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Ahstraet-Simple shearing deformations of a viscoplastic block made of nonpolar and dipolar 
materials, and placed in a hard loading device are studied. Multiple defects in the block are modeled 
by perturbing the uniform temperature within the block when the material just starts deforming 
plastically to that given by a cosine function which assumes relative maximum values at several points 
in the block. It is found that for simple materials, the deformation localizes at points where the 
perturbed temperature has relative minima when the average applied strain-rate PO is 500 s-l and at 
the locations of the relative maxima of the perturbed temperature when the applied strain-rate is more 
than 1000 s-l. This transition occurs possibly due to different therma lengths and the time scales 
associated with the work-hardening in the two cases. For dipolar materials the deformation localizes 
near the boundaries of the block abutting the loading device when ?a = 500 s-l but at the locations of 
the relative maxima of the perturbed temperature when &, = 50,000 s-l. For both simple. and dipolar 
materials the initiation of the localization of the deformation is considerably delayed as compared to 
the case when the temperature perturbation has only one bump with its center coinciding with the 
center of the block. 

INTRODUCTION 

Recently there has been considerable interest in the study of the localization of the shearing 
deformation in bodies being deformed at very high strain-rates. These narrow regions of severe 
deformation are usually referred to as adiabatic shear bands because of the little time available 
for the heat generated to diffuse away to colder regions of the body. These shear bands are 
believed to be precursors to shear fractures. 

Most analytical studies (e.g. Recht [l], Staker [Z], Clifton [3], Burns [4], Bai [S] and Shawki 
et al. [6]), aimed at delineating factors that inhibit or enhance the initiation and growth of 
adiabatic shear bands, have involved analyzing the thermomechanical deformations of a block 
undergoing simple shearing deformations. Whereas Recht, Staker and Clifton derived 
conditions based on the assumption that the material point becomes unstable when the shear 
stress at that point attains a maximum value, Burns, Bai and Shawki et al. studied the growth 
of small perturbations superimposed on a finitely deformed body. In these latter analytical 
studies the governing equations were linearized around the finitely deformed state. Clifton et 
al. [7], Wright and Batra [S, 91, Wright and Walter [lo] and Batra [ll] studied, numerically, the 
effect of introducing a perturbation on a finitely deformed body and did not need to linearize 
the governing equations. Subsequently Batra [12] introduced the temperature perturbation 
when the body just starts deforming plastically and investigated the effect of various material 
parameters on the value of the average strain at which the deformation begins to localize. 
These perturbations are supposed to simulate the flaws or inhomogeneities present in the 
material. Whereas in previous works one or two flaws/defects were presumed to be present, 
here we assume that the flaws are periodically distributed and represent these by an initial 
temperature distribution given by a cosine function which assumes relative maximum values at 
several points in the specimen. It is found that the presence of many flaws/defects delays 
considerably the initiation of the localization of the deformation. 

Wright and Batra (91 and Batra [ll] have showrrthat the inclusion of the strain gradients as 
an independent kinematic variable has a stiffening effect in the sense that it delays considerably 
the onset of shear bands. Batra [ll] also studied the interaction among shear bands in simple 
and dipolar materials. His numerical calculations revealed that two bands that will grow 
independently in simple materials will coalesce in dipolar materials. Herein it is found that in 
dipolar materials the deformation localizes near the boundaries of the specimen at an applied 

1177 



1178 Y. W. KWON and R. C. BA’TRA 

strain-rate PO of 500 s-l but at the locations of the relative maxima of the initial temperatu,re 
when p0 = 50,000 s-l. In simple materials the deformation localized at points between the, 
locations of the relative maxima of the initial temperature at PO = 5OQ s-l.~ However, at 
PO = 50,000 s-i the points where the deformation localized coincided with the locations of the 
relative maxima of the initial temperature. 

Equations governing the thermomechanical deformations of a block occupying the region 
- 1 G y G + 1 and made of a viscoplastie material undergoing simple shearing deformations may 
be written 19,111 as 

ti = $ (8 - la,,),,, (1) 

