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Abstract-We ascertain the effect of thermal conducive on the initiation and growth of shear bands 
in a structural steel by analyzing the development of shear bands in a block undergoing overall 
adiabatic simple shearing deformations. The material of the block is assumed to exhibit strain and 
strain-rate hardening, and thermal softening. Three constitutive relations, namely, the Litonski law, 
the Bodner-Partom law, and the Johnson-Cook law, have been used to model the thermoviscoplastic 
response of the material. For each material model, five values of thermal conductivity differing by 
three orders of magnitude have been used. 

It is found that an increase in the value of the thermal conductivity delays the initiation and slows 
down the subsequent development of the shear band. For the Litonski law and Johnson-Cook law, 
the band width tends to zero as the thermal conductivity approaches zero. Wowever, for the 
Bodner-Partom law, the band width is non-zero even when the thermal conductivity is set equal to 
zero. 

1. INTRODUCTION 

Adiabatic shear banding refers to the localization phenomenon that occurs during high 
strain-rate plastic deformation, such as machining, shock impact loading, ballistic penetration, 
and metal forming processes. As shear bands precede material fracture, the discernment of 
variables that enhance or retard their initiation and growth will make possible design of 
materials and manufactu~ng techniques that are less conducive to the formation of shear 
bands. Variables that are believed to have a noticeable effect on the development of shear 
bands include material strain-rate sensitivity, thermal diffusivity, thermal softening, strain 
hardening, inertia forces, and the initial temperature of the specimen. Here we explore in some 
detail the effect of the thermal conductivity or the thermal length on the initiation and 
subsequent growth of shear bands in a viscoplastic block undergoing overall adiabatic simple 
shearing deformations at an average strain-rate of 3300 s-i. The values of material parameters, 
except for the thermal conductivity, are those for a typical structural steel. Five values of the 
thermal conductivity, namely, 0, 5, 50, 500, and 5ooO W/m “C, have been used to assess its 
effect on the development of shear bands. 

In studying the growth of shear bands in the center of a finite slab after initiation at a small 
impe~e~ion, Merxer [l] concluded that the final width of the band depends on the thermal 
diffusivity and the overall strain rate. Wu and Freund [Z], in studying the formation of shear 
bands at a moving boundary, concluded that thermal diffusivity has little influence on the final 
shape of the band. The detailed geometry and constitutive equations considered in these two 
papers are different. In both papers, there are two natural length scales, one arising from the 
rate effect in the constitutive equation, and the other from heat conductivity. In the latter 
paper, these two scales have been arbitrarily set equal to each other, and in the former paper 
the relative effect of heat conductivity has been examined parametrically for the Bodner- 
Partom constitutive relation. Wu and Freund [2] also showed that for linear strain-rate 
sensitivity the shear layer thickness increased with boundary velocity, but the reverse happened 
for logarithmic rate sensitive materials. Possible reasons for opposing effects of thermal 
conductivity reported in these two papers could be (a) different problems studied, and/or (b) 
different constitutive relations employed. Here we use three constitutive relations, namely, the 
Litonski law, the Bodner-Partom law, and the Johnson-Cook law, to model the viscoplastic 
response of the material. It is found that for all three constitutive relations, the computed band 
width increases with increase in the value of the thermal conductivity, suggesting thereby that 
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the apparently contradictory results reported in the above-cited two papers are due to the 
different phenomenon presumed for the occurrence of adiabatic shear bands. 

In recent years there have been numerous expe~mental [3-71, analytical [8-151, and 
numerical [16-231 investigations aimed at increasing our understanding of the localization of 
the deformation into shear bands. Shawki and Clifton [24] have reviewed much of the literature 
dealing with the one-dimensional shear banding problem. Recently, there have been a few 
studies [B-35] of the phenomenon of shear banding in plane strain defo~ations of a 
thermally softening viscoplastic block. Anand et al. [12] have extended the one-dimensional 
perturbation analysis of Clifton and coworkers [36] to three-dimensional problems. They also 
included the effect of hydrostatic pressure on plastic flow, so as to better model the behavior of 
polymeric materials. Their analysis predicts that for pressure-sensitive materials, shear bands 
can initiate in two directions even in simple shear. 

