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Ah&act-Steady state thermomechanical deformations of a thick viscoplastic target being penetrated 
by a fast moving long rigid cylindrical penetrator are analysed by the finite element method. Two 
different constitutive relations, the Bodner-Partom flow rule, and the Litonski-Batra flow rule, are 
used to model the viscoplastic response of the material. The two flow rules are calibrated to give 
essentially similar shear stress-shear strain curves during the overall adiabatic simple shearing 
deformations of a block deformed at an average strain-rate of 3300 s-l. For the Bodner-Partom flow 
rule, the effect on target deformations of the penetrator nose shape, penetrator speed, and the 
variation in the values of material parameters of the target is also studied. 

1. INTRODUCTION 

Given the penetrator and target geometries, materials, target support conditions, penetrator 
speed, and the angle of attack, one would like to find out whether or not the target will be 
perforated, and if yes, the speed of the penetrator when it comes out of the target. If not, the 
shape and size of the hole made in the target is of interest. A complete analysis of this problem 
within reasonable resources is still not possible. There have been numerous attempts made to 
analyze simplified versions of the problem. Backman and Goldsmith [l] have reviewed the 
open literature on ballistic penetration till 1977. It describes various physical mechanisms 
involved in the penetration and perforation processes, and also discusses many engineering 
models. Other review articles and books include those by Wright and Frank [2], Anderson and 
Bodner [3], Zukas et al. [4], Blazynski [5], and Macauley [6]. Ravid and Bodner [7], Ravid et 

al. [8], and Forrestal et al. [9] have proposed engineering models of varying complexity. 
When a fast moving long rod strikes a very thick target, the deformations of the two appear 

to be steady to an observer situated at the stagnation point and moving with it after the rod has 
penetrated into the target a few rod diameters. This steady state lasts until the stagnation point 
reaches close to the other end of the target. For very high striking speeds, the steady 
deformations of the target and the penetrator can be assumed to be governed by purely 
hydrodynamic incompressible flow processes. Tate [lo, 111 and Alekseevskii [12] modified this 
model by incorporating the effects of material strengths of the target and the projectile. These 
were assumed to equal some multiple of the uniaxial yield stress of the respective materials, but 
the multiplying factor was unspecified. Tate [13, 141, Pidsley [15], Batra and Gobinath [16], and 
Batra and Chen [17] have estimated these multiplying factors. Whereas Tate used a solenoidal 
fluid flow model to simulate the steady state penetration process, the other investigations relied 
on a numerical solution of the problem. 

One of the unresolved issues in penetration mechanics is the choice of the most appropriate 
constitutive relation for the penetrator and target materials. In order to assess the effect of the 
constitutive models used for the target material, we presume herein that the penetrator is rigid 
and use two different constitutive relations for the target material. The two constitutive 

relations give virtually the same shear stress-shear strain curves during the numerical 
simulation of overall adiabatic simple shearing of a viscoplastic block deformed at an average 
strain-rate of 3300 s-l. For the Bodner-Partom flow rule [18], the effect of varying the 
penetrator nose shape, the penetration speed, and the values of material parameters on the 
deformations of the target has also been explored. A similar study for the Litonski-Batra flow 
rule has already been conducted by Batra [19]. 
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2. FORMULATION OF THE PROBLEM 

We use a cylindrical coordinate system, with origin at the center of the penetrator nose and 
moving with it at a uniform speed u. and positive z-axis pointing into the target. Equations 
governing the thermomechanical deformations of the target are: 

div v = 0, (2.1) 

div u = p(v * grad)v, (2.2) 

-div q + tr(oD) = p(v - grad)U, (2.3) 

D = (grad v + (grad v)z)/2. (2.4) 

Equations (2.1)-(2.3), written in the Eulerian description of motion, express, respectively, 
the balance of mass, balance of linear momentum, and the balance of internal energy. Here we 
have neglected elastic deformations of the target, and assumed that plastic deformations are 
isochoric and all of the plastic working, rather than 90-95% of it as asserted by Farren and 
Taylor [20] is converted into heating. The operators grad and div denote the gradient and 
divergence operators on fields defined in the present configuration. Furthermore, o is the 
Cauchy stress tensor, p the mass density of the target material, v the velocity of the target 
particle relative to the penetrator, q the heat flux per unit present area, D the strain-rate 
tensor, and U the specific internal energy. We need to specify constitutive relations and 
boundary conditions in order to complete the formulation of the problem. 

