
The finite element code developed earlier [4] to solve the problem when the target 

material is modeled as rigid-perfectly plastic and the penetrator nose is hemispherical has 
been modified to solve the present problem. It employs six-noded isoparametric triangular 
elements with u, and u, approximated by quadratic functions over an element and p by a 
linear function defined in terms of its values at the vertices of the triangular element. The 
accuracy of the code was established by solving a simple problem for an incompressible 
Navier-Stokes fluid. 

The computational procedure was started by taking v” = 0, ~(1’) = 104. It took 19 
iterations for the solution to converge when a = 2 and the nose is hemispherical. The 
number of iterations required to obtain the solution decreased with an increase in the ratio 
r,/rO when a = 2. However, for r,/r, = 1, the number of iterations increased with a, but 
for r,/ro = 2 it decreased with an increase in a. Numerical experiments with different grids 
were conducted first by increasing the number of elements used and then by varying their 
size but keeping the number of elements used constant. The grid with 8 rows of elements 
in the axial direction, 8 uniformly spaced rows of elements in the circumferential direction 
and 8 rows behind the plane z = 0, was found to be optimum in the sense that the change 
in the normal stress at the penetrator nose tip was less than 0.1% with further refinements 
of the grid. The grid used had a pattern similar to that employed in [4]. The dividing 
surfaces between elements intersected the z-axis at points distant 0.475,0.969, 1.483,2.017, 
2.573, 3.151, 3,752, 4.377 from the nose tip. The z-co-ordinate of the horizontal surfaces 
between rows of elements behind the z = 0 plane were -0.156, -0.335, -0.540, -0.773, 
- 1.041, - 1.347, - 1.697, -2.09. For a = 2.0, r,/r, = 2.0, m = 0.0, and b = 0.0, the total 
axial force, defined below by eqn (29), obtained by using 4, 6, 7, 12 and 13 quadrature 
points was computed to be 2.6117, 2.6479, 2.6524, 2.6714 and 2.6720 respectively. The 
results presented below have been obtained by using 4 quadrature points. 

Figure 2 depicts the velocity of the target particles for a = 4 and t-,/r, = 2.0 as seen by 
an observer sitting on the penetrator nose. It is apparent that significant deformations of 
the target occur at points within 2r, of the penetrator boundaries. The velocity fields for 
other cases studied have a similar pattern. At target points that lie to the rear of the center 
of the penetrator nose, the flow quickly becomes parallel to the axis of the penetrator. In 
Fig. 3 is shown the non-dimensional normal stress on the penetrator nose for different 
choices of various parameters. Values of parameters for various curves in this and 
subsequent figures, unless specified otherwise, are identified in Table 1. The change in nose 
shape from hemispherical to ellipsoidal reverses the curvature of the normal stress vs 6 



N
or

m
al

 
st

re
ss

 

10
00

0 

-.
 

-.
-’ 

-*
 

--
-.

.-
-.

-.
 

-*
..*

-*
-*

.*
~

+
--

-W
--

-*
 

-0
 

--
-r

-*
 

-*
 

7.
--

--
--

-e
 

.._
*-

•_
 

._
._

. 
--

--
..-

~
-*

 
-L

 
l
 

--
--

-.
-,

 

-*
 

-‘ 

Ii-
--

-*
 

-*
 

.~
_*

_~
_~

_~
_.

~
~

~
 

-.
-.

 
02

57
0 

I.-
- 

-M
--

--
-*

 
-.

 
-.

 
-.

 
.._

.r
 

-+
--

--
=c

--
--

-•
 

-.
 

.-
.-

. 

0 
26

70
 i

: 
Y

. 
-‘

 
-.

 
-.

 

-*
 

-‘
 

-.
-•

-.
-.

-•
-.

--
--

- 
-.

 
-9

 
0.

26
70

 
-.

 
0’

2 I
 

0 

r,
 

a 
P

. 
-.

 
p

. 
IU

P
 

.*
-*

~*
-.

-.
*I

-.
 

-a
 

-.
 

--
--

--
-*

 
-*

 
-.

-e
.4

 
_.

-.
..

 
--

--
“-

m
-0

 
-.

 
-.

 
-.

 
-.

 
-.

 
-.

 
-.

“.
*-

.-
...

a*
-.

 
-*

 

-*
 

-.
 

-.
 



Steady-state penetration of viscoplastic targets 1137 

Table 1. Legend for figures 

curve type Parameter values 

------- ; = 2.0, b = 1O8, m = 0.03, o = 2.0 

2 = 2.0, b = IO', m = 0.03, OL = 2.0 

. . . . . . . . 2 = 2.0, b = 0, m = 0, a = 2.0 

2 = 2.0, b = 0, m = 0, 01 = 4.0 

~=1.0,b=O,m=O,~=2.0 

z = 0.2, b = 0, m = 0, rx = 2.0 

curve from convex downwards to concave downwards. This change was observed even for 
r,/rO = 1.1. For u = 2, the normal stress at the nose tip was essentially unchanged for 
0.2 < r,/ro 6 2.4. For r,/ro = 0.2, the nose shape is essentially flat and, as expected, the 
normal stress on it stays uniform and drops off rapidly near the periphery. The increase 
in a, m or b increases the normal stress on the penetrator nose. 

The non-dimensional axial resisting force experienced by the penetrator as various 

12 - a=Z,b=m=O 

10 - 

B 
51 
P 8- 
5 ‘n z2.0.b=104,0=2 

3 

6- 

I I I 1 1 1 
0.005 0.010 0.015 0.020 0.025 0.030 

4- (m) I I I I 
0.5 1.0 15 20 

(r, /ro) 
2 I I I I I I 1 I 

10 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 

(ALFA.) 

