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EFFECT OF MULTIPLE INITIAL IMPERFECTIONS ON
THE INITIATION AND GROWTH OF ADIABATIC
SHEAR BANDS IN NONPOLAR AND DIPOLAR
MATERIALS

Y. W. KWON and R. C. BATRA
Department of Engineering Mechanics, University of Missouri-Rolla, Rolla, MO 65401-0249, U.S.A.

Abstract—Simple shearing deformations of a viscoplastic block made of nonpolar and dipolar
materials, and placed in a hard loading device are studied. Multiple defects in the block are modeled
by perturbing the uniform temperature within the block when the material just starts deforming
plastically to that given by a cosine function which assumes relative maximum values at several points
in the block. It is found that for simple materials, the deformation localizes at points where the
perturbed temperature has relative minima when the average applied strain-rate 7, is 500 s™! and at
the locations of the relative maxima of the perturbed temperature when the applied strain-rate is more
than 1000s™'. This transition occurs possibly due to different thermal lengths and the time scales
associated with the work-hardening in the two cases. For dipolar materials the deformation localizes
near the boundaries of the block abutting the loading device when 7, = 5005~ but at the locations of
the relative maxima of the perturbed temperature when 7, = 50,000 s™*. For both simple. and dipolar
materials the initiation of the localization of the deformation is considerably delayed as compared to
the case when the temperature perturbation has only one bump with its center coinciding with the
center of the block.

INTRODUCTION

Recently there has been considerable interest in the study of the localization of the shearing
deformation in bodies being deformed at very high strain-rates. These narrow regions of severe
deformation are usually referred to as adiabatic shear bands because of the little time available
for the heat generated to diffuse away to colder regions of the body. These shear bands are
believed to be precursors to shear fractures.

Most analytical studies (e.g. Recht [1], Staker [2], Clifton [3], Burns [4], Bai [5] and Shawki
et al. [6]), aimed at delineating factors that inhibit or enhance the initiation and growth of
adiabatic shear bands, have involved analyzing the thermomechanical deformations of a block
undergoing simple shearing deformations. Whereas Recht, Staker and Clifton derived
conditions based on the assumption that the material point becomes unstable when the shear
stress at that point attains a maximum value, Burns, Bai and Shawki ef al. studied the growth
of small perturbations superimposed on a finitely deformed body. In these latter analytical
studies the governing equations were linearized around the finitely deformed state. Clifton et
al. [7], Wright and Batra [8, 9], Wright and Walter [10] and Batra [11] studied, numerically, the
effect of introducing a perturbation on a finitely deformed body and did not need to linearize
the governing equations. Subsequently Batra [12] introduced the temperature perturbation
when the body just starts deforming plastically and investigated the effect of various material
parameters on the value of the average strain at which the deformation begins to localize.
These perturbations are supposed to simulate the flaws or inhomogeneities present in the
material. Whereas in previous works one or two flaws/defects were presumed to be present,
here we assume that the flaws are periodically distributed and represent these by an initial
temperature distribution given by a cosine function which assumes relative maximum values at
several points in the specimen. It is found that the presence of many flaws/defects delays
considerably the initiation of the localization of the deformation.

Wright and Batra [9] and Batra [11] have shown that the inclusion of the strain gradients as
an independent kinematic variable has a stiffening effect in the sense that it delays considerably
the onset of shear bands. Batra [11] also studied the interaction among shear bands in simple
and dipolar materials. His numerical calculations revealed that two bands that will grow
independently in simple materials will coalesce in dipolar materials. Herein it is found that in
dipolar materials the deformation localizes near the boundaries of the specimen at an applied
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strain-rate ¥, of 500 s~ but at the locations of the relative maxima of the initial temperature
when 7,=50,000s"". In simple materials the deformation localized at points berween the
locations of the relative maxima of the initial temperature at ,=500s"'.- However, a:
¥0=50,000s"" the points where the deformation localized coincided with the locations of the
relative maxima of the initial temperature.