For the target material, we assume that 

q = -k grad 8, (2.5) 

u=ce (2.6) 
and either the Litonski-Batra flow rule [19] 

u = -pl+ 2p(1, 8, I,!J)D, 

~CL(I, 0, w) =& - (1 + bz)e(l - ve)(i + w/T+Q~)~, 

tr(oD) = uo$(l + I/.J/W~)~, 

(2.7) 

(2.8) 

(2.9) 

1* = t tr(D*), 

or the Bodner-Partom flow rule [18] 

s=(z2/(fiZ[$ln(Do/1)]1’2~))D, s=o+pl 

(2.10) 

(2.11) 

pa 
T’ 

z2 = z1 + (2, - z,)exp(-mW/z,), (2.12) 

I@ = tr(oD) = tr(sD). (2.13) 

Equation (2.5) is the Fourier law of heat conduction, k the constant thermal conductivity, 8 is 
the change in the temperature of a material particle from that in the undeformed configuration, 
c the constant specific heat, p the hydrostatic pressure not determined by the deformation 
history, and a0 is the yield stress in a quasistatic simple tension or compression test. The 
constitutive relation (2.7) was proposed by Batra [19]. It incorporates and generalizes that 
suggested by Litonski [21] for simple shearing deformations. Batra and his coworkers 
[19,22-241 have used it to study thermomechanical penetration problems, and the initiation 
and growth of shear bands in viscoplastic materials. In equations (2.7) and (2.8), the material 
parameters b and e characterize the strain-rate sensitivity of the material, Y describes its 
thermal softening, and v0 and q the strain hardening of the material. Equation (2.9) states that 
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the rate of increase of $J at a material point is proportional to the plastic working there. Thus, 
the present value of 1~ depends upon the history of the deformation. The linear dependence of 
the flow stress upon the temperature rise has been used by Tate [25] in the analysis of a 
penetration problem, and has been observed by Bell [26], Lin and Wagoner [27], and 
Lindholm and Johnson [28]. Z* defined by equation (2.10) equals the second-invariant of the 
strain-rate tensor, since the deformations are taken to be isochoric. Should the temperature 
rise at a material point exceed l/v so as to make p negative, we set p= 0. Thus, the material 
point will behave like an incompressible fluid. However, no account is taken of the latent heat 
needed for the phase transformation to occur. 

In equations (2.11)-(2.13), s is the deviatoric stress tensor, T the absolute temperature of a 
material particle, W the plastic work done, and z2 may be considered as an internal variable 
whose present value at a material point depends upon the density of the plastic work done at 
that point. D,, is the limiting value of the plastic strain-rate, and is usually assigned a large 
value. Besides Do, we need to specify a, z 1, z3, and m to characterize the material. We identify 
the parameter a with the melting temperature of the material, and once T equals a, we set 
s = 0, analogous to what we did for the Litonski-Batra flow rule. 

We note that there is no loading or explicit yield surface assumed with either (2,7) or (2.11). 
The limiting value of S, = (l/2 tr s*)l’* as I approaches zero is oO/ti for the Litonski-Batra law, 
and is zero for the Bodner-Partom law. 

