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STEADY STATE PENETRATION OF COMPRESSIBLE 
RIGID PERFECTLY PLASTIC TARGETS 

R. C. BATRA and T. GOBINATH 
Department of Engineering Mechanics, University of Missouri-Rolla, Rolla, MO 65401-0249, U.S.A. 

Abstract-Steady state axisymmetric deformations of a homogeneous, isotropic, compressible and 
rigid perfectly plastic target being penetrated by a rigid cylindrical penetrator with a hemispherical 
nose are studied by the finite element method. The steady state is reached with respect to an observer 
situated on the penetrator nose and moving with it. Tillotson’s equation, restricted to mechanical 
deformations, is used to express the pressure as a function of the mass density. Contact between the 
penetrator and the target is assumed to be smooth. The effect of compressibility of the material is 
delineated by comparing results for compressible and incompressible materials. Also studied is the 
effect of the penetrator speed on target deformations. 

INTRODUCTION 

In an attempt to shed some light on the validity of the approximations made in simple theories 
of penetration due to Alekseevskii [l] and Tate [2], and to understand better the significance of 
various kinematic variables, Batra and Wright [3] studied in detail a steady state penetration 
problem that simulates the following situation. Suppose that the penetrator is in the 
intermediate stages of penetration so that the active target/penetrator interface is at least one 
or two penetrator diameters away from either target face, and the remaining penetrator is 
much longer than several diameters and is still travelling at a uniform speed. This stage of 
penetration can be idealized as one in which deformations of the target appear to be steady to 
an observer situated on the penetrator nose. Wright and Batra [3] presumed that the target is 
made of a rigid/perfectly plastic material, and is being penetrated by a long cylindrical rigid rod 
with a hemispherical nose. Subsequently Batra [4] showed that the axial resisting force 
experienced by the rigid penetrator is considerably reduced if its nose shape is ellipsoidal rather 
than hemispherical and also investigated the effect of the dependence of the flow stress upon 
the strain-rate. He [5] has extended this work to the case when the target material is thermally 
softening but strain and strain-rate hardening. 

Pidsley [6] recently studied a complete penetration problem in which both target and 
penetrator materials were assumed to be compressible rigid/perfectly plastic. Whereas he gave 
a detailed numerical solution for one set of material and geometric parameters, we study the 
steady state penetration problem similar to the one analyzed by Batra and Wright [3] and 
investigate the effect of the speed of the penetrator and the compressibility of the target 
material. We hope that the kinematic and stress fields found in this study will be useful in 
identifying key variables to be included in simpler engineering theories of target penetration. 
Since the continuity equation has no diffusive term, it is more challenging to solve the problem 
numerically for compressible materials. Pidsley used the finite difference code HELP developed 
by Hageman and Walsh [7] to solve the problem. However, we use the finite element method 
and have developed the requisite code. 

We note that no failure or fracture criterion is included in our study. Thus the target material 
is assumed to undergo unlimited amount of deformations. 

FORMULATION OF THE PROBLEM 

We describe the axisymmetric deformations of the target with respect to a set of cylindrical 
coordinate axes with origin at the center of the hemispherical nose of the rigid penetrator and 
z-axis pointing into the target. Equations governing the steady-state deformations of the target 
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div(pv) = 0, (1.1) 

div o = p(v - grad)v. (1.2) 

Here p is the current mass density of a target material particle, v is the velocity relative to an 
observer situated on the penetrator nose tip and moving with it, (T is the Cauchy stress tensor, 
and the operators grad and div signify the gradient and divergence operators on fields defined 
in the present configuration. Equations (1.1) and (1.2) express, respectively, the balance of 
mass and the balance of linear momentum with zero body forces. 

We presume that the target material is compressible and obeys the Von-Mises yield criterion 
and the associated flow rule. That is? 

