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Abstract-The effect of average strain-rate on the interaction among shear bands in nonpolar and 
dipolar thermoviscoplastic materials has been investigated. The uniform temperature and stress fields 
in a block undergoing simple shearing deformations are perturbed when the body just starts 
deforming plastically and the governing nonlinear coupled partial differential equations are solved 
numerically. The temperature perturbations introduced are symmetric about the centerline of the 
block, and have two bumps of unequai heights on each side of the centerline. For nonpolar materials 
one band on either side of the centerline eventually emerges, the location of the center of the band 
and its width depend upon the overall strain-rate. For dipolar materials only one band situated at the 
center of the block forms irrespective of the applied strain-rate. The initiation of the band is 
significantly delayed in dipolar materials, especially at the higher overall strain-rate studied. 

INTRODUCTION 

Since the time Zener and Hollomon [l] observed shear bands in a steel plate punched by a 
standard die and postulated that a negative slope of the stress-strain curve implies an intrinsic 
instability of the material, there have been many analytical (e.g. Recht [2], Staker [3], Clifton 
[4], Burns [5], Wright [6], Anand et al. [7], Bai (81, Coleman and Hodgdon [9]), experimental 
(e.g. Moss [lo], Costin et al. [ll], Marchand and Duffy [12]), and numerical (e.g. Clifton et al. 
[13], Merzer [14]; Wu and Freund [15], Wright and Batra (16,171, Wright and Walter [18], 
Batra [19,20], Batra and Kim [21-241) studies aimed at understanding factors that enhance 
or inhibit the shear strain localization. Since the strain-rate gradients in the region where the 
deformation localizes are extremely high Wright and Batra [17] and Batra [19] considered 
strain gradient as an independent variable. Further motivation for the consideration of dipolar 
effects is provided by the work of Dillon and Kratochvil [25] who have suggested this to be one 
way of accounting for the interaction among dislocations, and the recent work of Batra and 
Kim [24] that suggests that the experimental observations of Marchand and Duffy [12] are in 
close agreement with the predictions from the dipolar theory. Batra 1191 has also studied the 
interaction among two shear bands and showed that the two bands that would grow 
independently in nonpolar materials coalesced in dipolar materials even when the material 
characteristic length was l/20 of the distance between the bands at the time of their initiation. 

In this paper we further investigate the interaction among shear bands and especially the 
effect of the applied strain-rate on the coalescence, initiation and growth of bands in simple and 
dipolar materials. Backman and Finnegan [26] observed that adiabatic shear bands initiated 
at flaws, pits, scratches and inhomogeneities in the material. As has been done earlier by 
Clifton et al. [13], Wright and Batra [16,17] and Batra [19,20] we model these inhomogeneities 
by introducing a temperature perturbation; the amplitude and width of the perturbation 
represent, respectively, the strength and size of the inhomogeneity. Herein we assume that the 
material has two flaws of different strengths located symmetrically about the centerline of the 
specimen. We model these by a temperature perturbation introduced at the instant when the 
material just starts deforming plastically. The temperature perturbation has two bumps of 
heights 0.067 and 0.1 centered at 0.02H and 0.06H; 2H being the thickness of the specimen 
undergoing simple shearing deformations. The effects of locating the strong bump near the 
center or away from it and deforming the specimen at nominal strain-rates of 500 and 
50,000 s-r are studied. 
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FORMULATION OF THE PROBLEM 

We envisage a homogeneous, isotropic and semi-infinite viscoplastic body bounded by the 
planes Y = fH undergoing simple shearing deformations given by 

x =x + U(Y, t), Y = y, z = z, e = 8(Y, t). (1) 

We use a fixed rectangular Cartesian set of axes and denote by (x, y, z) the current coordinates 
of a material point that occupied the place (X, Y, Z) in a stress-free reference ~nfiguration. 
The functions u and 19 give, respectively, the x-displacement of a material point and its 
temperature change from that in the.reference configuration. In the absence of body forces and 
external sources of energy, equations governing the thermomechanical deformations of the 
block are (e.g. see Green ef al. [27], Wright and Batra [17]) 

