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A STEADY STATE AXISYMMETRIC PENETRATION 
PROBLEM FOR RIGID/PERFECTLY PLASTIC 

MATERIALS 
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Department of Mechanical and Aerospace Engineering and Engineering Mechanics, University of 

Missouri-Rolla, Rolla, MO 65401-0249, U.S.A. 

Abstract-The axisymmetric deformations of an eroding long cylindrical rod made of a rigid/perfectly 
plastic material penetrating at a uniform rate into a thick rigid/perfectly plastic target are studied by 
the finite element method. It is assumed that the deformations appear steady to an observer situated 
at the stagnation point and moving with it, and that the contact between the target and the penetrator 
at the common interface is smooth. It is found that the resisting force experienced by the penetrator, 
the shape of the target/penetrator interface, and the distribution of normal tractions on it depend 
rather strongly upon the square of the penetration speed and also upon the ratio of the mass density 
of the penetrator to that of the target. In an attempt to help establish desirable testing regimes for 
practical problems we have also computed time histories of the hydrostatic pressure, second invariant 
of the strain-rate tensor and the spin for four typical penetrator and two typical target particles. 

INTRODUCTION 

We study that phase of the penetration process in which the penetrator and target deformations 
appear steady to an observer located at the stagnation point and moving with it. This situation 
occurs when a very long cylindrical rod strikes a rather huge target and has penetrated a few 
rod diameters into it. Until the time either most of the rod has been eroded or the stagnation 
point reaches near the other end of the target, the penetration process can be regarded as being 
nearly steady and may constitute a significant part of the total penetration process. For 
moderately high striking speeds, Tate [l, 21 and Alekseevskii [3] modified the purely 
hydrodynamic approach by including the effects of the material strengths of the projectile and 
the target and representing them as some multiple of the yield strengths of the corresponding 
materials. However, the multiplying factor was unresolved in the theories. Pidsley [4] recently 
computed the values of the strength parameters for a copper rod penetrating into an aluminum 
target to be 2.4 (cJ~)~ and (-0.7)(uH& for the target and the penetrator, respectively. Here oH 
equals the Hugoniot elastic limit of the material. He justified the negative value for the rod 
strength because of its yield stress being lower than that of the target. 

The review paper of Backman and Goldsmith [5] provides a comprehensive summary of the 
work done on ballistic penetration until 1977, and discusses various physical mechanisms 
involved in the penetration and perforation processes and their engineering models. Also 
during the last decade engineering models of target penetration have been proposed by Ravid 
and Bodner [6], Ravid et al. [7], and Forrestal [8]. Some of the books on the subject are by 
Zukas et al. [9], Blazynski [lo], Billington and Tate [ll], and MaCauley [12]. 

In previous studies [13-191 Batra and his coworkers have analyzed the steady state 
penetration problem in which either the penetrator or the target was considered as rigid. Here 
we study the case when both deform and their materials can be modeled as rigid/perfectly 
plastic. As in [13-191, the contact between the penetrator and the target at the common 
interface is assumed to be smooth and no fracture or failure criterion is included. However, the 

effect of the penetration speed and the ratio of the mass densities of the penetrator and target 
on their deformations is investigated. We add that the problem studied herein is more 
challenging than those studied earlier in [13-191 because of the presence in it of two a priori 
unknown free surfaces, one the target/penetrator interface and the other the free surface of the 
penetrator material flowing backwards. Also the convective part of the acceleration plays a 
dominant role which requires the use of either an appropriately graded mesh or the use of 
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artificial viscosity or both. The kinematic and stress fields found herein should help select 
improved kinematic fields in other approximate theories of penetration mechanics and also 
check results from simpler engineering theories of penetration. 

An other outstanding problem in penetration mechanics is the selection of the appropriate 
constitutive models for the penetrator and target materials. In order to assess which one of the 
many recently proposed theories [20-231 of large deformation elastoplasticity is appropriate, 
and also help establish desirable testing regimes for practical problems, we compute histories of 
the se~nd-invariant of the strain-rate tensor and the plastic spin for four penetrator and two 
target particles. 