Fig. 4. Dependence of axial force on various factors. 

parameters are changed is plotted in Fig. 4. Equations obtained by fitting curves to the 
computed data are: 

F = 2.58(1 + 0.00738~~ - 0.000569cr2), l<cr<5, 5 = 2.0, b = m = 0, 
10 

(25) 

F = 2.611(1 + 6.761m + 20.465m2), 0 < m < 0.03, 5 = 2.0, b = 104, tl = 2.0, 
r0 

(26) 

F = 4.456(1 + 7.28m + 23.478m2), 0 < m G 0.03, 5 = 1.0, b = 104, 

1.0 - 1.3086; + 0.9504 , 

0.2 < 2 < 2.4, b = m = 0, 

a = 2.0, (27) 

a= 4 (28) 
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1.0 - 1.04552 + 0.6294 

0.2 < 2 d 2.4, b = m = 0, IX = 2, 

where 

F=2 (n.an)sin0cosd[sinz8 + (ai cos’o]“dB, (29) 

4 is the angle which the unit normal to the nose makes with the penetrator axis as shown 
in Fig. 1. The corresponding axial force in physical units is given by F(xrgao). It is clear 
from these results that changing the nose shape from hemispherical to ellipsoidal with 
rn/ro = 2.0 reduces the axial resisting force to one-half of its value. For a fixed r,/r, and 
m, the axial force depends rather weakly upon or. This weak dependence of F upon c1 is 
perhaps one reason why the choice of constant target resistance in simple theory of Tate 
[l] gives good qualitative results. Even though the coefficient of m2 in eqns (25) and (26) 
is nearly 3 times that of m, the dependence of the axial force F upon the strain-rate 
hardening coefficient m is essentially linear. It is so because the values of m for typical 
steels are much smaller than one. This linear dependence of F upon m becomes transparent 
from the plots of Fig. 4. 

Computed results indicate that for 1 < a d 5, r,/ro = 2.0, b = m = 0, the hydrostatic 
pressure at the nose tip increases essentially linearly from 5.6 to 8.2 and the normal 
compressive stress from 6.22 to 8.84. It is apparent that the hydrostatic pressure contributes 
significantly to the values of err and crZZ. Figure 5 shows that the principal stress component 
--gZZ along the axis in front of the penetrator falls off rapidly with the distance. The 
stresses at points situated more than 3ro from the nose tip cannot be accurately determined 
since the velocity gradients there are extremely small. The values of c,, at points on the 
centerline which are at a distance of 3r, and more from the nose tip equal essentially the 
hydrostatic pressure. 

In Fig. 5 is also plotted the variation of the strain-rate measure I along the axial line. 
These nondimensional values need to be multiplied by uO/ro, which typically equals 105, 
to arrive at the corresponding dimensional effective strain-rate measure I. Thus strain- 
rates of the order of 2 x lo5 set-’ occur at points in the vicinity of the penetrator nose. 
On the axial line, peak values of I are higher near the nose tip for r-,/r0 = 2.0 as compared 
with those for lower values of r,/r,. However, near the periphery of the penetrator nose 
and its cylindrical body, the strain-rate measure I for the blunt nose increases by an order 
of magnitude whereas that for the ellipsoidal and hemispherical nose, it drops by a factor 
of 10. This is shown in Fig. 6 wherein is also plotted the nondimensional velocity, tangential 
to the penetrator nose, for different values of various parameters. Again the nose shape is 
the major influencing factor. However, u, at points on the centerline ahead of the penetrator 
nose is not affected that much by the nose shape except for r,/r, = 0.2. The decay rate of 

Iu, + el for 1 < ‘< < 2.4 is nearly constant but is appreciably less for t-,/r0 = 0.2. The nose 

shape does change rather noticeably the relative z-velocity of points on the lines z = 0 and 
z = 2.09. This follows from the results depicted in Figs 7 and 8 which also show that more 
of the target material at the sides of the penetrator deforms for a penetrator with an 
ellipsoidal nose, even though it is not true ahead of the penetrator, as noted earlier. Two 
of the curves in these figures essentially overlap. 

We note that the target material within some distance inside the boundary EFA does 
not deform at all and the deformations are essentially independent of z near the boundary 
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Fig. 7. Variation of relative z-velocity with radial co-ordinate r on the line z = 0. 
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Fig. 8. Variation of relative z-velocity with radial co-ordinate r on the line z = -2.09. 

AB. It is therefore reasonable to conclude that the target region chosen for computation 
is sufficient to obtain a good description of the deformations in the vicinity of the penetrator 
nose. 

CONCLUSIONS 
For the range of values of r,/ro, CL and m studied, the ratio rn/rO of the radius of the 

nose to that of the cylindrical body of the penetrator has the most effect on the axial 
resisting force experienced by the penetrator. The retardation force depends rather weakly 
on cz and m. In all cases, significant target deformations occur only within 2r0 of the 
penetrator. Whereas for r,/ro = 1.0, the target material adjacent to the sides of the 
penetrator appears to extrude rearwards in a uniform block that is separated from the 
bulk of the target material by a narrow region with a sharp velocity gradient, such is not 
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the case for r,/ro = 2.0. In the latter case there is no noticeable region of steep velocity 
gradients. 

For a = 5 and t-,/r0 = 2.0 the target material seemed to separate from the sides of the 
penetrator nose. This provides a limiting value for the validity of our calculations since 
flow separation has not been built into our model. Maximum normal stress and the 
maximum hydrostatic pressure occur at the nose tip, and fall off rapidly away from that 
point. These peak values depend significantly upon a. 

We hope that results presented here will prove useful in devising or checking the results 
from simpler engineering theories of penetration. 
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