2. FORMULATION OF THE PROBLEM 

In terms of non-dimensional variables, equations governing the dynamic thermomechanical 
defo~ations of a viscoplastic block undergoing overall adiabatic simple shearing deformations 
are 

arwi, = (w&, O<y<l, (2.1) 

we = B(wQ,JZ + wrY&X, O<y<l, (2.2) 

s = P(V,, - ib), (2.3) 

Yp = g(s, YP, 6). (2.4) 

Here u, 8, f, yP and w represent, respectively, the velocity of a particle in the direction of 
shearing taken to be along the x-axis, temperature rise, shear stress, plastic strain, and 
thickness of the block. Furthermore, /3 is the thermal diffusivity, /.J is the shear modulus, a! 
signifies the effect of inertia forces relative to the flow stress of the material, a superimposed 
dot indicates material time derivative, and a comma followed by y implies partial 
differentiation with respect to y. Equation (2.1) expresses the balance of linear momentum, 
equation (2.2) the balance of internal energy, equation (2.3) Hooke’s law written in the rate 
form, and equation (2.4) is a constitutive relation for YP. The viscoplastic flow rules differ in the 
functional forms of g. Fourier’s law of heat conduction has been used in equation (2.2). Also, 
we have assumed that the shear strain-rate has additive decomposition into elastic and plastic 
parts, and all of the plastic working, given by the second term on the right-hand side of 
equation (2.2), is converted into heat. We note that Sulijoadikusumo and Dillon [37] and 
Farren and Taylor [38] found that only 90-95% of the plastic work done is responsible for 
raising the temperature of the body. 

The dimensional variables, indicated below by a superimposed bar, are related to the 
non-dimensional variables as follows: 

y=yfA f+=wH, i = M/v,, e = es,, 60 = %olPC, 

s = sa,, @J = pv;/ao, P = wo, B = ~l(PJoW, 

?;, = PpolH. (2.5) 

In equation (2.5), W is the height of the block, v. is the final value of the speed imposed on the 
top surface of the block, p is the mass density, t is the time elapsed, a0 is the yield stress in a 
quasistatic simple shear test, k is the thermal conductivity, and c is the specific heat. Hereafter, 
we drop the superimposed bars and indicate a ~mensional quantity by specifying its units. 

For the initial and boundary conditions we take 

KY, 0) = 0, V(Y, 0) = 0, S(Yt 0) = 0, Y,(Y, 0) = 0, 

@JO, t> = 0, @,y(L t> = 0, v(0, t) = 0, 

v(1, t) = t/0.01, O%t50.01, 
= 1, tz0.01. (2.6) 
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That is, the block is initially stress free, is undeformed, is at rest, and has a uniform 
temperature, normalized to be zero. The overall deformations of the block are taken to be 
adiabatic and the lower surface is at rest, whereas the upper surface is assigned a velocity that 
increases from 0 to 1 in a non-dimensional time of 0.01 and then stays equal to 1.0. The block 
is taken to be thinnest at the center, y = 3, and thickest at the boundary surfaces, y = 0, 1, with 
the thickness variation given by 

,(y)=w,[I+isin(i+2y)n]. (2.7) 

We note that Marchand and Duffy [7] reported nearly 10% variation in the thickness of the 
steel tubes they tested in torsion. Our choice of locating the thinnest section at the center is for 
convenience only and should not affect the computed results. 

3. VISCOPLASTIC FLOW RULES 

3.1 Litonski’s law 

Wright and Batra [18] modified the Litonski law to account for elastic unloading of a 
material point. They postulated that 

yp==hr, (3. I) 

“---[‘f( (l-ve)~l+2_p)/q~ (3.2) 

+ = s&/(1 + WIWO)“. (3.3) 

We may view 3 as an internal variable that describes the work hardening of the material. Its 
evolution equation (3.3) implies that the rate of growth of 1/, is proportional to the plastic 
working. In equation (3.2), (1 - ~0) describes the softening of the material as a result of its 
heating, b and m characterize its strain-rate sensitivity, and q0 and n its work hardening. 
Equations (3.1) and (3.2) imply that 

pp = 0 if s 5 (1 - v@(l + t/~/&)n. (3.4) 

Thus s = (1 - ve)(l + t#/&)” describes a loading surface, and if the local state given by 
(s, v, f3) lies inside or on this surface, the plastic strain-rate is zero and the material then is 
deforming elastically. Besides a,, which has been used to non-dimensionalize stress-like 
quantities, five material parameters, v, b, m, qo, and n are needed to specify the viscoplastic 
response of the material. 

3.2 Bodner-Partom law 

Bodner and Partom [39] assumed that there is no loading surface and that plastic strain-rate 
ppp’ albeit very small at low values of S, is always non-zero. Their constitutive relation can be 
written as 

;/P=Doexp[-$($)n], n=i+b, (35) 

2 = z1 - (2, - zo)exp( -mW,), 

tip = sjfp. 

(3.6) 

(3.7) 

Here T is the absolute temperature of a material particle, W, is the plastic work done, z may be 
regarded as an internal variable, and Do is the limiting value of the plastic strain-rate, usually 
taken as lo* s-l. Besides Do, we need to specify a, zl, zo, m, and b to characterize the material. 
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3.3 Johnson-Cook law 

Johnson and Cook [40] tested 12 materials in simple shear and compression at different 
strain-rates and found that 

pp = exp 
[( (A+By;)(l-jV)-l.O I/ 1 c ’ (3.8) 

T = (0 - eo)/(e, - Oo), (3.9) 

describe well the test data. For 8, equal to the melting temperature of the material and e0 
equal to the ambient temperature, they tabulated values of A, B, n, Y, and C for 12 materials. 
It should be noted that there is no loading surface assumed in this case, too. 