FORMULATION OF THE PROBLEM 

We use the Eulerian desc~ption of motion and a cylindrical coordinate system with origin at 
the stagnation point and moving with it at a uniform speed v, to describe the deformations of 
the penetrator and the target. The positive z-axis is taken to point towards the undeformed 
portion of the rod. Also we work in terms of non-dimensional variables indicated below by a 
superimposed bar. 

A J 

I 

Fig. 1, The finite region studied and its disc retization. 
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Here and below, o is the Cauchy stress tensor, p the hydrostatic pressure not dete~ined by 
the defo~ation history because the deformations are assumed to be isochoric, Y = (?J~, v,) is 
the velocity of a material particle, and r, is the radius of the undeformed ~ylind~~al portion of 
the penetrator, The non-dimensional parameter LY equals the magnitude of the inertia forces 
reiative to the flow stress of the material. When non-dimensional~ing a quantity for the 
penetrator and the target, the value of the corresponding material parameter is used in 
equation (1). An advantage of the non-dimensionalization (1) is that the equations governing 
the deformations of the penetrator and target look alike. Hereafter we use only non- 
dimensional variables and drop the superimposed bars. The governing equations can be written 
as 

div v = 0, 

div o = (v - grad)v, 

(2.1) 

(2.2) 

o= -pl+ 
1 

-----ID, 
&fi 

(2.3) 

2D = grad v + (grad v)“, (2.4) 

21z = tr(D2). (2.5) 

Equation (2.1) expresses the balance of mass, (2.2) the balance of linear momentum, and 
equation (2.3) is the constitutive relation for the penetrator and target materials. Recall that 
the value of a will be different for them. D, given by equation (2.41, is the strain-rate tensor 
and its second inva~~t is denoted by 1. Equations (2.1) and the one obtained by substituting 
(2.3) into (2.2) are the field equations to be solved for p and v under the appropriate boundary 
~nditions. 

A numerical solution of the problem usually necessitates that we consider only a finite region 
which for the Eulerian des~ption of motion is also referred to as the control volume. The 
finite regions for the penetrator and target studied are depicted in Fig. 1, which also shows its 
finite element di~retization. In the dark regions, a very fine finite element mesh is used. For 
the boundary conditions, we take 

t*(un)=O on ITi, (3.1) 

n * atn = (~~/p*)~ - op on Ii, (3.2) 

v*n=O on ITi, (3.3) 

On=0 ou rf, (3.4) 

v*n=o on r,, (3.5) 

% = 0, v, = 0 on the axis of symmetry ABC, (3.6) 

v, = 1, u,==o on the Sunday surfaces CD and DE& (3.7) 

tr =,=o, v,=o on FG, (3.8) 

v,=u,, a,,= 0 on the outlet surface GN, (3.9 

V, = -(VP - l), e5_ = 0 on the inlet surface AJ. (3.10) 

Here VT; is the target/penetrator interface BG, and T” is the free surface JZIZ of the deformed 
penetrator. The condition (3.1) expresses the assumption that the contact between the 
penetrator and target is frictionless, therefore, the tangential tractions there vanish. This seems 
reasonable since a thin layer of the material at the interface either melts or is severely degraded 
by adiabatic shear. The boundary condition (3.2) states that the normal tractions across the 
common interface Ii are continuous, and equation (3.3) implies that Ii is a streamline, If Ii 
were known, then either (3.2) or (3.3) is required. Here we use (3.2) to verify that the assumed 
shape of I’i is reasonably correct as discussed in the next section. The boundary condition (3.4) 
asserts that r, is a free surface, and equation (3.5) implies that it is a streamline. Equation (3.5) 
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is used to ensure that the assumed shape of r, is close to the actual one. The boundary 
condition (3.6) follows from the assumption that the deformations are axisymmetric. Since the 
distances of Cc) and DF from Fi exceed 30 rot and signi~cant target deformations occur in the 
target region distance at most 2~ from Ti, it is reasonable to assume that target particles on the 
bounding surfaces CD and DF do not deform. If the surfaces FG and GH were situated at 
infinite distances from the stagnation point B, then the boundary conditions (3.8) and (3.9) on 
them will hold exactly. Since these surfaces are situated at a distance of nearly 7r,, from B, the 
boundary conditions (3.8) and (3.9) are good approximations. The value of 11, in equation 
(3.9) is estimated by using the balance of mass for the penetrator region. The boundary 
condition (3.10) states that the end AJ of the rod has not deformed and is moving downward 
with a uniform speed. For an assigned value of rl,?, np is estimated from the relation ]l] 

