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Abstract-Steady state axisymmetric deformations of a viscoplastic target being penetrated by a rigid 
cylindrical penetrator with a hemispherical nose are analyzed. The presumed kinematically admissible 
velocity field satisfies all of the boundary conditions on the target/penetrator interface, and also the 
balance of mass. The unknown parameters appearing in the admissible velocity field are found by 
minimizing the error in satisfying the balance of linear momentum. The solution so obtained is found 
to be very close to the finite element solution of the problem. An advantage of the present technique 
is the enormous savings in the computational effort and resources required to analyze the problem. 

1. INTRODUCTION 

In recent years, emphasis has been placed on kinetic energy penetrators, which for terminal 
ballistic purposes may be considered as long metal rods traveling at high speeds. For impact 
velocities in the range of 2-10 km/s, incompressible hydrodynamic flow equations can be used 
to describe adequately the impact and penetration phenomena, because large stresses occurring 
in hypervelocity impact permit one to neglect the rigidity and compressibility of the striking 
bodies. Models, which require the use of the Bernoulli equation or its modification to describe 
this hypervelocity impact, have been proposed by Birkhoff et al. [l] and Pack and Evans [2]. At 
ordnance velocities (OS-2 km/s), the’ material strength becomes an important parameter. 
Allen and Rogers [3] modified the Pack and Evans [2] flow model by representing the strength 
as a resistive pressure. This idea was taken further by Alekseevskii [4] and Tate [5,6], who 
considered separate resistive pressures for the penetrator and the target. These resistive 
pressures are empirically determined quantities, and the predicted results depend strongly upon 
the assumed values of these pressures. As described by Wright [7] in his survey article on long 
rod penetrators, Tate’s model is difficult to use for quantitative purposes, because the strength 
parameters depend upon the velocity of impact and the particular combination of materials 
involved. Wright and Frank [8] in their reexamination of Tate’s theory, have derived 
expressions for the resistive pressures in terms of mass densities, yield strengths of the 
penetrator and target material, and penetrator speed. 

The paper by Backman and Goldsmith [9] is an authoritative review of the open literature on 
ballistic penetration, containing 278 reference citations from the 1800s to 1977. They describe 
different physical mechanisms involved in the penetration and perforation processes, and also 
discuss a number of engineering models. Jonas and Zukas [lo] reviewed various analytical 
methods for the study of kinetic energy projectile-armor interaction at ordnance velocities and 
placed particular emphasis on three-dimensional numerical simulation of perforation. Ander- 
son and Bodner [ll] have recently reviewed engineering models for penetration and some of 
the major advances in hydrocode modeling of penetration problems. Two books [13, 141, 
published during the past few years, include extensive discussions of the engineering models, 
experimental techniques and analytical modeling of ballistic perforation. 

Awerbuch [15], Awerbuch and Bodner [16], Ravid and Bodner [17], and Ravid et al. [18] 
have developed models to analyze the normal perforation of metallic plates by projectiles. The 
penetration process is presumed to occur in several interconnected stages, with plug formation 
and ejection being the principal mechanism of plate perforation. They presumed a kinemati- 
tally admissible flow field and found the unknown parameters by minimizing the plastic 
dissipation. They characterized the procedure as being a modification of the upper bound 
theorem of plasticity to include dynamic effects. These authors have included the dependence 
of the yield stress upon the strain rate and studied a purely mechanical problem. 
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Jones et al. [19] have modified the one-dimensional eroding-rod penetration theory of Tate 
by accounting for the mass transfer from the rigid end of the rod into the plastic region, and the 
mushroom strain at the deforming end of the rod. Their results suggest that the latter factor has 
a substantial effect on calculated penetrations. Woodward [20] has proposed a one-dimensional 
model of penetration which regards both penetrator and target as mushrooming cylinders and 
the target flow stress is increased to account for the lateral constraint. A finite difference 
formulation is used for both target and projectile to divide them into a series of elements. The 
projectile elements which enter the target are subjected to lateral constraint and a shear stress 
if their diameter is sufficient to touch the edges of the hole. Forrestal et al. [21] have used the 
cavity expansion model to predict the penetration depths for relatively rigid projectiles striking 
deformable semi-infinite targets. 