Rewriting equation (2.7) as 

u = -(j + pKtI)l+ 2p(Z, 8, w)D, (2.14) 

where /3 and K equal, respectively, the coefficient of thermal expansion and the bulk modulus 
of the material, we see that equation (2.7) embodies implicitly thermal stresses caused by the 
nonuniform temperature rise at different material particles. However, the change in the mass 
density due to temperature rise of a material particle is not considered. In equation (2.14), p’ is 
not determined by the deformation history of a material particle, and the addition of a 
determinate term to it gives rise to p in equation (2.7), which is taken to be an independent 
variable throughout this work. 

We introduce non-dimensional variables, indicated below by a superimposed bar, as follows: 

0 = a/u,, p =ploo, t = v/vO, F = r/ro, 

2 = z/q), e = e/e@ i; = T/T,, 6 = bv,/r,, 

9 = Yea, a = pv;/ao, i = ~l(pcvoro), To = &, + 273, 

e. = I, s = s/u,, 22 = ~*/~oo, fl = Z,/%, 

4 = z3/uo, w = w/u,, Do = @dro, ii = a/t&, 

Ii = h/(V@C). (2.15) 

Here r. is the radius of the cylindrical part of the penetrator and the heat transfer coefficient h 
appears in the boundary condition (2.25) below. Substituting from equations (2.5) and (2.6) 
into equation (2.3), rewriting it and equations (2.1), (2.2), (2.4), and the constitutive relations 
(2.7) and (2.11) in terms of non-dimensional variables, and dropping the superimposed bars, 
we arrive at the following set of equations. 

div v = 0, (2.16) 

div v = (u(v - grad)v, (2.17) 

tr(aD) + k div(grad 6) = (v - grad)& (2.18) 

where either 

u= -pl+$z - (1+ bZ)'(l - ve)(i + W/W~)~D, (2.19) 

tr(oD) 

(1+ w/w0)q 
= (v * grad) W, (2.20) 
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Of 

u= -pl+ (z*/(v3+$ln(D”,1)]“2n))D, (2.21) 

tr (oD) = (v - grad)W, 

and II, and z2 are given by expressions (2.12). 

(2.22) 

We assume that the target/penetrator interface is smooth, and impose on it the following 
boundary conditions. 

t~(m)=o, (2.23) 

v-n=O, (2.24) 

q. n = h(8 - f3,), (2.25) 

where h is the heat transfer coefficient between the penetrator and the target, 8, is an average 
temperature of the penetrator, and n and t are, respectively, a unit normal and a unit tangent 
vector to the surface. Equation (2.25) accounts approximately for the heat exchange between 
the penetrator and the target. At points far away from the penetrator 

Iv+el+O, e-to, lJj+o, IV-+ 0 as (r2 + ~~)r’~+ m, z > -00, (2.26) 

lOnl-+O, lg.d-0, V-+0, W-0 as z+--m, r 2 r,, (2.27) 

where e is a unit vector along the positive z-axis. The boundary condition (2.26) implies that 
target particles at a large distance from the penetrator appear to be moving at a uniform 
velocity with respect to it, and experience no change in their temperature. Equation (2.27) 
states that when target particles have moved far to the rear of the penetrator, the surface 
tractions and heat flux on them vanish. Recalling the constitutive relations (2.7) and (2.11), we 
see that the vanishing of surface tractions at far away points does not imply that the pressure 
there vanishes. Ideally, one should specify the rate of decay of quantities in equations (2.26) 
and (2.27). However, at this time, there is no hope of proving an existence or uniqueness 
theorem for an analytical solution of the stated problem. We, therefore, gloss over this rather 
difficult issue. Herein we assume that the aforestated problem has a solution and seek its 
approximation by the finite element method. 