where Yp and R, represent strength parameters for the penetrator and target materials. In his 
1967 paper Tate [l] found R, = 3.5(0,), and in a recent paper [24] he gave k;, = 1.7o,, , 
R, = oa,(2/3 + ln(0.57E,/a0,)), where E, is Young’s modulus for the target material. Batra and 
Chen [25] used a semianalytical method to analyze the steady state axisymmetric deformations 
of a viscoplastic target being penetrated by a rigid hemispherical nosed penetrator and found 
that 

In terms of dimensional variables, we need to know (R, - Y,) rather than the values of R, and 

r, to find up from equation (4). 

R, = 9.430,,. 

COMPUTATIONAL CONSIDERATIONS 

The aforestated problem was solved by the following iterative technique. Assume Ti and r,.. 
Then the regions Rp (shown in Fig. 1 by the closed curve ABGHIJA) and R, (shwn in Fig. 1 by 
the closed curve BCDEFGB) occupied, respectively, by the deformating penetrator and target 
material are well defined. The governing equations (2) under the boundary conditions (3.1), 
(3.3), (3.4), (3.6), (3.9), and (3.10) are solved to find the fields of (v,p) for the penetrator, and 
equations (2) under the boundary conditions (3.1), (3.3), (3.6), (3.7), and (3.8) are solved to 
find the fields of (v,p) for the target. The boundary conditions (3.2) and (3.5) are used to 
verify that the assumed Ti and Tr are reasonably correct. We first adjust r,, and then r, always 
ensuring that r, is still correct and, if necessary, r, is readjusted. During the modification of I‘, I 
nodes on it are moved in a direction pe~endicular to r, by an amount pr~~portional to 
(f; -f:). Here f; and f: equal, respectively, the normal force on a penetrator and target 
particle on Ti. 

The algorithm developed by Batra and Lin [16] to adjust rf was modified to increase its 
efficiency and has been described by Gobinath and Batra 1261. After new shapes of Ti and r, 
have been determined, a check is made to ensure that the elements adjoining these surfaces 
have not been severely distorted. If necessary, a new mesh is generated by solving on R, and Rf 
the Laplace equation V”ct, = 0 under the essential boundary conditions @ = r and $ = Z. The 
intersection of the equipotential curves gives the new location of the nodes. 

We used 9-noded quadrilateral macroelements each of which was divided into four 4-noded 
quadrilateral elements called microelements. In each micro-element the velocity field was 
assumed to be bilinear and pressure constant. The variables corresponding to the centrai node 
were eliminated prior to the assembly of the global stiffness matrix. An artificial viscosity v 
given by [27] 

Y= vr+ Y,, (5.1) 

Ye = h,(coth vi - l/v,)/‘2, (5.2) 

vZ = h,(coth v2 - l/Q/2, (5.3) 

Y, = ti v;h,f’l a, y2 = -\/? v;h,l’/a. (5.4 
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was added to (~/tiZ in equation (2.3). In these equations h, and h, equal, respectively, the 
largest distances in the r and z directions between the midpoints of the sides of a quadrilateral, 
and the superscript c denotes that the quantity is evaluated at the centroid of an element. 
Brooks and Hughes [27] have shown that adding artificial viscosity is equivalent to using the 
Petrov-Galerkin approximation of equations (2.2)-(2.5). 

DISCUSSION OF RESULTS 

Recalling that the governing equations for the velocity field are nonlinear, the solution was 
assumed to have converged when, at each nodal point, the value of the speed computed during 
two successive iterations differed by no more than 5%. The convergence criterion used for the 
free surface F, was that at each node point on F,, Iv * II 15 0.02, and that for I’i 

If; -f:l 5 0.025]1G1+ Kll, (6) 
at each node point on it. These convergence criteria are stronger than the global norms of 
errors sometimes employed. 