(T = -p(p)1 + Sz”, (2.1) 

fi = D -t (tr D)l, (2.2) 

D = (grad v + (grad v)‘)/2, (2.3) 

Z* = i tr(D*), (2.4) 

(2.5) 

In these equations a, is the flow stress of the target material in simple compression, p0 is the 
mass density of the undeformed target material, A and B are material constants, D is the 
strain-rate tensor and r) its deviatoric part. Equation (2.5) is obtained from the Tillotson 
equation by neglecting the parts that apply to hot expanded metal states and the change in 
temperature of a material point. The constant A is related to the bulk modulus of the material. 
Equation (2.1) may be regarded as a constitutive relation of a compressible Non-Newtonian 
fluid with shear viscosity given by cr,,/2V%. Equation (2) when substituted into (1.2) gives 

-gradp + s (div((grad v + (grad v)~)/~Z) 

- grad((div v)/31)) = p(v - grad)v 

which along with (1.1) are the field equations for p and v. 
We now non-dimensionalize the variables as follows: 

(3) 

F = r/r”, 2 = z/rob, v = v/v,, B = o/alJ, p =plql, P = P/PO, 

A = A/q,, B = B/q,. (4) 

Here r,, is the radius of the cylindrical part of the penetrator, v0 its speed in the z-direction and 
the pair (r, z) denotes the cylindrical co-ordinates of a target particle. Hereafter we use only 
the non-dimensional variables and drop the superimposed bars. Equations (1.1) and (3) in 
terms of the non-dimensional variables are 

(grad p) - v + p(div v) = 0, (5.1) 

- gradp + $ (div((grad v + (grad v)‘)/21) - grad((div v)/3Z)) = a(v - grad)v, (5.2) 

where 
a = pi&lo,, (6) 

is a non-dimensional number. 

t This constitutive relation is discussed briefly in the note at the end of the paper 
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For the boundary conditions on the target/penetrator interface we take 

v-n=O, (7.1) 

t*(m)=0, (7.2) 

where n and t are, respectively, unit normal and tangent vectors at a point on the interface. 
The boundary conditions (7) ensure that target particles do not penetrate into the rigid 
penetrator and the contact surface is frictionless. At points far away from the penetrator nose, 
we assume that 

Iv + el-+ 0 as (r2 + .z*)~‘~+ 03, 2>--ca, (8.1) 

l4-+0 as z---z--~, r 2 1. (8.2) 

In eqn (8.1) e is a unit vector along the z-axis. This boundary condition states that target 
particles far from the penetrator but not on the back surface appear to move as a rigid body 
and those on the back surface are traction free. In order to state the problem precisely one 
needs to specify the rates at which quantities in eqn (8) decay to zero. We now assume that the 
nonlinear and coupled equations (5) under the boundary conditions (7) and (8) have a solution 
and find an approximation to that solution by the finite element method. 

FINITE ELEMENT FORMULATION OF THE PROBLEM 

For a numerical solution of the problem we first recall that the target deformations are 
assumed to be axisymmetric and therefore consider the finite region shown in Fig. I and 

Fig. 1. The finite region studied and its discretization. 
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impose the following boundary conditions: 

0 0, ZL = 21, = 0 on the bottom surface AB, (9.1) 

t*un=o, v - n = 0 on the target/penetrator interface BCD, (9.2) 

a,, = 0, u, = 0 on the axis of symmetry DE, (9.3) 

u, = 0, u, = -1.0 on the boundary surface EFA. (9.4) 

The adequacy of the studied region is verified by ensuring that the computed results especially 
in the vicinity of the target/penetrator interface are unaffected by the location of the boundary 
EFA. 

Referring the reader to Becker et al. [8] for details, we note that a weak formulation of the 
problem defined on the region R (shown enclosed by ABCDEFA in Fig. 1) by eqns (5) and 
boundary conditions (9) is that equations 

I R v(krad PI * v + p(div v)) dv = 0, (10.1) 

I p(div @) dv - -& I f fi: (grad @ + (grad Q)‘) dv = a/ ((v - grad)v) - Q dv, (10.2) 
R R 

hold for arbitrary smooth functions q and 4 defined on R such that & = 0 on AB, $ = 0 on 
EFA and $ - n = 0 on the target/penetrator interface BCD. In these equations A: B = tr(AB’) 
for linear transformations A and B. Since these equations are nonlinear in v and p, the 
following iterative technique has been employed. At the ith iteration, equations 

v((grad pi) * vie1 + pi-i(div vi)) dv = 0, (10.3) 

1 
-1 ~Di:(grad$+(grad$)T)dv+a. 
2,6 RF-’ 