FORMULATION OF THE PROBLEM
Equations governing the thermomechanical deformations of a block occupying the region

—1=y=<+1 and made of a viscoplastic material undergoing simple shearing deformations may
be written [9, 11} as
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These equations are written in terms of nondimensional variables. Equations (1) and (2}
represent, respectively, the balance of linear momentum and the balance of internal energy.
The balance of mass simply gives that the mass density p stays constant since the simpie
shearing deformation is isochoric. Here v is the x-velocity of a material particle, 8 its
temperature change from that in the reference configuration, s is the shear stress in the x
direction acting on the plane y = constant, ¢ is the dipolar stress on this plane, & the thermal
diffusivity, parameters y, and #n describe the strain-hardening of the material, parameters &
and m characterize the strain-rate sensitivity of the material, the parameter a defines the
thermal softening, the parameter [ is the material characteristic iength, and g is the shear
modulus. The parameter i may be thought of as an internal variable and eqn (5) its growih
equation. It is used to describe the work-hardening of the material. Note that the numerator on
the right-hand side of eqn (5) equals the plastic working. A comma followed by y signifies
partial differentiation with respect to y and a superimposed dot stands for the material time
differentiation. Implicit in eqn (2) are the assumptions that the specific internal energy equals
the specific heat multiplied by the change in temperature, Fourier’s law of heat conduction
holds and that all of the plastic working is converted into heat. The material characteristic
length ! equals zero for nonpolar materials and is positive for dipolar materials.

In eqns (1)—(6) it has also been assumed that the strain rate y = v,y and its gradient d=u,,
have additive decompositions into elastic ¥., d. and plastic parts 7, d,. That is

y = Ye + YPa d = de + dp“ i (7}
For the plastic parts 7, and dp we have made the following constitutive assumptions:
. A g
=As,  d,= —;- @

A in these equations equals zero whenever the deformations are elastic and is positive for
plastic deformations. In order to determine whether a material point is deforming elastically or
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plastically, we presume that a scalar loading or yield function f exists such that
f(s, 0,6, 75, dp) =k ©

and
of
A (s, 0, 8, As, Ao) <0 (10)

for all admissible values of s, o and 6. x in eqn (9) describes the work hardening of the

material. The criterion for elastic and plastic deformation at a material point is
f(s, o, 6,0, 0) <0, elastic 11
f(s, o, 6, 0,0)>0, plastic. (12)

When eqn (12) holds, eqn (9) has a unique solution for A because of the requirement (10).
Equation (6) gives the value of A for the choices

o (s2+ o%):
f(S, o, 0, Yp> dp) - (1 _ a@)[l + 5 (‘/12; + d%,)%]m ’ (13)
and
K=@+E). (14)
0

The details of deriving eqns (1)—(6) may be found in Wright and Batra [9] and Green et al.
[13].

The governing equations (1)-(6) are to be supplemented by initial conditions and boundary
conditions. For the former we take

v(y,00=y, 6(3,0=0, o(y,00=0, y(y,0=0,
8(y, 0) = (1 + cos 207y )/20,

s(y, 0)=[1-ab(y, 0)], (15)
and for the latter
v(tl, )= +1, 0,(x1,1) =0, o(£1,¢)=0. (16)

Thus the material point is initially presumed to lie on its yield surface that corresponds to
quasistatic deformations, no work hardening and its initial temperature. The initial stress
distribution is nonuniform and y, = 0 initially at all points in the body.

We seek solutions of eqns (1)—(6) subjected to initial and boundary conditions (15) and (16)
that exhibit the following symmetries and antisymmetries:

v(=y, )=-v(y, 1), O6(-y,0)=0(y,1), -
17
o(=y,)=-0(y, 0, s(=y,0)=s(y,0), Y=y, )=vy(y, 1)

However we do not assume a priori that the solution is periodic. Hence we can reduce the
domain of study to [0, 1] and replace boundary conditions (16) by

v(l, 1) =1, v(0,1)=0, 0,(1,1)=0, 0,0,6)=0,

o1, =0, a(0,1)=0. (18)

The nonlinear coupled governing equations (1)—(5) under the side conditions (15) and (18) are
solved numerically by the finite element method. We note that there are no existence and
uniqueness theorems available for such a system of equations. Also there is no hope of solving
these equations analytically, therefore we solve them numerically.
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COMPUTATION AND DISCUSSICN OF RESULTS