The one-dimensional theories ignore the lateral motion, plastic flow and the detailed 
dynamic effects. In an attempt to understand better the approximations made in simpler 
theories of penetration, Batra and Wright [22] studied the problem of a rigid cylindrical rod 
with a hemispherical nose penetrating into a rigid/perfectly plastic target. The target 
deformations, as seen by an observer moving with the penetrator nose tip, were presumed to 
be steady. Subsequently Batra and his coworkers [23-281 studied the effect of nose shape, 
strain hardening, strain-rate hardening and thermal softening characteristics of the target 
material and also analyzed the steady state axisymmetric deformations of a rod striking a rigid 
cavity. Guided by the results given in [22, 231 we presume a kinematically admissible velocity 
field to analyze the steady state axisymmetric deformations of a viscoplastic target being 
penetrated by a rigid hemispherical nosed cylindrical rod. The approximate solution obtained 
herein compares favorably with the finite element solution and requires less than one- 
hundredth of the computational resources in terms of the CPU time and the storage 
requirements. 

2. FORMULATION OF THE PROBLEM 

We use the Eulerian description of motion and a cylindrical coordinate system with origin at 
the center of the hemispherical nose and moving with it at a uniform speed u0 to describe the 
deformations of the target. The positive z-axis is taken to point into the target. We work in 
terms of non-dimensional variables indicated below by a superimposed bar. 

6 = u/00, p =ploo, w = pou;/ao, 

V = V/V”, J = r/r”, 2 = z/ro, (1) 

where u is the Cauchy stress tensor, p the hydrostatic pressure not determined by the 
deformation history since the deformations are assumed to be isochoric, v = (v,, v,) is the 
velocity of a material particle, the pair (r, z) describe the current position of a material particle, 
r, is the radius of the undeformed cylindrical portion of the rod, p. equals the mass density of a 
target material and a, is the yield stress of the target material in a quasistatic simple 
compression test. The non-dimensional parameter m equals the magnitude of the inertia forces 
relative to the flow stress of the material. 

Hereafter, we drop the superimposed bars. Equations governing the deformations of the 
target are 

div v = 0, (2.1) 

div o = a(v - grad)v, (2.2) 

u = -pl + (l +$jrnD, (2.3) 

2D = grad v + (grad v)r, (2.4) 

21’ = tr(D2). (2.5) 

Equations (2.1) and (2.2) express, respectively, the balance of mass and the balance of linear 
momentum. Equation (2.3) is the constitutive relation for the rigid/viscoplastic target material. 
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It may be written as 

Se = i tr(s2) 
( > 

l/2 

= (1+ bZ)“lY3, (3.1) 

s=a+pl. (3.2) 

The kinetic equation (3.1) is of a specific overstress form-roughly similar to that proposed by 
Cowper-Symonds-Bodner and generalized by Perzyna. The parameters b and m describe the 
strain-rate hardening characteristics of the material. D, given by equation (2.4), is the 
strain-rate tensor and I is its second invariant. Equation (2.1) and the one obtained by 
substituting (2.3) into (2.2) are the nonlinear partial differential equations to be solved for v 
and p under the prescribed boundary conditions. 

At the target/penetrator interface, we impose the boundary conditions 

t-(un)=O, (4-l) 

v-n=O, (4.2) 

where n and t are, respectively, a unit normal and a unit tangent to the surface. The boundary 
condition (4.2) ensures that there is no interpenetration of the target material into the 
penetrator, and the boundary condition (4.1) states that the target/penetrator interface is 
smooth. This seems reasonable because a thin layer of material at the interface either melts or 
is severely degraded by adiabatic shear. At points far away from the penetrator, 

Iv+ej+O as Ix(=(r2+22)1’2+03, 2>--co, (5-I) 

Id-,0 as z+--M, (5.2) 

where e is a unit vector in the positive z-direction. The boundary condition (5.1) states that 
target particles far away from the penetrator appear to be moving with a uniform speed with 
respect to it. Equation (5.2) states that far to the rear the traction field vanishes. Note that the 
governing equations (2.1)-(2.3) are nonlinear in v and their solution, if there exists one, will 
depend on the rates at which quantities in (5) decay to zero. 