6 = k$,,, + A(,? + d), 

s = p(v*, - As), 

These equations are written in terms of nondimensional variables. Equations (1) and (2) 
represent, respectively, the balance of linear momentum and the balance of internal energy. 
The balance of mass simply gives that the mass density p stays constant since the siwpk 
shearing deformation is isochoric. Mere v is the x-velocity of a material particle, 8 its 
temperature change from that in the reference configuration, s is the shear stress in the x 
direction acting on the plane y = constant, o is the dipolar stress on this plane, & the thermal 
diffusivity, parameters gctO and n describe the strain-hardening of the material, parameters 4 
and m characterize the strain-rate sensitivity of the material, the parameter LZ defines the 
thermal softening, the parameter I is the material characteristic length, and &a is the shear 
modulus. The parameter r/ may be thought of as an internal variable and eqn (5) its growth 
equation. It is used to describe the work-hardening of the material. Note that the numerator on 
the right-hand side of eqn (5) equals the plastic working. A comma followed by y signifies 
partial differentiation with respect to y and a superimposed dot stands for the material time 
differentiation. Implicit in eqn (2) are the assumptions that the specific internal energy equals 
the specific heat multiplied by the change in temperature, Fourier’s law of beat conduction 
holds and that all of the plastic working is converted into heat. The material characteristic 
length I equals zero for nonpolar materials and is positive for dipolar materials. 

In eqns (l)-(6) it has also been assumed that the strain rate j, = u,? and its gradient d = @,YY 
have additive decompositions into elastic Pe, d, and plastic parts VP, d,. That is 

p = jet yp, B = 8, + d,. (7) 

For the plastic parts 9, and d, we have made the following constitutive assumptions: 

A in these equations equals zero whenever the deformations are elastic and is posirive for 
plastic deformations. In order to determine whether a material point is deforming elastically or 
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plastically, we presume that a scalar loading or yield function f exists such that 

f(& 0, 6, I& d&J = K 

and 

-$ (s, 0, 8, As, Au) < 0 

(9) 

for all admissible values of S, o and 6. K in eqn (9) describes the work hardening of the 
material. The criterion for elastic and plastic deformation at a material point is 

When eqn (12) holds, 
Equation (6) gives the 

and 

f(s, u, 8,0, 0) S 0, elastic (11) 

f(s, o, 8, 0,O) > 0, plastic. (12) 

eqn (9) has a unique solution for A because of the requirement (10). 
value of A for the choices 

f(s, 0, 6 ?p, &) = 
(s2 + tip 

(1 - ae)[i + b(j; + @I~ ’ (13) 

The details of deriving eqns (l)-(6) may be found in Wright and Batra [9] and Green et al. 

[13]. 
The governing equations (l)-(6) are to be supplemented by initial conditions and boundary 

conditions. For the former we take 

V(Y, 0) =Y, e(Y, 0) = o, O(Yt 0) = o, Il(Y, o> = o, 

e(Y, 0) = (1 f cos 207~~9/20, 

S(Y, 0) = [I - ae(Y, o)i, (15) 

and for the latter 

v(f1, t) = fl, e,+i, t) = 0, a(zbl, t) = 0. (16) 

Thus the material point is initially presumed to lie on its yield surface that corresponds to 
quasistatic deformations, no work hardening and its initial temperature. The initial stress 
distribution is nonuniform and pr, = 0 initially at all points in the body. 

We seek solutions of eqns (l)-(6) subjected to initial and boundary conditions (15) and (16) 
that exhibit the following symmetries and antisymmetries: 

4-Y, r) = -V(Y, 0, 6(-Y, r) = e(Y, t), 
(17) 

0(-Y, t) = -a(y, t), 8(-Y, 0 = S(Y) t), V(-Y> t) = NY, t). 

However we do not assume Q priori that the solution is periodic. Hence we can reduce the 
domain of study to [0, l] and replace boundary conditions (16) by 

V(1, t) = 1, V(0, t) = 0, e,y(i, t) = 0, e,,(O, 0 = 0, 

a(1, t) = 0, a(0, t) = 0. 
(18) 

The nonlinear coupled governing equations (l)-(5) under the side conditions (15) and (18) are 
solved numerically by the finite element method. We note that there are no existence and 
uniqueness theorems available for such a system of equations. Also there is no hope of solving 
these equations analytically, therefore we solve them numerically. 
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We introduce the auxiliary variables 

u = u,y, g=@ 
.Y’ P = o,, (19) 

and rewrite eqns (l)-(4) as 

Whereas Batra [ll] integrated eqns (19)~(23) and (5) by the Crank-Nicholson-Oalerkin finite 
element method to find kk, g, p, u, 6, s, @ and ‘my at a node point, we have integrated eqns 
(l)-(5) by the same method and computed u, 8, S, G and t/ at a node point. For 8 test 
problem, the computed results by the two methods were identical but the core storage needed 
and the CPU time used was considerably less with the present method. Here we divided the 
domain [0, 1% into 408 uniform subdomains or finite elements and used A: = 5 x iOw6 m 
computing the results. 

