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Ah&act-Given the values of the two components of the velocity, temperature, hydrostatic pressure 
and work-hardening parameter at a large number of discrete points in a bounded 2-D domain, an 
algorithm has been developed to compute the streamline that passes through a desired point in the 
domain, and the time histories of the stress, strain-rate, temperature and the spin at a material 
particle, starting from the instant it occupied the desired point. Results for a few target points situated 
near the axis of symmetry in the steady state penetration problem involving a viscoplastic target and a 
rigid cylindrical penetrator are presented. Two nose shapes, namely a hemispherical and blunt, are 
considered. 

INTRODUCTION 

One of the choices to be made in the analysis of any mechanics problem is that of the most 
appropriate constitutive relation for the material of the body. The constitutive relation 
employed should adequately model the material response over the range of deformations 
expected to occur in the problem. However, the computed values of the deformation fields 
generally depend strongly upon the constitutive assumptions made. A way out of this dilemma 
is to choose a constitutive relation, solve the problem, check if the constitutive assumptions are 
valid over the range of computed deformations, and, if necessary, resolve the problem with the 
modified constitutive relation. 

In the last few years, many new theories [l-4] of large deformation elasto-plasticity have 
been proposed. These theories make different kinematic assumptions, thus necessitating the 
hypothesizing of constitutive relations for variables which may not be simply related with each 
other. In an attempt to determine which of these theories is the most appropriate for the 
analysis of penetration problems, we find the histories of the effective stress, second invariant 
of the strain-rate tensor, the temperature and the spin at a visco-plastic target particle being 
penetrated by a long rigid cylindrical penetrator. The solution of the steady state problem 
computed earlier by Batra [5] is presumed to be given. 

COMPUTATIONS OF THE STREAMLINES 

Let a closed and bounded set fi c R2 be the domain of interest, and the velocity field be 
given at a sufficient number of discrete points in 0. That there is a minimum number of points 
at which the data must be given follows from the observation that the data at two or three 
discrete points in a will certainly not be enough to compute the streamlines passing through an 
arbitrary given point. The accuracy with which streamlines can be calculated depends strongly 
upon the number of discrete points at which the data is given. We have not explored the 
dependence of the error in the streamline upon the number of data points. Thus, the problem 
to be solved may be stated as follows. 

Given the values of the velocity field (V,, V,) at a discrete number of points (X a, y “), 
(Y=1,2,..., M; find the streamline that passes through an arbitrary point (x0, yO). 

We note that if the velocity field were given as a continuous function of the position, then the 
problem would involve integrating the given ordinary differential equations and finding their 
solution that passes through (x0, yO). Since such is not the case here, we assume that the data 
points can be connected to form disjoint closed polygons Qi (i = 1, 2, . . . , N) with possibly 
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curved sides such that 

B = $J ai, Qi n Qj = @, if i #;i; A(Qi) < W, (1) 

and none of the interior angles of fii is greater than 180”. Here Qi equals the interior of the set 
Bi, the aspect ratio A of Qi equals the ratio of the diameter of the smallest circle containing 8, 
to the diameter of the largest circle contained in Qi. Whereas a theory could possibly be 
developed for arbitrary polygons Qi, we restrict ourselves to the case when 52i is a curvilinear 
triangle obtained by joining six given points such that each of the vertices of the triangle 
coincides with one of the data points, and each of the sides is a part of a parabolic curve and 
has a data point as close to its midpoint as possible. The arguments given below do apply to 
other polygons S2i. Hereafter we refer to each of the polygons Qi as a finite element. 

We assume that (x,,, y,J E 8, the point through which the streamline is to be found, is not 
one of the data points. The first step is to find the tiii containing (x0, y,,) and the components of 
the velocity at (x0, yO). We construct maps 

T:G,+sZi (i=1~2,.*.,N)7 (2) 

that are one-to-one and onto, and fii, is a right-angled triangle of unit base and unit height. 
52, is usually referred to as the master triangle or the master element. Referring to Fig. 1, let 
&((Y=1,2,.. . , 6) be complete quadratic polynomials defined on a2, with the property 

&(sy, $J = 4xy9 (3) 

(a) 

(b) 

Fig. 1. (a) The master element, discretization of hz and the node numbering. (b) Possible subregions 
for further consideration. 
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where 6, is the Kronecker delta. We define the map T by 

x = E xioOa(.% 0, 
a=1 

(4a) 

(4b) 

where (xi,, y:) are the coordinates of the six data points on aSZip counted counterclockwise 
starting with one of the vertices. Under conditions (1) imposed on Bi, the map q defined by 
eqns (4) is l-l and onto [6], and the maps q, q from &, onto the adjoining elements ai and 
aj map a side of fi, into their common boundary. Thus 

The polynomial functions @o satisfying (3) are easy to generate and are given in [6]. 
Unfortunately, it is not easy to solve eqns (4) for s and t in terms of x and y. 