3. COMPUTATIONAL CONSIDERATIONS 

Unless one uses special infinite elements, a numerical solution of the problem necessitates 
that we consider a finite region. Since the target deformations are assumed to be axisymmetric, 
only the deformations of the target region R shown in Fig. 1 are studied, and the boundary 
conditions (2.26) and (2.27) at the far surfaces are replaced by the following conditions (3.1) 
and (3.3) on the boundary surfaces of the finite region being analyzed. 

v, =o, 
ae 

CJ 0, LZ = -0 az- 
on the surface AB, (3.1) 

de 
a,, =o, v, = 0, -0 Tr- on the axis of symmetry DE, (3.2) 

21, = 0, v, = -1.0, I3 = 0, w =O, w=o on the boundary surface EFA. (3.3) 

Conditions (3.2) follow from the assumed symmetry of deformations. The validity of replacing 
(2.26) by (3.3), and (2.27) by (3.1), and the accuracy of the computed results depend upon the 
size of the region R. Keeping DE fixed, we increased the distance BC until the change in the 
values of solution variables such as the pressure p, velocity v, and tempeature 8 at points in the 
vicinity of the target/penetrator interface was less than 0.1%. Then, BC was kept fixed and the 
size of DE was increased to attain convergence of the solution variables at points adjoining the 
target-penetrator interface. The region so obtained and its finite element discretization 
depicted in Fig. 1 were used to compute all of the results presented and discussed below. The 
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25.7 rc 

Fig. 1. The finite region studied and its discretization. 
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finite element mesh is very fine in darker regions. The size of the region considered herein is 
considerably more than that studied by Batra [19]. An increase in the distance DE resulted in a 
decrease in the axial resisting force experienced by the penetrator, but an increase in the 
distance BE increased the axial resisting force acting on the penetrator. 

The finite element code developed by Batra [19] to solve for target deformations when its 
material is modeled by constitutive relation (2.19) was modified to include the Bodner-Partom 
flow rule (2.21). A weak formulation of the problem and an iterative technique to solve the 
nonlinear system of equations is also given in [19]. Whereas Batra [19] used six-noded 
triangular elements, here we use 9-noded quadrilateral elements to approximate the fields of v, 
8, and v within an element. The hydrostatic pressure p is assumed to be bilinear on each 
quadrilateral element, and is defined in terms of its values at the four corner nodes. Batra [29] 
has shown that when a problem similar to the one being studied here is analyzed by using 
identical nodal locations but either 6-noded triangular or 9-noded quadrilateral elements, the 
two sets of results are identical, except that the quadrilateral elements give smoother fields. In 
either case, no posteriori smoothing technique was applied to the computed values of the nodal 
pressures. In the results presented below, as well as in [19], the solution of the nonlinear 
system of equations was assumed to have converged, if at each nodal point the norm of the 
increments in u,, u,, and 0 differed by less than 2% of the norm of v,, II,, and 8. Here 21, and 
2r, equal, respectively, the r- and z-components of the velocity of a point relative to an 
observer situated at the stagnation point and moving with it. 

4. NUMERICAL RESULTS 

4.1 Comparison of predictions from the two constitutive relations 

We note that experimental data for the range of deformations expected to occur in the 
penetration problem under study is not available in the open literature. Batra and Kim [30] 
determined values of material parameters appearing in the two constitutive relations by 
ensuring that the computed shear stress-shear strain curve during overall adiabatic simple 
shearing deformations of a viscoplastic block deformed at an average strain-rate of 3300 s-l 
matched well with the experimental curve of Marchand and Duffy [31] for a HY-100 structural 
steel. We use those values, and list them below. 

(a) Values same for both constitutive laws 

p = 7860 kg/m3, a, = 405 MPa, c = 473 J/kg “C, 

K = 50 W/m “C, h = 20 W/m2 “C, 6, = 0, r. = 2.54 mm. 

(b) Litonski-Batra flow rule 

v = 6.55 x 10-4/“C, qo = 0.012, q = 0.054, e = 0.01872, 

b = lo4 s. 

(c) Bodner-Partom flow rule 

a = 18OO”K, z1 = 3.778, z3 = 3.185, m = 2.5, 

Do = 3.3 x lo6 s-l. 

Thus, the reference temperature f30 used to non-dimensionalize the temperature rise equals 
108.9”C. 