The values of the nondimensional parameters a, ga, n, q. and m do not depend upon the 
applied average strain-rate f. but those of p, k and b vary as p& 70’ and PO respectively. The 
values of these variables, which correspond to a typical hard steel, used to compute 
results are 

and 

a = 0.4973, /A = 240.3, n = 0.09, ?j& = 0.017, Rr = 0.025 

p = 3.928 x 1W5 i k=?.978 x W3, b=5><106whe~l’g=500s-1, 

,o = 3.928 x lK1 I k = 3.978 x 10-j, b = 5 X 16)’ when y. = 50,000 s-’ 

mlmerical 

The presumed value of the thermal softening coefficient ck is approx. 7 times the value for a 
typical steel. This is done so that the peak in the shear stress-shear strain curve occurs at a 
lower value of the average strain and therefore the computational time for the problem is 
significantly reduced. This choice of the value of LZ should not affect the qualitative nature of 
results presented here. 

For homogeneous deformations of the block Fig. 1 depicts the shear stress-shear strairn curve 
for an applied strain-rate of 500 s-r. The peak in the curve occurs at an average strain of 0.093, 
At the higher strain-rate of 50,000 s-’ the shear stress peaks out at an average strain of 0.085. 
The temperature perturbation was introduced at an average strain corresponding to point I in 
Fig. 1. 

Figure 2 shows how the temperature, plastic strain-rate and the shear stress s evolve in the 
steel block when it is modeled as a nonpolar material, the initial temperature distribution is 
nonuniform, and the block is deformed at an average strain-rate of 500 s-r. Figure 3 depicts the 
corresponding results for an applied strain-rate of 50,000 s-i. Note that the initial temperature 
has the relative maximum value of 0.10 at y = 0.0, O.?, 8.2, 0.3, 0.4, 0.5, 0.6, 0.7, O.$, 0.9 and 
1.0. In each case the shear stress s becomes essentially uniform after a short while and stays 
uniform throughout the thickness of the block. It first rises because of the work hardening and 
strain-rate hardening effects and begins to decrease when these hardening effects are overcome 
by the thermal softening. At the lower strain-rate of 500 s-l there is no noticeable drop in the 
shear stress even when the deformation has started to localize but at the higher strain-rate of 
50,OOQ s-l the shear stress s decreases considerably after the deformation begins to localize. 
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Fig. 1. Shear stress-strain curve for simple shearing deformations of a steel block at PO = 500 s-l. 

This rather noticeable drop in the shear stress with increasing average strain after the 
deformation begins to localize has been pointed out by Wright and Walter [lo]. Note that the 
temperature rise in the two cases at places where the deformation localizes is nearly equal to 
each other at the instant of the onset of the localization process. However, the temperature is 
more evenly distributed at PO = 500 s-l as compared to that at PO = 50,000 s-l in the sense that 
the difference between the maximum and the minimum temperature stays small for p0 = 500 s-l 
even after the deformation localizes. The rate of growth of the plastic strain-rate is more 
gradual at p, = 500 s-l as compared to that at PO = 50,000 s-l. 

The striking differences between the two cases are outlined below. 
(a) First is the average strain at the instant the deformation begins to localize. For 

90 = 500 s-l the average strain of 0.624 at which the deformation has essentially localized is 
nearly 7 times the strain at which the peak stress occurs during homogeneous deformations of 
the block. However, for PO = ~O,OOO,S-~ the localization of the deformation occurs at an 
average strain of 0.09 which almbst equals the strain of 0.085 at which the shear stress attains 
the maximum value during homogeneous d&formations of the block. For comparison purposes 
we note [14] that when a temperature perturbation with a single bump centered at y = 0 is 
introduced, the shear bands form at an average strain of 0.0814 and 0.206 for y0 = 500 s-’ and 
50,000 s-l, respectively. On the hypothesis that a temperature perturbation simulates material 
inhomogeneities or flaws in the body, the present results indicate the initiation of shear bands is 
delayed for y0 = 500 s-l when there are more defects uniformly distributed in the specimen, 
and for p0 = 50,000 s-l when there is only one defect present in the specimen. 