We now elaborate upon the procedure used to find oi containing (x0, yO) and the local 
coordinates (so, to) that correspond to (x0, yO) through eqns (4). We subdivide tiM by drawing 
vertical and horizontal lines through (i, 0), (i,O), (a, 0) and (0, 2) (0, 4) (0, i), respectively, and 
use eqns (4) to find the (x, y) coordinates of the 15 points of & where the horizontal and 
vertical lines intersect with each other and with the boundaries of &. If (x0, y,,) is not one of 
these 15 points in Bi, we pick out one of the three shaded areas in Fig. lb such that either 
(x0, y,,) is in the image of the shaded area or the distance of (x0, y,,) from the image of this 
shaded area is less than the distance of (x0, yO) from Szi. The chosen shaded area @, is 
subdivided as before by drawing horizontal and vertical lines through the quarter points of the 
two orthogonal sides and the aforementioned selection process is repeated until at the nth 
iteration one of the following two conditions is satisfied. Either the distance of (<,,, y,,) from 
z(dL) is greater than the diameter p,, of fi” M, in which case we conclude that Qi does not 
contain (x0, y,J, or p,, is smaller than a preassigned small number, in which case we set (x0, y,,) 
equal to the average of the x and y coordinates of the vertices of z(pe). If (x0, y,J E Szi, then 
our selection criterion for 8”, ensures that (x0, y,,) E T(@,) for every n. Since T(!&i) c 
&(@$ for every n, by Cantor’s theorem [7] 

lim T(@$) = (x0, yO). 
n-m 

Let (so, to) equal the average of the s and t coordinates of the vertices of 52”,. An 
approximation to the value of the x and y components (V,, V,) of the velocity at (x,,, yO) is 

Ko = E G#&&o, to), (7a) 
LX=1 

v, = i v:P&r(so, to), (7b) 
a=1 

where Vi, and Vi, are the given values of the velocity components at the six data points on 
dQi* 

In order to compute the streamline through P(xo, yo) we must find the point on it adjoining 
P. With P as center, draw a circle of small radius sl and let the line through P drawn in the 
direction of the computed velocity VP at P intersect the circular arc in Q. If 

where 6 is the prescribed tolerance and IV,] is the magnitude of the velocity at P, then Q is the 
desired neighboring point on the streamline through P (cf. Fig. 2a). If condition (8) is not 
satisfie_d at point Q, locate point A on the circular arc distant s2 << cl from Q (see Fig. 2b) such 
that QA - V, > 0. Draw another circular arc passing through points P and A which is also 
tangent to VP and find the unit tangent vector U, to it at the point A. If the computed velocity 
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q QJQ 
-Q 

Fig. 2a. The velocity at point Q 
neighboring point P satisfies 

Fig. 2b. Selection of point A 
dition (8) is not satisfied. 

condition (8); thus points P and 
Q lie on a streamline. 

at point A satisfies 

if con- Fig. 2c. The velocity at point A 
satisfies condition (8); thus 
points P and A lie on a stream- 

line. 

(9) 

then A is the-desired-point adjacent to P. If condition (9) is violated, we find the new position 
of A along QA or AQ depending upon the direction of the velocity at A. The procedure is 
continued until VA * U, changes sign, and the final position of A is located by using the 
bisection method. 

We note that the interpolation relations (7) can also be used to evaluate the values of other 
field variables, such as the temperature, from a knowledge of their values at the six data points 
on 32,. 

COMPUTATION OF THE HISTORIES OF THE FIELD VARIABLES 

Let F stand for one of the quantities such as the second invariant of the strain-rate tensor, 
temperature or a component of the stress tensor. The problem to be solved is: given the values 
of the velocity field (Vx(xa, y "), V,(xq y “)) and F (xs y “), a = 1, 2, . . . , M at M discrete 
points (x~, y “), find the history of F at a material particle that initially is at an arbitrary 

point (x0, y0). 
We solve the problem by first finding the streamline that passes through the point (.x0, y,,) as 

outlined in the above section. The procedure used to find the streamline also gives (s, t) E ai, 
which is mapped into the point (x, y) on the streamline by eqn (4). The interpolation relations 
(7) are then used to find the value of F(x, y). 