We introduce the auxiliary variables

U= U,y, g§= 8 y> p=0, (ig}
and rewrite eqns (1)—(4) as

.1 ,
v=7 (s —ip),, {20)
6 =kg,+ Als®+ 0?), 21)
§=ulu — As), @z

. A

a=lix<u‘y—f1—0>a (23

Whereas Batra [11] integrated eqns (19)-(23) and (5) by the Crank—Nicholson—Galerkin finite
element method to find &, g, p, v, 6, 5, ¢ and ¥ at a node point, we have integrated eqns
(1)-(5) by the same method and computed v, 8, s, o and ¥ at a node point. For & test
problem, the computed results by the two methods were identical but the core storage needed
and the CPU time used was considerably less with the present method. Here we divided the
domain [0,1] into 400 uniform subdomains or finite elements and used A:=5%1i07% in
computing the results.

The values of the nondimensional parameters a, u, n, Y, and m do not depend upon the
applied average strain-rate 7, but those of p, k and b vary as y3, 75 and 7, respectively. The
values of these variables, which correspond to a typical hard steel, used to compute numerical
results are

a = 0.4973, g =240.3, 1 =0.09, Yo =0-017, m = 3.025

and
p=3.928 X 1077, k=3.978 x 1073, b =75 x 10° when ¥, = 500 s},

p=3.928x10"", k=3.978x107°, b =5x 10° when ¥, =250,000s"",

The presumed value of the thermal softening coefficient a is approx. 7 times the value for a
typical steel. This is done so that the peak in the shear stress—shear sirain curve occurs at z
lower value of the average strain and therefore the computational time for the problem is
significantly reduced. This choice of the value of a should not affect the qualitative nature of
results presented here.

For homogeneous deformations of the block Fig. 1 depicts the shear siress—shear strain curve
for an applied strain-rate of 500 s~*. The peak in the curve cccurs at an average strain of 0.093.
At the higher strain-rate of 50,000 s the shear stress peaks out at an average strain of 0.085.
The temperature perturbation was introduced at an average strain corresponding {0 point { in
Fig. 1. )

Figure 2 shows how the temperature, plastic strain-rate and the shear stress s evolve in the
steel block when it is modeled as a nonpolar material, the initial temperature distribution is
nonuniform, and the block is deformed at an average strain-rate of 500 s™*. Figure 3 depicts the
corresponding results for an applied strain-rate of 50,000 s™'. Note that the initial temperature
has the relative maximum value of 0.10 at y =0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, .8, 0.9 and
1.0. In each case the shear stress s becomes essentially uniform after a short while and stays
uniform throughout the thickness of the block. It first rises because of the work hardening and
strain-rate hardening effects and begins to decrease when these hardening effects are overcome
by the thermal softening. At the lower strain-rate of 500 s~ there is no noticeable drop in the
shear stress even when the deformation has started to localize but at the higher strain-rate of
50,000s™" the shear stress s decreases considerably after the deformation begins to localize.
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Fig. 1. Shear stress-strain curve for simple shearing deformations of a steel block at y,=500s"".

This rather noticeable drop in the shear stress with increasing average strain after the
deformation begins to localize has been pointed out by Wright and Walter [10]. Note that the
temperature rise in the two cases at places where the deformation localizes is nearly equal to
each other at the instant of the onset of the localization process. However, the temperature is
more evenly distributed at y,=500s"" as compared to that at 7,=50,000s" in the sense that
the difference between the maximum and the minimum temperature stays small for 7, =500s""
even after the deformation localizes. The rate of growth of the plastic strain-rate is more
gradual at y,=500s"" as compared to that at y,=50,000s"

The striking differences between the two cases are outlined below.

(a) First is the average strain at the instant the deformation begins to localize. For
¥0=500s"" the average strain of 0.624 at which the deformation has essentially localized is
nearly 7 times the strain at which the peak stress occurs during homogeneous deformations of
the block. However, for y,=50, OOO‘s'1 the localization of the deformation occurs at an
average strain of 0.09 which almost equals the strain of 0.085 at which the shear stress attains
the maximum value during homogeneous deformations of the block. For comparison purposes
we note [14] that when a temperature perturbation with a single bump centered at y =0 is
introduced, the shear bands form at an average strain of 0.0814 and 0.206 for y,= 500 s™' and
50,000s7", respectively. On the hypothesis that a temperature perturbation simulates material
inhomogeneities or flaws in the body, the present results indicate the initiation of shear bands is
delayed for y,=500s"" when there are more defects uniformly distributed in the specimen,
and for 7, =50,000s" when there is only one defect present in the specimen.