Results for different speeds of penetration 

We set 

pp = pt = 7800 kg/m3, uop = 350 MPa, a,, = 114.3 MPa, (7) 

and compute results for v, = 400 m/s, 500 m/s and 600 m/s. The corresponding values of 
(a,,, at;> are (3.57,10.92), (5.57, 17.06), and (8.02,24.57), respectively. Values of v,,, as 
computed from equation (4), with R, - YP = 164.35 MPa, equal 850 m/s, 1041 m/s and 1234 m/s 
for the three values of v, considered herein. Since a; = 3a,, the inertia forces play a more 
dominant role for the target deformations as compared to that for the deformations of the 
penetrator. Figure 2 depicts the shapes of the free surface F, and the target/penetrator 
interface Fi for these three values of v,. In these plots the ordinate is the vertical distance from 
the bottom-most surface CD of the target region studied in order to decipher the vertical 
movement of Fi and I’,. When plotting F,, the horizontal scale has been enlarged enormously to 
magnify the small differences in the shapes of the free surface for the three values of v,. The 

25.0 Free -surface 20.00 

Curvs A, vs - 400m/s 

Curvs 6, v, - 500 m/s 

Curve C, V, - 600 m/s 

23.5 

20.5 

19.0 16.90 

1.000 1.123 1.250 1.375 sl 0.5 1.0 1.5 2.0 

R R 

Fig. 2. Shapes of the free surface of the deformed penettator and the target/penetrator interface for 
three different speeds. 
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shapes of Ti in the vicinity of the stagnation point seem to be independent of v,. A least squares 
fit to the curve for V, = 600 m/s has the equation 

r2 
2. 0612 + 

(2 - 1.05)2 = 1 

1.0s2 . (8) 

It is interesting to note that Tate [28] found the equation of the bottom surface of Ii to be 

2 
(2 - a)2 

(1.1r55a)2+~=1’ 

A possible reason for the difference in the value of the coefficient for the first term is the lower 
value of V, considered here. 

The mean normal tractions at the common interface Ii for the three values of v, are plotted 
in Fig. 3. Also shown in the figure is a least squares fit to the data points (F,, CYJ where F, is the 
non-dimensional axial resisting force experienced by the penetrator; the corresponding 
dimensional force equals (JV&~,,)F,. It was found that the quadratic curve 

F, = 5.323 + 1.101~~~ + 0.031&, 10.92 5 CX~ s 24.57, (9) 

provided a better fit to the computed data than a straight line. Batra and Lin [16] who studied 
the deformations of a rigid/perfectly plastic cylindrical rod upset at the bottom of a rigid cavity 
z = 0.04~~ found F, = -2.2 + 2.155, 1.81 aP 56. In each of these cases, the values of F, 
depend rather noticeably upon CY~ and/or CY~. The normal tractions on Ti increase significantly 
with an increase in v,. The general shapes of these curves especially near the stagnation point 
do not vary, and they are shifted upwards with an increase in v,. For values of the 
non-dimensional arc length exceeding 2, the normal tractions on Ii become exceedingly small. 
At the stagnation point, the normal traction on Ii equals (-azz), and since uniaxial strain 
conditions prevail on the axial line, s,, = (crzz +p) equals (2/3u0) there. For penetrator and 
target particles on the axial line and situated within 2r0 of the stagnation point, computed 
values of Is,, - 2a0/31 were less than 0.02. Since a,, >> a, at the stagnation point, the 
hydrostatic pressure p0 there provides a predominant contribution to a,,. The least squares fit 

25 

20 

T. 
o : 15 

s ._ 
z 
e 
k 10 

5 

0 

Curve A, V,-400m/s 
54 

Curve B, VS - 500 m/s 

A+,++ 
Curve C, V, - 600 m/s 

*+++ 
*+++ 

45 

+i 
+.+ 

36 

1 I 

0.55 1.10 1.65 2 20 

Arc length 

(4 

/ / I 

5 10 15 20 25 

a 

6)) 
Fig. 3. (a) Distribution of the mean normal tractions on the target/penetrator interface for three 
different speeds. (b) Dependence of the axial resisting force experienced by the penetrator upon the 

non-dimensional number cu,. 
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to the data points (pO,, LX,), (pot, o&, have the equations 

pop = (0.1084 + 0.884#~)o*~, 

pot = (4.005 + 0,683cy,)ao,, 

(10.1) 

(10.2) 

for the penetrator and the target respectively. 
Recalling that equations, 

- ,)* + Yp = ; p,v; + R, = -(o;,),, (11) 

proposed by Alekseevskii [3] and Tate [1], where YP and R, equal the resistive pressure terms 
due to the strength of the material, (& is the value of a,, at the stagnation point B, and 
quantities are dimensional, hold on the axial line we can find the values of R, and YP. The 
computed values of R, and YP for the three penetration speeds studied are listed in Table 1. 