RESULTS FOR A STEADY STATE PENETRATION PROBLEM 

We have developed a computer code based on the algorithm outlined in the preceding 
sections. The accuracy of the computer code has been ascertained by solving, in a circular 
domain, the Laplace equation div(grad 4) = 0 subjected to essential boundary conditions. The 
velocity field v = grad # was computed at discrete points, and used as the input data for the 
code. The computed streamlines were found to agree very well with the analytical solution. 

Below we present streamlines and histories of various field variables for the steady state 
axisymmetric deformations of a thermoviscoplastic target being deformed by a fast moving 
rigid cylindrical hemispherical nosed penetrator [5]. In cylindrical coordinates, equations 
governing the thermomechanical deformations of the target in terms of nondimensional 
variables are: div v = 0, 

div u = (Y(V - grad)v, 

tr(aD) + p div(grad f3) = (v - grad)8, 

tr(oD) 
(1+ 111,0.017)n = (v . fF-oV~ 
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where 

a= -pI+& ( 1+1ti~z) O.@=[l- o.m555eoe)( 1+ &)“‘sD, 

2f = tr D*, 2D = grad v + (grad v)‘, 

(r= b/u,, P = Pluo, v = t/vcJ, r = P/t-o, 2 = Zlr,, 

8 = tm,, a = pv;/uo, B = ~l(po~o), e. = U,/(W). 

In these equations the dimensional quantities are indicated by a superimposed bar. Here o is 
the Cauchy Stress, p is the mass density of a target particle, k is the thermal conductivity, a0 is 
the yield stress in a simple tension or compression test, c is the specific heat, v. the speed of the 
penetrator and r. the radius of the penetrator. The values of various parameters used are for a 
typical steel, viz. 

c = 473 J kg-‘“C-‘, k=48Wm-‘“CT’ , p = 7800 kg mm3, a0 = 180 MPa. 

THUS 8 o = 48.9”C. Results presented below are in terms of nondimensional variables, and for 
a=5 and ro=2.54mm, vo= 339.7 m s-l. Listed below are the multiplying factors in order to 
obtain dimensional quantities from their nondimensional counterparts. 

Mrltiplyhs 
Qrutity Factor 

Speed (m s-‘) 339.7 
r or z-coordinate (mm) 2.54 
Hydrostatic pressure (MPa) 180 
Effective stress (MPa) 180 
Strain-rate invariant (s-l) 1.34 x ld 
Spin (s-l) 1.34 x 16 
Temperature rise (“C) 48.9 

Figure 3 shows the three computed streamlines emanating from the points (0.05, 4.27), 
(0.10, 4.27) and (0.15, 4.27) on the boundary of the finite domain used to analyze the steady 
state axisymmetric deformations of the thermoviscoplastic target [5]. We note that the 
target/penetrator interface shown in Fig. 3 is aIso a streamline. The plotted streamlines show 
that only within a distance of 0.5 r. of the hemispherical part of the penetrator/target interface 
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Fig. 3. Streamlines emanating from three points on the boundary of the finite target region being 
deformed by a rigid cylindrical penetrator with a hemispherical nose. 
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does the radial component of the velocity of target particles become significant. In order to be 
able to locate the position of the material particle that was at one of three spatial points 
initially, we have plotted in Fig. 4 its r- and z-coordinates at various times. Also plotted in this 
figure is the variation of the speed of the three material particles as seen by an observer 
situated on the penetrator nose. These plots reveal that the peak value of the absolute speed of 
target particles decreases as we move away from the axis of symmetry, and this rate of decay of 
the peak speed slows down as we move away from the axis. 

Figures 5 and 6 show the histories of the strain-rate invariant I, the spin, hydrostatic pressure 
p, work hardening parameter v, temperature rise 0 and the effective stress s defined as 

2 = tr 2, s=a+pl. 

The plot of I vs the time t indicates that out of the three material particles considered, the one 
closest to the axis of symmetry undergoes the severest deformations and the peak value of Z 
suffered by the target particle located farthest from the axis of symmetry is lower as compared 
to that situated near the axis of symmetry. Since elastic deformations have been neglected in 
the solution of the penetration problem, the spin plotted in Fig. 5 equals the plastic spin. Its 
high magnitude as well as that of the hydrostatic pressure signify that one should use an 
elasto-plasticity theory which accounts appropriately for the plastic spin and the dependence of 
the yield surface upon the mean stress or the hydrostatic pressure. Referring to Fig. 6, we note 
that the maximum effective stress s at the three points is equal in magnitude but occurs at 
slightly different times. The range of temperatures experienced by a material particle is 0 to 
55O”C, and the maximum temperature of the target particle closest to the axis of symmetry is 
the highest. Also, the maximum value of the work-hardening parameter q is higher for this 
target particle as compared to that for the other two particles considered. 