Figure 2 depicts the distribution of the normal stress, temperature rise, tangential speed, and 
I on the nose surface when the penetrator nose is hemispherical and (Y = 4.5. In these plots, the 
values of the normal stress and the temperature rise have been divided by ten, in order for the 
curves to fit on the same graph. The values of the tangential speed and the strain-rate measure 
I as computed with the two constitutive relations come out to be very close to each other. The 
two temperature distributions agree qualitatively, and seem to differ by essentially a constant 
value. At first glance it seems that this difference is due to the different scales of temperature in 
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Bodner-Partom 

________--.------. Litonski-Batra 

Normal stress 

Strain-rate measure 

Temperature rise 

Tangential speed 

10 20 30 40 50 60 70 60 90 

Angle ( e) 

Fig. 2. Comparison of the variation of I, normal stress, tangential speed, and the temperature rise at 
target particles abutting the penetrator nose surface for the two constitutive relations. 

the two constitutive relations. However, this was not found to be the case. Both constitutive 
relations predict sharply higher values of the temperature rise at target particles near the 
stagnation point. A possible explanation for this is that, at the stagnation point a considerable 
amount of heat is generated, but little is conducted away due to the low value of the thermal 
conductivity, and the heat loss due to convection is also very small because of the relatively 
small values of the speed of the particles surrounding the stagnation point. As one moves away 
from the stagnation point, heat loss due to convection increases because of the increased speed 
of target particles. The distribution of the normal stress on the penetrator/target interface as 
computed by the two constitutive relations also agrees qualitatively. However, the two normal 
stress distributions differ quantitatively, mainly because of the difference in the values of the 
hydrostatic pressure as computed by the two constitutive relations. For example, the peak 
pressure at or near the stagnation point equalled 18.71 and 30.16, respectively, for the 
Litonski-Batra and the Bodner-Partom flow rules. Because of the differences in the values of 
the deviatoric stress tensor s and the strain-rate measure Z as computed by the two constitutive 
relations, the rate of energy dissipated due to plastic working and hence, the resulting 
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temperature distribution is different in the two cases. We note that the two constitutive 
relations are calibrated to give identical response in overall adiabatic simple shearing 
deformations of a viscoplastic block deformed at an average strain-rate of 3300 s-l. The state of 
deformations at a target particle need not correspond to that of simple shearing. Also, the 
calibration procedure involves solving a nonlinear initial-boundary-value problem whose 
solution may be non-unique. Thus, two different sets of values of material parameters may give 
the same shear stress-shear strain curve. The axial resisting force equalled 15.24 and 25.19, 
respectively, for the Litonski-Batra flow rule and the Bodner-Partom flow rule. 

Figure 3 shows the distribution of (-a==), Z, 8, and (-v,) on the axial line as computed 
by using the two constitutive relations. Whereas the two sets of values of I and u, are very close 
to each other, those of 8 and a,, agree qualitatively. These do indicate that significant 
deformations occur at target points whose distance from the target/penetrator interface is less 
than one penetrator diameter. The values of (I, 0) at the stagnation point are found to be 
(2.09,7.35) and (2.14,13.58) for the Litonski-Batra and Bodner-Partom flow rules, respec- 
tively. Thus, for the Bodner-Pat-tom law, the temperature at the stagnation point almost 
equalled the presumed melting temperature of 1800°K. 

4 
r 

--.. 
---._._ --.. -... -... ---._.. -----__.__ .__________ Litonski-Batra 

----...____ -----SW_____ 
-----*---- ---_... !:“.::!.__________ 

. . . . 