3. AN APPROXIMATE SOLUTION 

Guided by the finite element solutions [22, 231 of the corresponding problem, we divide the 
deforming target region shown in Fig. 1 into two subregions: region I and region II. We assume 
that in region I the target material extrudes rearward as a uniform block. Thus, the velocity of 

Fig. 1. The problem studied. 
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material particles in this region is along the axis of the rod. We note that a similar assumption 
was made by Ravid and Bodner [17] in their analysis of the perforation of thick plates. In order 
to describe the velocity field in region II, we introduce a new coordinate system (p, 0) where 

Thus 

p = (r2 + %2)1a, 

0 = tan-‘(r/z). 

v0 = 21, cos 8 - v, sin 8, 

(6.1) 
(6.2) 
(7.1) 

vP = 21, sin 0 f v, cos 8. (7.2) 
Equation (2.1), and the boundary conditions (4.2) and (5.1) take the form 

dv,+ l dug 2v v cos 8 --+P+B 

3P Pa@ P 
-=o, 

p sin 8 (8) 

v, =o on CD and vg = 0 on DE, 

v,+ -1, 2),=0 as p-em. 

We also need to ensure that on CF 

(9.1) 

(9.2) 

VI = VII, (10.1) 
and 

(6 = (a),,. (10.2) 

If the boundary EF is far enough from the noise tip D, then condition (9.2) is a reasonable 
approximation to (5.1). The condition (9.1) on DE follows from the assumption that the 
defo~ations are axisymmetric. 

A velocity field that satisfies equation (8), boundary conditions (9.1) and (9.2), and the 
continuity condition (10.1) and exhibits characteristics similar to that found by the finite 
element solution is given below. In region II, 

4 + $ sin 9 + C Cmkpm sink 26, 
P ) m,k 

(11.1) 

VP = K ) -t-l coso- 
P2 

~(~-~)cos~~~(~-~)cos~] 

and in region I 

-zks ($-p”)sin*-’ 28((2k + i)c0s 28 + I), (11.2) 

( 
1 

1 
v, = - -- 

fl+t +’ 
> r” ’ 

v, = 0. 
r (12) 

In equation (ll), the constants n and C,, are yet to be determined. The natural boundary 
conditions (4.1) and (S.l), and that on the axis of symmetry DE can be written as 

up0 = 0 on DC, 

l@nl-+O asp+m, 

u,, = 0 on DE. 

Recalling the constitutive relation (2.3), we see that boundary conditions 
are equivalent to 

dvo+_P_!!_@‘e=O 1 au 

dP P d@ P 
whenp=lor@=O. 

(13.1) 

(13.2) 

(13.3) 

(13.1) and (13.3) 

04) 

This is satisfied if we choose 

mG--3, k 2 3, C c,,& - 1) = 0, 
m 

The satisfaction of the boundary condition (13.2) requires that 

Ipl--,O, as p-,w 

k=3,4,.... (15) 

06) 
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In order to determine the hydrostatic pressure p, we use the balance of linear momentum 
(2.2). Substitution from (ll), (7) and (2.3) into (2.2) gives 

(17.1) 

(17.2) 

where f and g are known functions of r and z. Their expressions are quite long and are omitted. 
Since it is hard to choose n and C,, such that the integrability condition 

af ag 0 ---= 

az dr 

is satisfied, we find n and C,, by ensuring that the functional 

(1% 

J(n, C,,,~)=l,($$)‘dQ (19) 

takes on the minimum value. Knowing n and Cmk, the pressure is found by integrating 
equation (17) and the constant of integration is determined by setting p = 0 at p = 1, 8 = 90”. 
This condition is also taken from the finite element solution of the problem. The computed 
pressure field does satisfy (16). However, no attempt was made to achieve the rate of decay of 
p equal to that obtained in a finite element solution of the problem. 