Pu = (s - o&V (2) 

pP = -q,y + SV,, + (rv,,. (3) 

Equation (2) expresses the balance of linear momentum and equation (3) the balance of 
internal energy. In these equations p is the mass density which stays constant since the simple 
shearing is an isochoric deformation and the effect of temperature change on the mass density 
is being neglected, v = & is the x-velocity of a material particle, a superimposed dot indicates 
material time differentiation, a comma followed by y stands for partial d~erentiation with 
respect to y, s is the shear stress in the x-direction on the plane y = const., o is the dipolar 
stress on this plane, e is the specific internal energy and q is the heat flux. We assume that the 
shear strain and the shear strain gradient have additive decompositions 

y=u ,y = Ye + YP’ d = y,y = u,yy = de + d,,, (4) 

and that a scalar loading or yield function f exists such that 

f(& o, 0, Y&U Li,) = Jc, (5) 
and 

jJP = Aff, & = ng, (6) 

where ty and /I are constitutive functions that depend upon S, a, 8, and K. In equation (5) K is a 
measure of the work hardening of the material. We assume that f satisfies 

for all admissible values of S, o and 8. The criterion for elastic and plastic loading is 

f(s, 0, 8, 0, 0) IO, elastic, (8.1) 

f(s, cr, 8, 0, 0) > 0, plastic. (g-2) 

In the later case, because of (7), equation (5) will have a unique solution A > 0. The reader is 
referred to Green et al. 127) and Wright and Batra 1171 for a discussion of the preceding 
equations. 

We choose the following constitutive functions. 

pe=;p(y:+12d:)+pc,,f3, 

q = -kO,,, 

a = s, #I = (T/12, 

(9.1) 

(9.2) 

(9.3, 9.4) 

(9.5) 

(9‘6) 

(9.7) 
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Here p is the constant shear modulus, I is a material characteristic length, c, is the constant 
specific heat, k is the constant thermal conductivity, tj is the plastic strain in a slow isothermal 
reference test for which equation (9.5) gives the stress-strain curve, the parameter Y 
describes the thermal softening of the material, and material parameters n and m characterize, 
respectively, the strain-hardening and strain-rate hardening of the material. The constitutive 
assumptions (9) and the standard thermodynamic arguments (e.g. see Green et al. [27]) give 

s = PYt?r u = ,u12de. w 

Before summarizing the field equations for v and 8, we introduce nondimensional variables, 
indicated by a superimposed bar in equation (11) below. 

Y =m, u=Hii, E=HS, fj=*$j=e,Q, 
CT 

s = &)s, 
i&J 

“=j-& 

t = ?lj$, y = p, d=Hd, K = Kol?‘, w= w, iNjo = 21, 

C = YOO, 6 = bj,, P = ~H~j’;i~-o, 2 = k/(pc&H*). 01) 

Here F. = v(H, t)/H is the average applied strain rate between the boundaries Y = MI. 
Henceforth we use only the nondimensional variables except for the applied strain-rate and 

drop the superimposed bars. Thus the governing equations may be summarized as 

ir = $ (s -to&, (12.1) 

4 = k@,, + h(s2 + CJ~), (12.2) 

i = E1(+ -h), (12.3) 

(12.4) 

tj =A(?+ u2,/y1+;)“, (12.5) 

We presume that the specimen is put in a hard and perfectly insulated loading device, i.e. the 
boundary conditions are 

v(f1, t) = fl, q(*l, t)=O, a(f1, t) =o. (13) 

For the initial conditions we take 

V(Y, 0) ==Y, Q(Y, 0) = 0, Ilr(Y, 0) = 0, (14.1) 