= p($-‘)(div @) dv + & R& 
I 

[(tr D’-‘)div $1 dv] (10.4) 

are solved for vi and pi. The iterative process is stopped when at each nodal point 

llvi _ $1 11 + Ipi - pi-‘1 5 &[llPll + IfPI] (10.5) 

where llvll* = v; + v$ and E is a preassigned small number. 
The lack of a diffusive term in the balance of mass eqn (5.1) necessitates that the test 

functions 3 and the trial solutions p be chosen from different functional spaces. This is usually 
referred to as Petrov-Galerkin formulation [9]. We use 9-noded rectangular elements for v and 
the four-noded rectangular elements for p and employ the basis functions given by Heinrich et 
al. [lo] to generate the test functions tj~. These basis functions involve four constants and the 
rate of convergence of the solution depends rather strongly upon the values of these constants. 
The test functions + and the trial solutions v are taken from the same space of functions. Thus 
we have used the Petrov-Galerkin formulation for the continuity equation 
formulation for the balance of linear momentum. 

and the Galerkin 

COMPUTATION AND DISCUSSION OF RESULTS 

A computer code based on eqns (10.3) and (10.4), and employing 9-noded rectangular 
elements has been developed. The two components of the velocity are taken as unknowns at 
each node and the mass density is assumed to be unknown only at the four corner nodes. The 
accuracy of the computer code was established by solving a hypothetical problem involving the 
flow of a compressible Navier-Stokes fluid in a circular pipe and achieving a favorable 
comparison between the computed and analytical results. The sample problem studied and the 
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comparison between the computed and analytical results is given in the Appendix. Even 
though the formulation of the problem does not require that the mass density be prescribed on 
any part of the boundary, the numerical solution of the problem necessitated that it be assigned 
values on a part of the boundary. In the results presented below the non-dimensional mass 
density was set equal to 1.0 on the part EFA of the boundary. Also the boundary condition 
v - n = 0 on the target/penetrator interface BCD was satisfied by using the method of Lagrange 
multipliers. The finite element discretization of the region studied is depicted in Fig. 1. Note 
that only one non-dimensional number a, governs the deformations of the target material. Thus 
all of the results below are expressed in terms of (Y. However the compressibility of the 
material is governed by the values of A and B in eqn (2.5) which we took as A = 144.231, 
B = 125.0. These values, taken from Pidsley’s [6] paper, are for aluminum. For a prescribed 
value of LY, the problem was first solved by presuming that the target material is 
incompressible. This solution for u, and V, and p = 1.0 everywhere was taken as the initial 
estimate of the solution for the compressible target material. We recall that the basis functions 
for 111 involve four constants. The number of iterations required to obtain the converged 
solution depended rather strongly upon the values selected for these constants. In general, 
however, the number of iterations needed for the solution to converge increased with the 
increase in the value of a. The parameter E in the convergence criterion (10.5) was assigned the 
value 0.04. 

In Fig. 2 are plotted the variation of the normal stress, tangential velocity and the second 
invariant Z of the strain-rate tensor on the penetrator nose for a = 5.36 and for compressible 
and incompressible target materials. The compressibility of the target material affects most the 
values of Z near the penetrator nose-tip. Over most of the nose surface the values of Z and the 
normal stress are lower for the compressible target material as compared to that when the 
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Fig. 2. The variation of the normal stress, tangential velocity and the second strain-rate invariant I on 
the penetrator nose for (Y = 5.36. - incompressible material, . . . . compressible material. 
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target material is modelled as incompressible. Whereas the peak value of I at the penetrator 
nose-tip drops by 8.78% when the target material is presumed to be compressible, that of the 
normal stress decreases by only 3.19%. In the immediate vicinity of the nose tip the tangential 
velocities for compressible and incompressible targets essentially coincide with each other. 
However for the angular position 8 greater than 12”, the tangential velocity for the 
compressible target is lower than that for the incompressible target. 

Figure 3 depicts the effect of the compressibility of the target material on the variation of the 
normal stress, strain-rate invariant I and the relative z-velocity along the axial line. As 
evidenced by the values of I, most of the target deformations occur within a distance of 1.5 
times the radius of the penetrator for both compressible and incompressible target materials. In 
each case the values of I drop off to zero at points on the axial line whose distance from the 
nose surface is greater than twice the radius of the penetrator. Typically these non-dimensional 
values of I need to be multiplied by lo5 to get their dimensional counterparts. Thus peak 
strain-rates of the order of lo5 SC’ occur for both compressible and incompressible target 
materials. The values of absolute z-velocity decay to zero a little bit slowly for compressible 
targets as compared to that for incompressible targets. The rate of decay of the absolute values 
of a,, along the axial line in the two cases is nearly the same. The values of lu,,l are less when 
the target material is modeled as compressible as compared to that when it is taken to be 
incompressible. The difference between the two values is primarily due to the difference in the 
values of the hydrostatic pressure in the two cases. For 0 5 z 5 2, this difference in the values of 
p stayed nearly constant and equalled 0.48. 