13 

12 

11 

10 

I I I I I I I I r 
0 10 20 30 40 50 60 70 60 90 

ANGLE 

Fig. 2. Distribution of the normal traction on the penetrator nose. - One term solution; - - - - - 
three terms solution; - - - FEM solution. 
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Having determined u in region II we can use the balance of linear momentum, boundary 
conditions (10.2) and (5.2) to compute the stress field in the region I. However, the 
computation of this stress field is not necessary in order to compute various quantities of 
practical interest. 

4. DISCUSSION OF RESULTS 

In order to compare the solution obtained with the present method with that computed by 
the finite element method, we set b = l@s, m = 0.03 and CY = p&$/a, = 6.15. Whenever 
different values of b, m and IY are used, these are stated in the figure captions. Figure 2 depicts 
the distribution of the normal traction on the penetrator nose. The solution computed with the 
leading term in equation (11) differs very little from that found by also including the next two 
terms in the series. These two solutions match well with the finite element solution for 
0 s 8 s 25”. For 8 > 25”, the presently computed solution differs noticeably from the finite 
element solution. Because of very little difference between the leading term solution and the 
three terms solution, it was felt that the consideration of the additional terms in the series will 
not result in any significant improvement in the solution. The variation of the second invariant 
I of the strain-rate tensor D along the axial line, plotted in Fig. 3, reveals that the results 
obtained with the present method are very close to the finite element solution of the problem. 
In this case, the three terms solution and the one term solution overlapped each other. 
However, the computed values of ir,, on the axial line, shown in Fig. 4, do not agree that well 
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Fig. 3. Variation of the second invariant I of the strain-rate tensor on the axial line. - Present 
solution; - - - - - finite element solution. 
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Fig. 4. Variation of a,, on the axial line. 

with the finite element solution except near the nose tip. Three sets of curves show similar 
trends in that a,, decreases gradually as we move away from the nose tip. The decrease is more 
for the finite element solution as compared to the solution with the present method. Since the 
hydrostatic pressure is a major contributor to the value of a,,, the difference between the 
present solution and the finite element solution can be attributed to the different rates of decay 
of p. We note that many results of practical importance computed with the present method, as 
outlined below, are close to those obtained from the finite element solution. 

On the axial line, the Bernoulli equation, as modified by Tate [5, 61 is 

5 ,oov: + R, = -u,,(l, 0) (20) 

where R, accounts for the strength of the target material. Having computed a,, and knowing 
p,&, we can find R,. The value of R, thus computed equals 9.43 a0 with the present method 
and 9.63 a0 with the finite element method. From Fig. 3, we see that at the nose tip I = 1.75. 
Since v,/r, = 1.48 x 105s-', therefore, at the nose tip 

u, = u,(l + 104(1.75 x 1.48 x 16))“.03 = 1.916uo (21) 

where uD is the value of the flow stress for the target material at a strain-rate of 2.59 x 10s s-‘. 
Thus R, = 4.92u, for the presently computed solution. The non-dimensional axial resisting 
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Fig. 5. Dependence of the axial resisting force upon cy. - Finite element solution; - - - - - one term 
solution; - - - three terms solution. 
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Fig. 6. Contours of the hydrostatic pressure in the deforming target region. 
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force F experienced by the penetrator is given by 

I 

nl2 

F= (n l an)sin 20 de. (22) 
0 

The dimensional values of the resisting force equal mfjuoF. Figure 5, which is a plot of F vs a, 
shows that the dependence of F upon (Y is rather weak. Equations of straight lines fitted by the 
least squares method to the computed data are 

F = 8.575 + O.l97a, FEM solution, (23.1) 

F = 8.717 + 0.243a, Present 3 terms solution. (23.2) 

Thus the two methods’ yield virtually identical values of F. The weak dependence of F upon (Y 
indicates why the choice of the constant target resistance in the simple theory of Tate [5, 61 
gives good qualitative results. 