Axial velocity 

0 1 2 3 

Distance from the nose tip 

Fig. 3. Comparison of the variation of (-a,,), I, 0, and (-II,) on the axial line for the two 
constitutive relations. 
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4.2 Results for the Bodner-Partom flow rule 

We now study the effect of different material parameters in the Bodner-Par-tom law on the 
deformations of the target. This will elucidate the relative importance of various material 
parameters and hence help design experiments for the precise determination of more critical 
ones. Since we are interested in the parameteric study, the values of different parameters used 
is of less significance. The range of values of material parameters considered herein is probably 
more than that likely to be encountered for any real material. We have assigned the following 
values to various non-dimensional material and geometric parameters. 

Do=6, 2, = 1.505, z, = 1.236, m = 5, r, = 1.0, fX=2.1 (4.1) 

Except when studying the effect of changes in the melting temperature a of the material, it was 
set equal to 1200°K. The variables that are assigned values different from those given above are 
so indicated in the figures, along with their new values. In (4.1), 2r, equals the length of the 
principal axis of the ellipsoidal nose in the z-direction. 

In Fig. 4, we have plotted the variation of the normal stress, strain rate measure I, the 
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/ I I I I I I I I I 
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Angle ( 0) 
Fig. 4. Variation of I, normal stress, the tangential speed, and the temperature rise at target particles 

adjoining the penetrator nose surface for different values of (Y. 
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tangential speed, and the temperature rise on the penetrator/target interface for four different 
values of (Y. Note that these variables are multipled by different numbers so that the same 
vertical scale could be used. As expected, the normal stress on the target/penetrator interface 
increases with an increase in the value of CY. However, for every value of (Y considered, it does 
drop off quite rapidly near the periphery of the penetrator nose, and seems to be independent 
of cr at the point for which the angle 8 = 70”. A similar behavior at 8 = 45” was observed by 
Batra [19] for the Litonski-Batra flow rule. The values of I for 0 s 40” and 8 170” increase 
with an increase in the value of CX, but at many points for which 40” < 8 < 70”, they exhibit the 
opposite trend. As the penetration speed v. is varied, the dimensional values of I change more 
than the non-dimensional ones, since the latter need to be multipled by volro to obtain the 
former. The same is true about the tangential speed on the target/penetrator interface. 
However, with an increase in the value of cr, the tangential speed increases at points on the 
target/penetrator interface that are near the axial line, but decreases at points near the 
nose periphery. It would appear from the distributions of the normal stress and I on the 
penetrator/target interface that the temperature rise at target particles abutting the penetrator 
nose should increase with an increase in the value of (Y. However, the temperature rise at the 
nose surface decreases with an increase in the penetration speed, because at higher speeds, the 

14 

13 

0 1 2 3 4 5 6 7 6 9 10 11 12 13 

m/10, D,/5, al 500, a 

Fig. 5. Dependence of the axial resisting force upon various parameters 
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heat loss due to convection increases significantly. A similar trend in the temperature 
distribution was computed by Batra [19] with the Litonski-Batra flow rule. 

The axial resisting force F is given by 

I 
nn 

F=2 (n-an) 
cos # sin 8[sin* 8 + (llr,)4cos2 O]ln de 

[sin* 8 + (l/r,)*COS* (31” 
9 

0 

cos 4 = 
z/2 

[r* -t- (Zlr:)2]‘n ’ 

(4.2) 

(4.3) 

where the angle 0 is defined in Fig. 1, and (r, z) are the coordinates of a point on the 
penetrator/target interface. The corresponding axial force in physical units is given by 
(m&t~,)F. We note that the expression given by Batra [19] for the axial force, except for the 
hemispherical nose shape, is in error. The dependence of the axial force upon CY is exhibted in 
Fig. 5; the axial force depends upon LY rather weakly, and the relation between the two is 

1 2 3 

Distance from the nose tip 

Fig. 6. Dependence of the temperature rise, I, a,,, and u, at target particles on the axial line upon (Y. 

ES 29:11-E 
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nearly affine. Because of the increase in F with CY, for the same initial kinetic energies of 
penetrators, those moving at higher speeds will give lower values of the penetration depth. 