Figure 4 shows the variation of V, with r at z = 0 and z = -5.0 and also the dependence of 
the axial resisting force F experienced by the penetrator upon (Y. For both compressible and 
incompressible target materials the axial resisting force F depends linearly upon I_Y and the two 
lines are nearly parallel to each other. In each case the dependence of F upon LY is rather weak 
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Fig. 3. Variations of (-u,,), z-velocity and the second strain-rate invariant I on the axial line for 
1y = 5.36. -incompressible material, . . . . compressible material. 
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Fig. 4. Dependence of the axial force upon CY; Variations of u, with r on planes z = 0 and z = -5.0. 
(Y = 5.36. ~ incompressible material, . . compressible material. 

and explains why the choice of constant target resistance in the simple theory of Tate [2] gives 
good qualitative results. Note that the dimensional values of F equal (nrj&) times its 
non-dimensional values. The plots of II, versus r indicate the deformations of the target spread 
farther to the side of the penetrator than ahead of it. This is true both for compressible and 
incompressible target materials. Whereas target points on the axial line and ahead of the 
penetrator situated at a distance of three times the penetrator radius have zero absolute 
z-velocity, that on the sides of the penetrator and situated at the same distance from the 
penetrator surface have non-zero z-velocity. The variation of u, with r on the surface z = -5.0 
indicates that the material in the region 1 I r % 3.5 extrudes as a rigid block. 

The value of the compression c, defined as (1 - p-l), at the nose tip was found to depend 
linearly upon CY, and for 4 5 CY I 8 the two are related by 

c = (4.75 + 0.575a)/lOO. 

After having delineated the difference in the solutions for compressible and incompressible 
target materials we next studied the effect of the penetrator speed upon the deformations of the 
compressible target. We recall that the corresponding results for the incompressible target 
material have been given by Batra and Wright [3]. Results presented in Fig. 5 indicate that the 
speed of the penetrator has virtually no effect on the tangential velocity of the target particles 
abutting the penetrator hemispherical nose. However, the normal stress does increase with (Y 
on most of the nose surface except near its periphery where the normal stress decreases with (Y. 
The normal stress at 8 = 65” seems to be affected little by the values of (Y. Such a behavior was 
also observed at 8 = 45” for incompressible target materials [3]. The peak value of the normal 
stress, which occurs at the penetrator nose tip, increases from 7.25 to 9.5 when CY is increased 
from 2.35 to 6.12. Whereas in the previous work [3], for C-X = 6.13 the target particles seemed to 
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Fig. 5. Distribution of the tangential velocity, normal stress and the second strain-rate invariant on 
the hemispherical nose of the penetrator for different values of (Y and compressible target 
material.-a=2.63;---a=3.44; ------cu=4.35; -----cu=5.36; --__ 

cu=6.49. 

separate away from the penetrator nose surface near its periphery, no such behavior was 
observed in the present case. The finite element mesh used herein is finer than the one 
employed earlier. Also the mass density is taken as the independent variable here whereas in 
[3] the hydrostatic pressure p was taken as an independent variable because of the assumption 
of incompressibility. The values of the second strain-rate invariant in the vicinity of the 
penetrator nose tip are affected most by a, but those at points for which 20” I 8 5 70” seem to 
be affected less. The increase in the value of the normal stress on the penetrator nose with cr 
occurs primarily because the hydrostatic pressure p increases with a. 

In Fig. 6 is plotted the effect of (Y upon the variation of v,, (-a,,) and I at target particles on 
the axial line ahead of the penetrator. The penetrator speed does not affect to any noticeable 
degree the values of I and 2r,. However, the values of (-ozz) at points on the axial line increase 
with cu; this increase is mainly due to the higher values of p. For all values of a considered here 
the target particles within a distance of almost three times the penetrator radius undergo 
deformations; those outside this region hardly deform. 

On the axial line nearly uniaxial strain conditions prevail. Thus the magnitude of the 
deviatoric stress szz, defined as p + a,,, should equal 2/3 the flow stress. For points on the axial 
line for which 0.0 5 z 5 1.5, and for (Y = 5.36, s,, was computed to be 0.771 and 0.741 for 
compressible and incompressible materials, respectively. 

We note that the region studied is adequate since the target particles within a distance of one 
penetrator radius of the boundary EFA hardly deform and the deformation of particles situated 
within one penetrator radius of the boundary surface AB are independent of z. 