(b) Secondly, the places where the peak temperature rise and the peak plastic strain-rate
occur are quite different in the two cases. Whereas at y,=500s"" the peak values of the
temperature rise and the plastic strain-rate occur at places where the initial temperature
perturbation had relative minimum values, at 7, =50,000s"" the peaks of the temperature rise
and the plastic strain-rate coincide with the locations of the maxima of the temperature
perturbation. That the centers of shear bands for 7, =50,000s™" coincide with the locations of
the maxima of the initial temperature perturbation was also observed in the case the initial
temperature perturbation assumed peak values at six equidistant points rather than eleven. In
this case, the deformation localized at an average strain of 0.1122.

In order to understand the reasons for the above differences we note that, for nonpolar
materials (i.e. /=0), imbedded in the governing equations (1)— (6) are three length scales
[9,12] namely, the geometric length, a thermal length and a viscous length, and seven
non-dimensional parameters, namely, the mass density p, the elastic modulus u, the rate of
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Fig. 2. Evolution of the temperature, plastic strain-rate and the shearing stress in nonpolar materials
at y,=500s"".

thermal softening a, two for work hardening » and y,, and two for rate hardening b and .
Whereas the thermal length varies as y4 ', the viscous length does not depend upon ¥, but is a
function of the material parameters. The non-dimensional thermal length {=thermal
length/height of the specimen) is reduced from 0.6307 to 0.006307 when ¥, is incrcased
from 500 to 50,000 s~*. That the decrease in the thermal length is among the facters responsibie
for the aforementioned differences was confirmed by running the y,=500s""' case with the
thermal conductivity arbitrarily set equal to zero. In this case the thermal length is zero and the
peak strain-rates occurred at the locations of the maxima of the initial perturbation as
expected. To seek an answer to the question “For what value of ¥, does the above referrec
transition occur?”’, we conducted numerical experiments for different values of 7, between 530
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and 50,000s™! and found 7,=1000s"! to be the critical strain-rate above which the
deformation localized at points of maxima of the initial temperature perturbation and below
which it localized at other points.

It appears that it is the higher value of the thermal length at y,=500s"" that delays the
initiation of the localization process too. A close examination of the computed results indicated
that initially the material points at the locations of the temperature maxima experienced peak
plastic strain-rates and higher values of the work hardening parameter vy as compared to their



1184 Y. W. KWON and R. C. BATRA

neighbors. Since the shear stress became essentially uniform shortly after the temperature
perturbation was introduced, the increased value of v resulted in reduced values of A, ¥, 2nd
the heat generated due to plastic working at these points. This coupled with the hear
conduction tended to make the temperature virtually uniform throughou: the specimen. Of
course the temperature and work-hardening parameter did not become exactly uniform
because if they did, the specimen will subsequently undergo homogeneous deformations anly.
To lend credence to this hypothesis we increased artificially the thermal conductivity to 100
times its previous value but kept 7,=2500s"". In this case no shear band formed and the
temperature field within the specimen became uniform and stayed so during the ensuing
deformations. To understand the role played by the work-hardening, we conducted a numerical
experiment with n=0 and },=500s"". This resulted in neglecting the effect of the
work-hardening on the deformations of the block. In this case the deformation localized at
points where the initial temperature perturbation assumed peak values,

Another reason for the localization not to occur at the locations of the peaks in the initial
temperature could be improper choices of the mesh and Af. We reduced Ar to one-half of its
value, but used the same mesh and recomputed results for 7, =500s". For smailer time step
the deformation localized at the same points as it did eariier for the large time step.

Since the distance between the locations of the points where the plastic strain-rate eventualiy
peaked and points of maxima of the initial temperature perturbation equais approximately the
length of 20 elements, it is unlikely that the finite-element mesh caused the shift.