The variation of the temperature rise 0, I, a,,, and u, along the axial line for the four 
different values of cy considered is shown in Fig. 6. These plots vividly reveal that severe 
deformations of the target occur in the vicinity of the target/penetrator interface. The values of 
Z and 8 drop to zero rather quickly, and stay at zero for z 2 2.0. This ensures the adequacy of 
the region considered. The values of a,, decay slowly, mainly because the hydrostatic pressure 
which contributes noticeably to a,, drops off slowly. 

Figure 7 depicts the distribution of the tangential speed, normal stress, temperature rise, and 
I on the target/penetrator interface for several values of m. For larger values of m, the value of 
z2 appraches the saturation value z1 for smaller values of the plastic work density W. At a target 
particle abutting the penetrator nose, the values of the normal stress and the temperature rise 
increase monotonically with an increase in the value of ~lt, those of I do not show any definite 
trend. The values of the tangential speed do not change that much when m is varied. The 

in-rate measure 

Fig. 7. Effect of m on the normal 

40 50 

Angle ( e) 

tempeature rise, and 
nose surface. 

I at target particles on the penetrator 

60 
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distributions of the normal stress and the temperature rise are affected very little when m is 
increased from 100 to 600. 

The effect of changing the non-dimensional value of DO on the distribution of the normal 
stress, temperature rise 8, the tangential speed, and Z on target particles adjoining the 
hemispherical penetrator nose is shown in Fig. 8. The values of the normal stress and Z increase 
with an increase in the value of DO. Recall that DO defines the limiting value of 1. The peak 
values of Z at a target particle located near the stagnation point keep on increasing with DO, 
albeit slowly; those of the normal stress increase even more slowly. For none of the values of 
DO considered, does the computed peak value of Z equal DO. The values of 8 decrease with an 
increase in DO, possibly because of the increase in the rate of heat loss due to convection. The 
values of the tangential speed change very little with DO. The axial resisting force experienced 
by the penetrator, plotted in Fig. 5, first increases with DO, and then levels off. 

Figure 9 depicts the effect of varying the value of a upon the distribution of the normal 
stress, strain rate measure Z, temperature rise 8, and the tangential speed at target particles 

r 
n-rate measure 

Normal StreSS 

40 50 60 70 

Angle ( 0) 

Fig. 8. Effect of D,, on the normal stress, temperature rise, and I at target particles on the penetrator 
nose surface. 
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2200°K 
--------- 

/ ------------ 
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Normal stress 

Temperature rise 
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Fig. 9. Effect of a on the normal stress, temperature rise, and I at target particles on the penetrator 
nose surface. 

adjacent to the penetrator nose surface. Whereas both the normal stress and Z increase with an 
increase in the value of a, the temperature rise at a point does not show any clear trend. The 
values of the tangential speed seem to be unaffected by the value of a. Higher values of a imply 
that the material will thermally soften less for the same temperature rise. Consequently, it will 
offer more resistance to penetration as suggested by the larger values of the normal force acting 
on the target/penetrator interface. The axial resisting force experienced by the penetrator 
keeps on increasing with u, but the rate of increase drops off at larger values of a. 

The distribution of the normal stress, strain-rate measure Z, and the tangential speed at 
target particles abutting the penetrator nose surface for three different nose shapes, i.e. 
rJro= 2.0, 1.0, and 0.5, is plotted in Fig. 10. The curves representing the normal stress 
distribution when r,/ro = 2.0 and 1.0 have curvature of opposite signs. For the penetrator nose 
shape with m/r,, = 0.5, the normal stress changes very little over the region 10” s 8 5 45”. At 
any particular location on the penetrator nose surface, the tangential speed decreases with a 
decrease in the value of r,Jr,,. For the long tapered nosed penetrator, the strain-rate measure Z 
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Fig. 10. Effect of nose shape on the normal stress, strain-rate measure Z, and the tangential speed at 
target particles on the penetrator nose surface. 