We are not aware of any experimental work available in the open literature with which we 
could compare our computations. Nevertheless, the kinematic and stress fields found in this 



Steady state penetration of compressible rigid perfectly plastic targets 749 

i 
N - 0.50 

: 
F 

z! 

f.? -0.25 

0 

Distance from the nose-tip 

1 2 3 4 5 

I I I I I 

1 2 3 4 5 

Distance along the axial line 

Fig. 6. Variation of the z-velocity, (-uzrr) and the second strain-rate invariant I along the axis ahead 
of the penetrator for different values of (Y and compressible target material. See Fig. 5 for 

explanation. 

study should help in devising or checking the results from simpler theories of target 
deformations. 

CONCLUSIONS 

For the same speed of the rigid cylindrical penetrator with a hemispherical nose, the peak 
values of the strain-rate invariant and the normal stress, both of which occur at the target 
particle situated at the penetrator nose-tip, are lowered by 8.78 and 3.19%, respectively, for 
compressible target materials as compared to that for incompressible materials. The axial 
resisting force experienced by the penetrator is nearly 10% less when the target material is 
compressible as compared to that when it is incompressible. 

Both for compressible and incompressible target materials, significant deformations occur 
only at points that are less than three penetrator radii from the penetrator, and the target 
seems to deform farther to the side than ahead of the penetrator. In each case the target 
material adjacent to the sides of the penetrator appears to extrude rearwards as a uniform 
block that is separated from the stationary target by a deforming region. 

Note added in proof 

Recent unpublished work by Batra and Liu involving dynamic plane strain simple compression of viscoplastic solids 
defined by the constitutive relation (2.1) has shown that, for short times after the application of the load, material lines 
in a direction perpendicular to the axis of the compressive load are also shortened. The constitutive relation 

u= -p(p)l+gID @‘I) 



750 R. C. BATRA and T. GOBINATH 

with I defined by eqn (2.4) rules out this anomalous behavior. The constitutive relation (Nl) can be rewritten as 

o= - p(p)-OOtrD 
VQ 

1+&D 
fiI . WI 

Thus, for a given D, eqns (2.1) and (Nl) give identical values of the deviatoric stress. 
For the steady state problem studied herein, constitutive relations (2.1) and (Nl) give essentially the same results. 
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APPENDIX 

In order to assess the validity of the developed finite element code and establish the reliability of the computed 
results we solved the following problem for compressible Navier-Stokes fluids. We replaced eqn (2.1) by 

u = -p(p)1 + D, P(P) = p/100 (Al) 

and the balance of linear momentum (1.2) by 

div u = p(v . grad v) + b 

where b is the body force per unit mass. The fields 

v, = r2/2, 21, = -rz/2, p = (2’ - l/?-)/4, 

with 

(A2) 

643) 

rm3 r3z2 r 11 
b,=200+8-8-12, b,=&+z/4r (A4) 

Al2,l) 

Fig. Al. The finite element grid for the sample problem. 
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Table Al. Comparison of analytical and numerical solution 
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Point 

“, 

Analytical values Computed values % Difference 

-uz P u, --vz P “7 “Z P 

2.53125 1.40625 0.34124 2.53077 1.43358 0.342852 0.019 1.944 0.472 
3.44531 1.64063 0.35435 3.4588 1.68613 0.359417 0.391 2.774 1.432 

R 3.125 1.8750 0.52250 3.11498 1.91764 0.52810 0.321 2.274 1.072 
S 2.53125 1.82813 0.61077 2.50815 1.85314 0.618034 0.913 1.368 1.189 
T 3.78125 2.57813 0.84585 3.76938 2.59881 0.838507 0.314 0.803 0.868 

satisfy the balance of mass and the balance of linear momentum. Values of u, and u, as given by the presumed fields 
were assigned on the boundary faces BC, CD and DA of the domain shown in Fig. Al; those of u, and a,, were 
prescribed on AB and values of p were prescribed on AD and DC. Note that b, and b, would appear on the right-hand 
side of eqn (10.4) and their values, as given by eqn (A4), were input into the computer code. In Table Al are 
compared the values of u,, u, and p as computed from expressions (A3) and the computer code with E in eqn (10.5) set 
equal to 0.005. It took 10 iterations for the solution to converge. The maximum error in u,, u, or p at any of the node 
points was found to be less than 3.25%. 