The contours of the hydrostatic pressure p plotted in Fig. 6 indicate that the pressure near 
the nose tip is very high and it drops off rather slowly as we move away from the nose tip. It is 
thus obvious that the hydrostatic pressure near the penetrator nose makes a significant 
contribution to the normal traction acting on the nose tip and hence to the axial resisting force 
experienced by the penetrator. In Fig. 7, we have plotted the distribution of the normal 
traction on the penetrator nose for different values of (Y. As expected, the normal traction at a 
point on the penetrator nose increases with CY. In the finite element solution [22] of the 
problem, the normal traction at 0 = 45” was unaffected by the value of CY. It seems that this was 

0 10 20 30 40 50 60 70 60 90 

ANGLE 
Fig. 7. Dependence of the normal traction on the penetrator nose upon a. - LY = 5; - - - - - (Y = 

---a=10;---~==l2,--~=l5.m=0.05. 
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due to the coarse mesh used. Since at 8 = O”, the normal traction on the penetrator nose equals 
(-a,& and the deviatoric part of the stress equals 0.667 for the rigid/perfectly plastic target 
material and a little bit more for the viscoplastic target material, the hydrostatic pressure at the 
nose tip increases significantly with the increase in the value of a: 

Figures 8(a) and (b) depict respectively the dependence of the normal stress on the 
penetrator nose upon the values of b and m that characterize the viscoplastic response of the 
target material. It is obvious that the normal stress on the penetrator nose and hence the axial 
resisting force acting on the penetrator depend strongly upon the values of b and m. As the 
value of either b or m is increased, the normal stress at a point on the penetrator nose, except 
near the periphery of the nose, increases sharply. Recall that at 0 = 90”, p is set equal to 0 
during the solution of the problem. The dependence of the axial resisting force upon m and 6 is 
depicted in Fig. 9. These plots show that F depends strongly upon 6 and m as was also found to 
be the case in the finite element solution of the problem. 

We note that Forrestal et al. [29] have given the depth of penetration of hemispherical nosed 
steel rods penetrating into aluminum targets impacted at different speeds. From their data, it is 
hard to estimate the resisting force experienced by the rod during the steady state portion of 
the penetration process. Also the assumption in our work that the contact at target/penetrator 
interface is smooth should be modified to account for the frictional forces acting on the 
interface. Since the assumed kinematically admissible velocity field gives zero tangential 
tractions at the contact surface, the consideration of frictional forces there necessitates that we 
modify the velocity field. 
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Fig. 9. Dependence of the axial resisting force experienced by the penetrator upon the values of b 
andm-6b;----m;cu=8.0. 
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5. CONCLUSIONS 

A simple approximate solution to the problem of analyzing axisymmetric steady state 
deformations of a rigid-viscoplastic target being penetrated by a long rigid cylindrical rod with a 
hemispherical nose is presented. A kinematically admissible velocity field that satisfies the 
balance of mass, all of the essential boundary conditions, and traction boundary conditions on 
the axis of symmetry and the target/penetrator interface is proposed. The various parameters 
in the presumed velocity field are found by minimizing the error in the satisfaction of the 
balance of linear momentum. The computed results reveal that the leading term in the 
proposed velocity field gives a good solution that is reasonably close to the finite element 
solution [22, 231. The axial resisting force experienced by the penetrator is found to depend 
weakly upon the square of the penetrator speed but strongly upon the strain-rate hardening 
exponent for the target material. The value of the resisting force term suggested by Tate [5,6] 
in the modified Bernoulli equation is found to be 9.43 a0 or 4.92~~ where o,, is the dynamic 
flow stress for the target material at a value of the strain-rate equal to that prevailing at the 
stagnation point. 
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