(b) Secondly, the places where the peak temperature rise and the peak plastic strain-rate 
occur are quite different in the two cases. Whereas at y,, = 500 s-l the peak values of the 
temperature rise and the plastic strain-rate occur at places where the initial temperature 
perturbation had relative minimum values, at PO = 50,000 s-l the peaks of the temperature rise 
and the plastic strain-rate coincide with the locations of the maxima of the temperature 
perturbation. That the cent&s of shear bands for PO = 50,000 s-l coincide with the locations of 
the maxima of the initial temperature perturbation was also observed in the case the initial 
temperature perturbation assumed peak values at six equidistant points rather than eleven. In 
this case, the deformation localized at an average strain of 0.1122. 

In order to understand the reasons for the above differences we note that, for nonpolar 
materials (i.e. I = 0), imbedded in the governing equations (l)-(6) are three length scales 
[9,12] namely, the geometric length, a thermal length and a viscous length, and seven 
non-dimensional parameters, namely, the mass density p, the elastic modulus p, the rate of 
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Fig. 2. Evolution of the temperature, plastic strain-rate 2nd :he shearing stress in non@ar materials 
at y<, = ml s-1. 

thermal softening a, two for work hardening n and v (), and two for rate hardening b and rri. 
Whereas the thermal length varies as y;‘“, the viscous length does not depend upon ‘/(, but is a 
function of the material parameters. The non-dimensional thermal length ( = thermai 
length/height of the specimen) is reduced from 1?.63637 to 0.006307 when 9” is increased 
from 500 to 50,000 s-!. That the decrease in the thermal length is among the factors responsibie 
for the aforementioned differences was confirmed by running the pn = 500 SC’ case with the 
thermal conductivity arbitrarily set equal to zero. In this case the thermal length is zero and the 
peak strain-rates occurred at the locations of the maxima of the initiai perturbation as 
expected. To seek an answer to the question “For what value of y0 does the above referred 
transition occur?“, we conducted numerical experiments for different values of y0 between 500 
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Fig. 3. Evolution of the temperature, plastic strain-rate and the shear stress in nonpolar materials at 
p. = 5o,ooos-‘. 

and 50,000 s-l and found ?0 = 1000 s-l to be the critical strain-rate above which the 
deformation localized at points of maxima of the initial temperature perturbation and below 
which it localized at other points. 

It appears that it is the higher value of the thermal length at PO = 5OOs-’ that delays the 
initiation of the localization process too. A close examination of the computed results indicated 
that initially the material points at the locations of the temperature maxima experienced peak 
plastic strain-rates and higher values of the work hardening parameter T) as compared to their 
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neighbors. Since the shear stress became essentially uniform shortly after the temperature 
perturbation was introduced, the increased value of ay resulted in reduced values of A, k, and 
the heat generated due to plastic working at these points. This coupled with the heas 
conduction tended to make the temperature virtually uniform throughout the specimen. Of 
course the temperature and work-hardening parameter did not become exactly amifom 
because if they did, the specimen will subsequently undergo homogenesus deformations onfy. 
To lend credence to this hypothesis we increased artificially the thermal conductivity to 1iN 
times its previous value but kept fO = 500 s-*. Inm this case no shear band formed and the 
temperature field within the specimen became uniform and stayed so during the ensuing 
deformations. To understand the role played by the work-hardening, we coraducted a numesicd 
experiment with pa = 0 and y, = 500 s-’ . This resulted in neglecting the effect of the 
work-hardening on the deformations of the block. In this case the deformation localized at 
points where the initial temperature perturbation assumed peak values. 

Another reason for the localization not to occur at the locaticms of the peaks ia the initial 
temperature could be improper choices of the mesh and At. We reduced I%r to one-half of its 
value, but used the same mesh and recomputed results for :jO = 500 s-l. For smaller time step 
the deformation localized at the same points as it did earlier for the large time step. 

Since the distance between the locations of the points where the plastic strain-rare eventEa+ 
peaked and points of maxima of the initial temperature perturbation equals appssximatety the 
length of 20 elements, it is unlikely that the finite-element mesh caused the shifty 

When PO is increased from 500 to 50,000 s-‘, the non-dimensional mass density increases 
from 3.93 X IF5 ts 3.93 X IOsi. In [14] the initial temperature perturbation had only one bump 
centered at y = 0. It was found that the shear stress distribution withirs the specimen was 
uniform for PO = 500 s-’ but non-uniform with the lowest value at y = 0 for PO = 50,000 sPi ~ No 
such non-uniformity in the shear stress distribution has been observed for the periodic initial 
temperature perturbation introduced herein. 