When ¥, is increased from 500 to 50,0005, the non-dimensional mass density increases
from 3.93 X 107° t0 3.93 x 107", In [14] the initial temperature perturbation had only one bump
centered at y =0. It was found that the shear stress distribution within the specimen was
uniform for y,= 500s"" but non-uniform with the lowest value at y =0 for ¥, = 50,0005~ . No
such non-uniformity in the shear stress distribution has been observed for the periodic initial
temperature perturbation introduced herein.

in Figs 4 and 5 are plotted the evolution of the temperature, plastic strain-rate and the shear
stress s when the material of the block is modeled as 2 dipolar material with = 0.01 and the
block is deformed at an average strain-rate ¥, of 500 and 50,000 s™' respectively. Whereas for
70=3500s"" only one shear band with center at y =10 forms, at y,=50,000s"" ihe
deformation localizes around the location of the peaks of the initial temperature. In cach case
the initiation of the localization of the deformation is delayed as compared to that for nonpolar
materials [14]; the delay is more pronounced at the higher applied strain-rate. Whereas for
nonpolar materials the average strain at which the deformation localizes for y,=3500s"" is
nearly seven times that for y,=150,000s"", for dipolar materials the average strains at which
the deformation localizes in the two cases are nearly equal o each other. Alsc for nonpolar
materials the shear stress s becomes essentially uniform throughout the specimen soon after the
initial perturbation is introduced and stays uniform within the block, such is not the case for
dipolar materials. For dipolar materials the amplitude of the oscillations in the shear stress
distribution is extremely small for 7= 500s"" but at y,=50,000s™! it is noticeable and seems
to grow as the deformation localizes. Note that for dipolar materials it is (s — lo ;) and not 5
that acts as a flux for the linear momentum. The average shear stress s exhibits the same
behavior as that for nonpolar materials in the sense that it first increases and subsequentiy
begins to drop when thermal softening effects exceed the combined effects of strain and
strain-rate hardening.

At 7,=500s""! the initial temperature distribution tends to become uniform throughout the
block and stays virtually uniform until the deformation begins to localize near y = 1.0. At that
instant the temperature near y = 1.0 increases slightly more than that at other places. Of course
the temperature at every point in the body keeps on increasing because of the plastic working.
Why the shear band forms near y = 1.0 and not near y = 0.0 is not clear. At the higher appiied
strain-rate y,=50,000s"" neither the temperature nor the plastic strain-rate ever becomes
uniform within the block. It seems that the amplitude of the temperature oscillations keeps on
increasing with the increase in the average strain in the specimen.

For dipolar materials, in addition to the thermal and viscous lengths, there are three lengih
scales [13] characteristic of the material. Herein as well as in two previous studies {9, 11} the
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Fig. 5. Evolution of the temperature, plastic strain-rate and the shcar stress in dipolar materials
(1=10.01) at y,=50,000s "

initially tends to become uniform because of heat conduction and once the temperature
fluctuations die out the block deforms homogeneously. What eventually causes the temperature
to rise at y = 1.0 and not at y = 0.0 is unclear.

We note that the CPU time required to compute results for the dipolar materials is nearly
four times that needed for non-polar materials. Thus not many numerical experiments could be
conducted for dipolar materials.

CONCLUSIONS

For nonpolar materials the initiation of the shear bands is significantly delayed at y, = 500 st
when a periodic temperature perturbation with eleven peaks is introduced initially as compared
to the case when the initial temperature perturbation has a single bump with peak at the center
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of the block. However, for 7,=50,000s"" the reverse happens. In the former case the
deformation localizes at points where the initial temperature has relative minima values, in the
latter case the centers of shear bands coincide with the places where the initial temperature has
relative maximum values. These transitions are found to occur at 7,=1000s™! and seem to be
caused by the lower value of the thermal length at the higher value of ¥, and the different time
scale associated with the work-hardening in the two cases.

For dipolar materials the average strains in the specimen at which the deformation localizes
at =500 and 50,000 s~" are nearly equal to each other. These values of average strains are
higher than the corresponding values for nonpolar materials. Only one band forms at
70=2500s"" but the number of shear bands equal the number of peaks in the initial
temperature at 7, = 50,000s".
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