6(Y, 0) = QY), Pp(Y, 0) = 1, (14.2) 

s(y, 0) = (1-t b)“(l- v(j), (14.3) 

and seek solutions of equations (12)-(14) such that 

fJ(-Y, t) = -V(Y, t), 4-y, t) = -a(y, t), 6(-Y, tl = @(y, 0, 

s(--Y, t) = S(Y) 0, v(-Y, t) = V(Y9 t)* (15) 

Thus the problem can be studied over the spatial domain [0, l] and the boundary conditions 
(13) are replaced by 

V(1, t) = I, v(0, t) = 0, 4(1, t) = 0, 4(&t) = 0, a(1, t) = 0, a(0, t) = 0. 

The function e in equation (14.2) gives the initial temperature perturbation. 
(16) 
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COMPUTATION AND DISCUSSION OF RESULTS 

In order to solve the problem numerically the governing equations (12) are reduced to first 
order coupled nonlinear ordinary differential equations by using the Galerkin method. These 
are then integrated by using the Crank-Nicolson method modified to correct the predicted 
solution within each time step until a preassigned convergence criterion is satisfied. The details 
of the solution technique are given in [19]. 

Following values of material parameters that correspond to a typical hard steel were chosen. 

p = 7,860 kg/m”, k = 49.216 Wfm”C, p = 80 GPa, 

K~ = 333 MPa, Y = o.O05521”c, c,, = 473 J/kg”C, 

m = 0.025, f2 = 0.09, 1(10 = 0.017, b = 10’s. 

For this choice of parameters, B0 = 89.6”C. Also we took H = 2580 pm and computed results 
for y0 = 500 and 50,000 s-i. With f?(y) = 0, Fig. 1 shows the stress-strain curve in simple shear 
for PO = 500 s-l and different choices of the values of parameters Y and b. The peak in the 
stress-strain curve occurs at a strain of 0.093. At the higher strain-rate of 5O,OOOs-’ the shear 
stress peaked out at an average strain of 0.085. The temperature perturbation was introduced 
when the material just started deforming plastically and the initial stress distribution was 
adjusted so that all of the material points were on their corresponding yield surfaces. Two 
temperature perturbations depicted in Fig. 2 were tried; the one with the higher amplitude at 
y = 0.06 is referred to as case 1 and the other one with the higher amplitude at y = 0.02 as case 
2. In each case results were computed for PO = 500 and 50,000 s-‘, and I = 0.0 and 0.01. The 
finite element mesh had 200 elements, 160 uniform eiements over the domain [0,0.2], and 40 
uniform element over [0.2, 1.01. We used At = 5 x lo-” in integrating the governing equations. 
Preliminary computations revealed that the spatial resolution of the domain was more critical 
in obtaining stable and reliable results than the size of the time increment until the instant the 
band formed. During the development of the band, At should be drastically reduced to 
compute stable results. However, this was not tried. Also the various deformation fields 
developed no severe gradients on the domain [0.2,1.0], and therefore, a coarse mesh could be 
used over this region. 

In Figs 3 and 4 are plotted the results for the two cases when I = 0.0 and f0 = 500 s-‘. It is 
obvious that in case 1 a shear band centered at y = 0.035 develops whereas in case 2 its center 
is at y = 0.0. The bands in the two cases form at essentially the same value of the overall strain 

v#O, b#O 

EFERENCE CURVE 
. 