Batra [5] concluded that the axisymmetric steady state deformations of the viscoplastic target 
depended strongly upon the penetrator nose shape. Accordingly we investigate here, for a 
blunt nosed penetrator, the histories of deformation fields for three material particles situated 
on the target boundary in positions similar to those considered for the hemispherical-nosed 
penetrator. Figure 7 exhibits streamlines originating from (0.05, 3.48), (0.10, 3.48) and 
(0.15,3.48). The three additional drawings in the figure are magnified views of the streamlines 
around the penetrator nose boundary. As for the hemispherical nosed penetrator, the radial 
component of the velocity is noticeable only when the particles are within approx. 0.5 r, of the 
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0.0 
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Fig. 4. The variation of speed, and r-, z-coordinates of the three points at different times 
(hemispherical-nosed penetrator) . 
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Fig. 5. Histories of 
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P = 0.10 

r = 0.05 

0 -..-.- 

Z-coordinate 
-3 -2 -1 0 1 2 3 

. 7. Streamlines originating from three points on the boundary of the fmite target region h&no 
deformed by a rigid cylindrical penetrator with a blunt nose. 

z-coordinate 

0.0 - 
r-coordinate 

TIME 

Fig. 8. The variation of speed, and r-, z- coordinates of the three points at different times (blunt 
nosed penetrator). 
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target/penetrator interface. Figure 8 gives the variation of the speed of the three particles as 
well as their (r, z) coordinates at different times; the time being clocked from the instant they 
occupy the indicated positions on the target boundary. The histories of the strain-rate invariant 
Z and the spin plotted in Fig. 9 along with the data plotted in Fig. 8 indicate vividly that the 
material particles undergo severe deformations when they are near the boundary of the 
penetrator nose. Both their speeds and velocity gradients are quite high in this region. The 
strain-rate invariant and the spin drop sharply as the material particles move outwards and 
away from the boundary of the penetrator nose. 

Figure 10 shows the histories of the temperature rise 8 and the work-hardening parameter 3 
at the three material particles. Like the hemispherical-nosed penetrator, of the three material 
particles studied, the one closest to the axis of symmetry experiences the highest value of 8 and 
3. These peak values occur after the material particle has traveled away from the boundary of 
the penetrator nose where Z is quite high. Even though plastic working is highest near the 
penetrator nose boundary, because of the advection of heat, the maximum temperature occurs 
when the material particle is a little bit away towards the rear of the penetrator. We have 
plotted the histories of the hydrostatic pressure and the effective stress in Fig. 11. The peak 
hydrostatic pressure occurs when the material particle is near the penetrator nose boundary 
and towards the axis of the penetrator. The pressure drops suddenly as the particle moves away 
from the penetrator nose boundary. Recalling that the nose shape is blunt or virtually flat, the 
singular behavior of the normal stress of which the hydrostatic pressure is a predominant part is 
to be expected. The importance of considering the thermal softening in the constitutive relation 
is borne out by the histories of the effective stress S. A glance at Figs 9-11 reveals that while Z, 
8 and 1~ at a material particle are increasing, s is decreasing, implying thereby that the 
softening caused by the heating has overcome the combined effects of work and strain-rate 
hardening. It is very likely that a material instability in the form of an adiabatic shear band 
[8,9] will initiate somewhere near the boundary of the penetrator nose. That there is more 
likelihood of a shear band being formed for a flat nosed penetrator as compared to that for 
hemispherical-and ogival-nosed penetrators was experimentally observed by Wingrove [lo]. 

TIME 

Fig. 9. Histories of the spin and the strain-rate invariant at the three target particles (blunt-nosed 
penetrator). 
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Fig. 10. Histories of 
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Fig. 11. Histories of the hydrostatic pressure and the effective stress at the three target particles 
(blunt-nosed penetrator). 
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CONCLUSIONS 

Both for the hemispherical-nosed and the blunt-nosed rigid penetrators, the target particles 
undergo plastic spin comparable to the strain-rate invariant I, and the peak hydrostatic 
pressure equals nearly 12 times the yield stress of the target material. Thus, plasticity theories 
which properly account for the plastic spin and the effect of high hydrostatic pressure should be 
used to assess the importance of these factors on the solution of the penetration problem. It 
seems that there is a greater likelihood of the formation of an adiabatic shear band near the 
penetrator/target interface for the blunt-nosed penetrator as compared to that for the one with 
a hemispherical nose. 
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