90 

assumes its peak value at a target particle near the stagnation point. For a somewhat blunt 
nosed penetrator, the strain-rate measure Z stays constant over most of the penetrator nose 
surface, and increases near the nose periphery. We recall that the results [19] computed with 
the Litonski-Batra flow rule agree qualitatively with the ones given in Fig. 10. For the 
Bodner-Partom flow rule, the convergence of the solution for the case when m/r0 = 0.2 
necessitated an increase in the value of Do, presumably because the peak value of I near the 
nose periphery approached D,, and the term ln(D,JZ) in the denominator of the right-hand side 
of equation (2.21) became negative, and the denominator in equation (2.21) could not be 
evaluated. Thus, results for this case are not included herein. One way to get around this 
problem is to increase Do. Results plotted in Fig. 11 reveal that at target particles on the axial 
line, the rate of decrease of (-a,,) and Z with the distance from the penetrator nose tip 
becomes less as the value of t-,/r,, is decreased. For the somewhat blunt nosed penetrator 
@Jr,,= OS), the target particles deform less severely, but more of the target material is 
deformed as compared to that for the long tapered nosed penetrator. 
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Fig. 11. Distribution of (-a,,), I, and the axial speed at target particles on the axial line for three 
different nose shapes. 

The axial resisting force acting on the penetrator increases sharply as m/r0 is decreased from 
2.0 to 0.5; this is plotted in Fig. 5. Figure 12 depicts the variation of the axial speed of the 
target material flowing rearward and instantaneously lying on the planes z = 0 and z = - 1.0. 
It is clear that the target material adjacent to the sides of the penetrator appears to extrude rear- 
ward as a uniform block that is separated from the bulk of the stationary target by a relatively 
narrow region with a sharp velocity gradient. This calculation of backward extrusion of a uniform 
block provides a partial justification to the velocity field assumed by Ravid and Bodner [7] in 
their work involving penetration of targets of finite thickness. There is no experimental data 
available in the open literature that proves or disproves the validity of results presented herein. 

5. CONCLUSIONS 

We have studied thermomechanical deformations of a thick viscoplastic target being 
penetrated by a long rigid cylindrical penetrator. Results computed when the target material is 



Steady state penetration of themoviscoplastic targets 

-1.00 

-1.01 

-1.02 

-1.03 

u -1.04 

iz 
:: 

E 

2 -1.05 

-1.06 

-1.07 

-1.06 

-1.09 

2 = 0.0 

_________________ 2 - -1.0 

1 2 3 4 5 6 

R-coordinate 

Fig. 12. Variation of the axial speed on planes z = 0 and .z = -1.0. 

modeled by the Litonski-Batra flow rule or the Bodner-Partom flow rule agree with each other 
qualitatively, but differ quantitatively. The material constants in the two constitutive relations 
were determined by requiring that the shear stress-shear strain curve in overall adiabatic 
simple shearing deformations of a block made of the target material were essentially similar. 
We note that the method used to determine the parameter values is not unique. The 
quantitative difference in the results computed with the two flow rules could also be due to the 
more complex state of deformations prevailing in the target than that in the simple shearing 
problem. The peak hydrostatic pressure for the Bodner-Partom flow rule is considerably more 
than that computed with the use of the Litonski-Batra flow rule. 

We have also investigated the effect of the variation in the values of various parameters 
appearing in the Bodner-Partom flow rule. The range of values of parameters considered is 
more than that likely to be determined for one material. It is found that all of the parameters 
appearing in the Bodner-Partom flow rule influence strongly the deformations of the target. 
Significant deformations of the target occur at target particles ahead of the penetrator nose, 
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and distant less than one penetrator diameter from the penetrator nose surface. More severe 
deformations occur at target particles in the vicinity of the stagnation point for a long tapered 
nosed penetrator than for other nose shapes. However, for a blunt nosed penetrator, severest 
deformations occur at target particles near the nose periphery. 
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