o.50 I 
P, I I 

0.05 0.10 a5 0.20 

AVERAGE STRAIN, );vE 

Fig. 1. Average shear stress-average shear strain curve for a typical steel at h = 500 s-‘. 
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Fig. 2. Temperature perturbations. 
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of 0.101 in the specimen. We note that when a temperature perturbation with a single bump of 
amplitude 0.10 centered at y = 0.0 was introduced a shear band, 272 pm wide, developed at an 
average strain of 0.0814 [28]. The average strain at which a band develops depends upon the 
amplitude and the shape of the perturbation. Since the temperature perturbation of Fig. 2 will 
essentially reduce to that introduced by Batra [28] when there is only one bump of amplitude 
0.10 centered at y = 0.0, one may conclude that the introduction of a temperature perturbation 
with two bumps delays slightly the development of a shear band. Because of the assumption 
(15) we note that in case 1 two bands, one on either side of the center line, grow and in case 2 
only one band forms, Following Wright [6] we define the edges of the band to be points where 
the plastic strain-rate has dropped to one-tenth of its value at the center of the band. The 
computed width of the single band in case 2 is 216 pm and the band width in case 1 could not 
be computed since the edges of the band could not be delineated according to the stated 
criterion. In each case the shear stress became uniform throughout the specimen soon after the 
temperature was perturbed and it increased monotonically till the instant of rapid growth of the 
band. Since that time the shear stress decreased monotonically and was essentially uniform 
throughout the thickness of the block. The calculations did not continue long enough for these 
two cases to observe the stress collapse pointed out by Wright and Walter [18]. 

Figures 5 and 6 depict the evolution of the velocity, temperature and plastic strain-rate in the 
specimen for an applied strain-rate of 50,000 s-‘. Now there is no band developed at the center 
of the specimen, rather in each case the center of the band coincides with the center of the 
temperature bump of higher amplitude. The bands, 14 and 18 microns wide, for cases 1 and 2 
develop at an average strain of 0.077 and 0.100 respectively. For the temperature perturbation 
with a single bump [28] centered at y = 0.0, the band, 18 pm wide, developed at an average 
strain of 0.206. The velocity distribution in the specimen at the instant of rapid shear band 
growth is significantly different at strain rates of 500 and 50,000 s-l. This was also observed by 
Batra [28] who investigated the effect of applied strain-rates on adiabatic shear banding in 
nonpolar materials. At the higher strain-rate the velocity field suffers extremely high gradients 
near the center of the band. Outside the region of shear strain localization the velocity field 
appears to be varying linearly and the plastic strain-rate is close to zero. Up to the instant 
results have been computed satisfactorily and plotted here neither of the temperature bumps 
had died out. Recall that at the lower strain-rate of 500 s-l eventually only one bump emerged 
with center not coincident with the centers of either of the initial two bumps. For 
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Fig. 3. Evolution of the velocity, temperature and plastic strain-rate fields for nonpolar materials and 
for temperature perturbation 1 at PO = 500 SK’. 
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Fig. 6. Evotution of the velocity, temperature and plastic strain-rate fietds for nonpolar materials and 
for temperature perturbation 2 at jq, = 50,000 s-l. 
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ytj = 50,000 s- ‘, the shear stress showed a sudden drop at the center of the shear band when the 
band began to grow very rapidly. Until that time the shear stress stayed uniform throughout 
the thickness of the specimen and increased gradually with increasing strain. 

The above results may be summarized as follows. If two bands, one primary and the other 
secondary (with the smaller amplitude) initiate simultaneously, then they will merge together 
and the growth of the single band is delayed as compared to the case when only one band 
initiates to start with. The center of the merged band need not coincide with that of the 
primary band. The shift, if any, in the center of the merged band away from that of the primary 
band depends possibly upon the thermal conductivity, strain and strain-rate hardening 
characteristics, the value of the thermal softening coefficient for the material and the overall 
applied strain-rate. Note that for the material parameters selected here, the non-dimensional 
mass density p increases from 3.928 x lop5 to 3.928 x 10-l and the non-dimensional thermal 
conductivity k decreases from 3.978 X 10e3 to 3.978 X lo-” when ret is increased from 500 to 
50,000 s-l. Since p is a measure of the effect of inertia forces relative to that of the flow stress 
of the material and k of the length over which heat conduction effects are important, at 
PO = 50,000 s-’ h t e inertia effects play a dominant role and the process is essentially adiabatic 
locally. This should explain, at least partially, the different behaviors observed at the two 
strain-rates. 