Table 1 

400 6.19 1.553 
500 8.46 2.293 
600 10.29 2.89 

We should caution the reader that equations (10.1) and (10.2) were obtained by a least 
squares fit to the data. Substitution from (10.1) and (10.2) into (11) and setting (s~~)~ = 2f300P 
or 2/3a,, may yield values of YP and R, that are slightly different from those listed in the table. 

Results for different ratios of mass densities 

In Fig. 4(a) are plotted the shapes of the free surface of the deformed penetrator and of the 
targetlpenetrator interface for p,/p, = 1.25, 1.0 and 0.75. The ordinate is the vertical distance 
from the bottom surface CD of the target region considered. In these imputations pP was kept 
fixed and v, was set equal to 500 m/s. For p,/p, = 0.75, the bottom portion of the free surface 
is slightly above that for p,lp, = 1.0, and for p,/p,, = 1.25, the bottom part of the free surface 
moves a little below that for p,lp, = 1.0. The curvature of the free surface where the flow turns 
upwards also seems to depend on p,lpP. The stagnation point does not move much when p,/p, 
is changed from 1.00 to 0.75 implying thereby that the thickness of the deforming penetrator 
material between the target/penetrator interface and the free surface of the deformed 
penetrator, especially near the axial line, is larger for p,/p, = 0.75 as compared to that for 
p,/p, = 1.0. When p,/p, is changed from 1.0 to 1.25, both the stagnation point and the bottom 
part of the free surface I, move lower and since the former moves by a larger distance, the 
thickness of the deforming penetrator material between Ii and I’f increases again. The normal 
tractions on I’i, plotted in Fig. 4(b), reveal that the largest normal tractions occur for 
p,/p, = 1.25 and least for p,lp, = 0.75 and the change seems to depend continuously upon 
pJpP. Thus, for the same penetrator material, the pressure at the stagnation point will increase 
with an increase in the mass density of the target; and for a given target, higher density 
penetrators would result in smaller values of the pressure at the stagnation point. 

Values of R, and YP, computed by using equation (II) and v, = 600 m/s, for different values 
of p,/p, are listed in Table 2. 

We note that Pidsley [4] found for p,/p, = 0.313, R, = 2.4(a,)t and Y, = -0.7(aH)p. For 

many materials the Hugoniot elastic limit equals approximately 1.6 times the yield strength in a 
quasistatic simple compression test [ 11. 

Results for a fixed value of v, 

The ~ntou~ of the non-dimensional hydrostatic pressure for v, = 600 m/s are shown in Fig. 
5. These values ought to be multipled by 8.02 and 24.57 for the penetrator and target to obtain 
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4(a). Shapes of the free surfaces of the deformed penetrator and the target/penetrator interface 
for three different values of p&p,. 
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Fig. d(b). Distribution of mean normal tractions on the target/penetrator interface for three different 
v&ues of p,/p,. Curve A, p,lp, = 1.25; Curve B, P,/P, = 1-O; Curve C, P,/Pp =o.% 