In Figs 4 and 5 are plotted the evolution, of the temperature, plastic strain-rate and the shear 
stress s when the material of the block is modeled as a dipolar material with k = 0.01 and the 
block is deformed at an average strain-rate PO of 500 and 50,008 s-l respectively. Whereas for 
jf,=500s-’ cl 1 n y one shear band with center at y = I.14 forms, at 9:) = 50,000 s-j nhe 
deformation localizes around the location of the peaks of the initial temperature. In each case 
the initiation of the localization of the deformation is delayed as compared to that for nonpolar 
materials [P4]; the delay is more pronounced at the higher applied strain-rate. Whereas f~:r 
nonpolar materials the average strain at which the deformation localizes for PO = 500 s-I is 
nearly seven times that for PO = 50,000 s-l? for dipolar materials the average strains a: which 
the deformation localizes in the two cases are nearly equal tat each other. Also for nonpo?ar 
materials the shear stress s becomes essentially uniform throughout the specimen soon after the 
initial perturbation is introduced and stays uniform within the block, such is not the case for 
dipolar materials. For dipolar materials the amplitude of the oscillationrs in the shear stress 
distribution is extremely small for PO = 500 s-l but at PO = 50,000 s-l it is ssoticeable and seems 
to grow as the deformation localizes. Note that for &polar materials it is (s - la.,) and not s 
that acts as a flux for the linear momentum. The average shear stress s exhibits the same 
behavior as that for nonpolar materials iw ~Bse sense that it first increases and subsecql~ent;y 
begins to drop when thermal softening effects exceed the combined effects of strain and 
strain-rate hardening. 

At PO = 500 s-l the initial temperature distribution tends to become uniform throughout the 
block and stays virtually uniform until the deformation begins to localize near y = 1.0. At that 
instant the temperature near y = 1.0 increases slightly more than that at other places. Of course 
the temperature at every point in the body keeps on increasing because of the plastic working. 
Why the shear band forms near y = 1.0 and not near y = 0.0 is not clear. At the higher applied 
strain-rate PO = 5O,OO(B s-l neither the temperature no r the plastic strain-rate ever becomes 
uniform within the block. It seems that the amplitude of the temperature oscillations keeps on 
increasing with the increase in the average strain in the specimen. 

For dipolar materials, in addition to the thermal and viscous lengths, there are three Hength 
scales f13] characteristic of the material. Herein as wet1 as in two previous studies [9, %I] the 
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Fig. 4. Evolution of the temperature, plastic strain-rate and the shear stress in dipolar materiak 
(I = 0.01) at PO = 500 SK’. 

three length scales have been set equal to each other. The problem when the three length 
scales are different is under investigation and will be reported on in a future paper. The 
previous work with p0 = 500 s-l and with a single temperature perturbation centered at y = 0 
indicated that the inclusion of dipolar effects delays considerably the localization of the 
deformation. The delay observed here by comparing results plotted in Figs 3 and 5 is 
significantly more as compared to that found previously and also that computed presently for 
y0 = 50,000 s-l. The main reason for the difference between the previously computed [9,11] 
and current results is due to the number of flaws/imperfections considered in the two cases. An 
explanation for the difference between the results computed at q0 = 500 and 50,000 s-l lies in 
the different values of the thermal lengths in the two cases. At PO = 500 s-l the temperature 
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initially tends to become uniform because of heat conduction and once the temperature 
fluctuations die out the block deforms homogeneously. What eventually causes the temperature 
to rise at y = 1.0 and not at y = 0.0 is ;Inc!ear. 

We note that the CPU time required to compute results for the dipolar materials is nearly 
four times that needed for non-polar materials. Thus not many numerical experiments could be 
conducted for dipolar materials. 

CONCLUSIONS 

For nonpolar materials the initiation of the shear bands is significantly delayed at PC = 500 SI 
when a periodic temperature perturbation with eleven peaks is introduced initially as compared 
to the case when the initial temperature perturbation has a single bump with peak at the center 
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of the block. However, for PO = 50,000 s-l the reverse happens. In the former case the 
deformation localizes at points where the initial temperature has relative minima values, in the 
latter case the centers of shear bands coincide with the places where the initial temperature has 
relative maximum values. These transitions are found to occur at PO = 1000 s-l and seem to be 
caused by the lower value of the thermal length at the higher value of 90 and the different time 
scale associated with the work-hardening in the two cases. 

For dipolar materials the average strains in the specimen at which the deformation localizes 
at &, = 500 and 50,000 s-l are nearly equal to each other. These values of average strains are 
higher than the corresponding values for nonpolar materials. Only one band forms at 
jQj = 500 s-l but the number of shear bands equal the number of peaks in the initial 
temperature at PO = 50,000 s-‘. 
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