Results for the dipolar material with I = 0.01, ffj = XlOs-’ and the two temperature 
perturbations are plotted in Figs 7 and 8. For cases 1 and 2 only one band 272 ym wide centered 
at the centerline of the specimen develops at an average strain of 0.15. The two temperature 
bumps soon die out and eventually the temperature peaks out at the centre of the specimen. As 
was also observed by Wright and Batra 1171 and Batra [19] the growth of the shear band is 
considerably delayed for dipolar materials as compared to that for nonpolar materials. The two 
temperature perturbations give rise to essentially similar bands. The velocity distribution within 
the region 0.0 5 y I 0.20 exhibits a little bit oscillatory behavior, especially for case 2, till the 
time the band begins to grow. Once the band forms, the spatial oscillations in the velocity field 
die out. The peak value 104°C of the temperature rise at the center of the specimen when the 
band has developed is nearly twice of that for nonpolar materials at approximately the same 
stage of the development of the band. 

Figures 9 and 10 depict results for dipolar materials deformed at the higher strain-rate of 
50,000 s-’ and I = 0.01. In this case the initiation and growth of the shear band is enormously 
delayed as compared to those for nonpolar materials at the same strain-rate and dipolar 
materials deformed at the lower strain-rate. As for i)O = 500 s-j, only one band 216 pm wide 
located at the center of the specimen forms at an average strain of 0.301. Whereas for nonpolar 
materials the band developed at the location of the center of the temperature bump with the 
higher amplitude and was very narrow as compared to the one formed at the lower strain-rate, 
for dipolar materials the band width decreased only slightly with an increase in the applied 
strain-rate and its location remained unaffected by the applied strain-rate. Also unlike the case 
for dipolar materials at the lower strain-rate, the speed at any point in the region 0 15 y -=: 0.2 
did not exceed that of the boundary point y = 1.0. The peak value 134°C of the temperature 
rise at the center of the band was a little higher than the 104°C computed at the lower 
strain-rate. 

Dipolar stresses contribute significantly to the value of A in equation (12.6) and hence to the 
plastic strain rate at a point since the peak value of o at the time a shear band developed in 
case 2 at if0 = 50,000 s-’ was nearly equal to the peak value of s. It thus seems that for I = 0.01 
the dipolar effects dominate over the effects of inertia forces and of heat conduction. Certainly, 
the computed results depend upon the value of 1. The effect of dipolar stresses decreases with a 
decrease in the value of 1. 

CONCLUSIONS 

On the hypothesis that a temperature perturbation simulates material inhomogeneities 
present in the material, a shear band develops in nonpolar materials at the location of the 
stronger inhomogeneity at the higher strain-rate considered but somewhere between the two 
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Fig. 8. Evolution of the velocity, temperature and plastic strain-rate liekis for dipolar materials 
(I = 0.01) and temperature perturbation 2 at &, = 500 s 
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Fig. 10. Evolution of the velocity, temperature and plastic strain-rate fields for dipolar materials 
(I = 0.01) and temperature perturbation 2 at q0 = 50,000 s-‘. 
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inhomogeneities at the lower strain-rate. However, for dipolar materials at both strain-rates, a 
shear band develops at the center of the specimen which is not the location of the stronger 
inhomogeneity. Also for dipolar materials, the shear band is considerably wider than that for 
nonpolar materials, especially at the higher strain-rate. Both for simple and dipolar materials 
the initiation of the bands is significantly delayed at the higher strain-rate possibly due to the 
dominant effect of inertia forces. The rate of growth of a shear band is gradual for dipolar 
materials but is quite fast for nonpolar materials. Thus in the presence of multiple 
inhomogeneities of varying strengths, whether or not a shear band initiates at the site of the 
strongest inhomogeneity depends upon the overall applied strain-rate, values of various 
material parameters and the consideration of dipolar effects. 
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