Table 2 

0.75 7.618 1.963 
1.0 a.46 2.293 
1.25 9.49 2.63 
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values of p as a multiple of corresponding Go,. Thus pmax equals 7.30,~ in the penetrator and 
20.8~~~ in the target for CY,, = 8.02 and a; = 24.57. We note that for the hemispherical nosed 
rigid penetrator and a rigid/perfectly plastic target Batra and Wright [13] computed pmax to be 
8.0~~~~ for cr, = 6.15 and Batra and Lin [19] found p,,_ = 3uoP for aP = 5.1 for a rigid/perfectly 
plastic cylind~cal rod striking a rigid cavity. The variation of the hydrostatic pressure on the 
axial line, also depicted in Fig. 5, reveals that the pressure decays quickly in the penetrator and 
rather slowly in the target as we move away from the stagnation point. The distributions of I in 
the deforming penetrator and target regions are shown in Fig. 6. Also plotted in this figure is 
the variation of I on the axial line. These plots reveal that significant defo~ations of the 
penetrator occur within the hemispherical region of radius nearly 2.0 and centered at the 
stagnation point. The values of Z near the stagnation point are quite high in the penetrator and 
target regions. As for the values of p, the value of Z on the axial line also drops quickly in the 
penetrator and slowly in the target as we move away from the stagnation point. 

In order to see whether or not sharp gradients of Z occur across the target/penetrator 
interface Ii, we have plotted in Fig. 7 the variation of Z along three arbitrarily selected lines 
LN, PQ and Z-3. The abscissa in these figures is the distance from I”i of a point along the line 
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Fig. 5. Contours of non~en~on~ hydrostatic pressure for v, = 600 m/s. 
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I 1.0 

Scale Penetrotor 

point 

Fig. 6. Distribution of the secand-invariant of the strain-rate tensor in the deforming penetratot and 
target regions and also on the axial line far v, = 600 m/s. 

~~nsid~~~d. In each case I is d~s~~nt~n~o~s across ri. On line L&f, I for the target particle 
abutting ri is higher than that far the corresponding penetrator particle but the czpposite holds 
for points on lines PQ and PS. For points on PQ and PA', slurp gradients of I develop in the 
penetrator region whereas for points on L&f, I varies sharply for points on the target side. The 
value of f at point f where the penetrator particles undergo a change in the flow direction is 
considerably higher than that for the penetrator particles on Iine PQ and P.S. Since the 
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Fig. 7. Variation of the second invariant of the strain-rate tensor on three arbitrary selected lines for 
u, = 500 m/s. 

tangential velocity of target and penetrator particles abutting Ii are nearly the same, for normal 
tractions to be continuous across Ii, normal derivatives of v on Ii must be discontinuous if 
target and penetrator particles are made of different materials. This provides a justification for 
the jump in the value of Z as one crosses Ii* Recalling that the hydrostatic pressure contributes 
significantly to the normal tractions, it is not necessary that Z be sharply discontinuous across Ii 
for the normal tractions on the two sides of Ii to match with each other. 

Histories of field variables 
An outstanding problem in mechanics is the choice of the most appropriate constitutive 

model for the problem at hand. In general, the solution of a boundary-value problem depends 
strongly upon the constitutive model used. In order to determine which one of the many 
recently proposed theories [20-231 of large deformation elastoplasticity is suitable for a 
penetration problem, we compute histories of the hydrostatic pressure, second invariant of the 
strain-rate tensor and the spin for four penetrator and two target particles. These results should 
also help identify desirable testing regimes for practical problems. 

The first step in finding the histories of a field variable is to plot the streamlines. Streamlines 
for four penetrator particles that once occupied the places A(O.lO, 5.88) B(0.15, 5.88), 
C(O.90, 5.88) and D(O.95,5.88), and two target particles sometime situated at E(O.10, -3.12) 
and F(0.15, -3.12) are shown in Fig. 8. That the streamlines do not intersect or merge 
together is clear from the blow up of the region enclosed in the box. In the discussion below we 
refer to the material particle that once occupied the place A as the material particle A. 

Histories of field variables for penetrator particles. Figure 9 shows, for v, = 500 m/s, (r, z) 
coordinates of the four penetrator particles at different non-dimensional times; the time being 
reckoned from the instant these particles occupied the aforestated places, and the non- 
dimensional time equals the physical time multiplied by (v,/rO). The variation of the radial and 
axial components of the velocity of these particles is plotted in Fig. 10. Particles A and B, 
initially near the axial line, arrive in the vicinity of the stagnation point at time t = 5 when their 
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Fig. 8. Streamlines for four penetrator and two target particles for u, = 500 m/s. 

axial velocity relative to that of the stagnation point becomes zero. The radial velocity of these 
particles gradually increases, becomes maximum just before they begin turning upwards at 
f = 6.5 and then decreases to zero quite rapidly. Material particles C and D that were initially 
close to the free surface of the penetrator approach near their bottom-most positions at t = 2.6. 
Their radial velocity stays zero till they are close to their lowest positions, increases sharply and 
then decreases to zero equally rapidly too. In Fig. 11, we have plotted histories of the second 
invariant Z of the strain-rate tensor and of the plastic spin. Because the deformations are 
axisymmetric, there is only one non-zero component of total spin which equals the plastic spin 
since elastic deformations have been neglected. The peak values of Z and the plastic spin for 
material particles C and D are very large as compared to those for material particles A and B. 
For particles C and D, the magnitude of the plastic spin is either comparable or slightly larger 
than the value of I, and the peak values of Z and the plastic spin occur at almost the same 
instant. For these particles, Z and the plastic spin increase or decrease in tandem. Peak values 
of Z at particles A and B occur after their axial component of velocity has changed sign, i.e. 
they are moving upwards as observed from the stagnation point. Whereas Z for these particles 
increases quite rapidly and stays large for an extended period of time, the magnitude of the 
plastic spin for them increases slowly at tirst and once these particles are close to the stagnation 
point, the spin increases rapidly, and subsequently drops to zero at even a faster rate. The 
histories of the non-dimensional hydrostatic pressure shown in Fig. 12 reveal that for material 
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penetrator particles. 

particles A and B, prnax is very large as compared to that for particles C and D. This is because 
particles C and D are close to the traction free surface of the penetrator. 

Histories of field variables for target particles. Figure 13 depicts the r- and z-coordinates and 
the radial and axial components of the velocity of the two target particles E and F at different 
times. As these particles approach the stagnation point t = 0 at t = 7, their radial velocity begins 
to increase sharply, becomes maximum at t = 7.5 and 6.5, respectively, for E and F, then 
rapidly decreases to zero. Their axial velocity relative to that of the stagnation point exhibits 
the reverse trend, i.e. it decreases to zero at t 3 4.5 and then increases gradually, the rates of 
decrease and increase of the axial velocity are nearly the same. The histories of the second 
invariant of the strain-rate tensor and the plastic spin for these two particles are exhibited in 
Fig. 14. Even though the values of Z for these particles gradually increase till t = 5, their plastic 
spin stays zero. At about t = 5, both the values of Z and of the plastic spin increase rapidly. The 
peak values of the plastic spin for these particles equal nearly twice the peak values of Z for 
them. The plastic spin decreases to zero much faster than 1. The history of the non-dimensional 
hydrostatic pressure for these particles is shown in Fig. 12. Peak values, equal to 14.2uot, of the 
hydrostatic pressure at these particles occur when they are close to the stagnation point. Once 
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these particles leave the area surrounding the stagnation point, the hydrostatic pressure 
decreases rather rapidly to zero. 

CONCLUSIONS 

We have studied the penetration of a ~gid/perfectly plastic rod penetrating into a thick 
rigid/perfectly plastic target when the deformations of both as seen by an observer situated at 
the stagnation point and moving with it are steady. It is found that the shape of the common 
interface near the stagnation point is ellipsoidal, and significant deformations of the penetrator 
occur in the hemispherical region of radius 2~ centered at the stagnation point; r, being equal 
to the radius of the undeformed cylindrical portion of the rod. The axial resisting force 
experienced by the penetrator and the hydrostatic pressure near the stagnation point depend 
strongly upon the non-dimensional parameter 1y = pv~/oO where p is the mass density, V, the 
speed of the stagnation point and a0 is the yield stress of the material in a quasistatic simple 
compression test. For the three speeds considered, the crater radius was found to vary from 
1.75ro to l.92ro. The values of the resistive strength parameters introduced by Tate [2] and 
Alekseevskii [3] depend upon the penetration speed V, and also on ratio p,lp, of the mass 
densities. The peak values of the plastic spin experienced by a penetrator or a target particle 
either equal or exceed the peak values of the second invariant Z of the strain-rate tensor for it. 
Thus, plasticity theories which properly account for the evolution of the high plastic spin and 
deformation induced anisotropy ought to be employed in the study of penetration problems. 
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