4. RESULTS 

4.1 Computational considerations 

The governing equations (2.1)-(2.4) with the function g given by one of the flow rules 
described in the previous section are highly nonlinear, and are difficult to solve analytically 
under the side conditions (2.5) and (2.6). An approximate solution of these equations has been 
computed numerically by using the finite element method. The partial differential equations 
(2.1)-(2.4) are first reduced to a set of coupled nonlinear ordinary differential equations by 
using the Galerkin approximation. The stiff ordinary differential equations are integrated with 
respect to time by the Gear method [41]. For this purpose, the subroutine LSODE included in 
the package ODEPACK developed by Hindmarsh [42] is used. The subroutine adjusts the time 
increment adaptively until a solution of the stiff ordinary differential equations has been 
computed to the desired accuracy. 

In the computation of results given below, the following values of various material 
parameters were used: p = 7860 kg/m3, a0 = 405 MPa, and c = 473 J/kg “C; 

(a) Litonski’s law: Y = 6 X 10m4/“K, W. = 0.012, m = 0.01872, n = 0.054, and b = lo4 s; 
(b) Bodner-Partom law: Do = 1000, z1 = 3.778, z2 = 3.185, m = 2.5, a = 18OO”K, and 

b =O; 
(c) Johnson-Cook law: A = 0.275, B = 1.433, C = 36, n =0.054, Y = 0.8, 8, = 1800°K 

and e. = 300°K. 
The values of geometric parameters used are H = 2.5 mm, w. = 0.38 mm, and 6 = 0.05. The 
values of the material parameters given above are such that for k = 50 W/m “C and average 
strain-rate of 3300 s-r, the average shear stress s, versus the average shear strain yaVB curve 
approximated well the experimental stress-strain curve for HY-100 steel given by Marchand 
and Duffy [7]. The average shear stress s, is defined as 

I 
1 

s, = 4~7 4 dy. 
0 

For kg = 3300~~‘, the inertia effects do not play a noticeable role, and the shear stress 
depends upon y mainly because of the dependence of w upon y. Subsequently, the values of 
material parameters and the average strain-rate were kept fixed, and results were computed for 
k = 0, 5, 50, 500, and 5000 W/m “C. These results are identified below as follows. 

Curve type k (W/m “C) 

_____ 0 
5 

--- 50 
500 

.5ooo 

For the Litonski law, and for k = 0 and 5 W/m “C, results could not be computed satisfactorily 
once the shear stress began to drop precipitously. 
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4.2 Numerical results 

Figure 1 depicts the average shear stress s, versus the average shear strain yaVg curves for the 
three constitutive models and the five values of the thermal conductivity k. For each 
constitutive relation used, the s,-_Y,,~ curves for k = 0 and 5 W/m “C are essentially identical 
with each other. The value of yaVg at which S, begins to drop increases a little with an increase 
in the value of the thermal conductivity. However, the rate of stress drop decreases 
dramatically as the value of k is increased from 50 to 500 W/m “C as compared with that when 
k is increased from 5 to 50 W/m “C. For each value of k considered, the value of yavg when 
the average shear stress S, becomes maximum is the least for the Johnson-Cook law. The 
s,-_Y,,~ curves look alike for the Litonski law and the Bodner-Partom law, except that the rate 
of stress drop is a little less for the Bodner-Partom law than for the Litonski law. 

Figure 2 depicts the evolution of the homologous temperature, defined as the ratio of the 
absolute temperature of a material point to the melting temperature of the material, at the 
center of the specimen. Because of the non-dimensional variables being used herein, the 
horizontal scale representing the average strain can also be interpreted as the time elapsed. For 
each of the three constitutive relations used, the rate of temperature rise is largest for k = 0 and 
decreases as the value of k is increased. For k = 0 and 5 W/m “C, the Johnson-Cook law gives 
the steepest rise in the temperature at the specimen center. It should be recalled that the shear 
stress is greatest at the specimen center because the thickness there is the least. For 
k = 50 W/m “C, the Litonski law gives the most rapid rate of temperature increase at the center 
of the specimen. The value of yavg when the temperature at the specimen center begins to rise 
sharply is different for the three constitutive relations. For k = 5000 W/m”C and for 
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Fig. 1. Average shear stress vs average shear strain for the three constitutive relations and the five 
values of the thermal conductivity. (a) Litonski, (b) Bodner-Partom, (c) Johnson-Cook. 
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Fig. 2. Evolution of the homologous temperature at the center of the specimen for the three 
constitutive relations and five values of the thermal conductivity. (a) Litonski, (b) Bodner-Partom, 

(c) Johnson-Cook. 

0 < Yaavg < 1, the temperature at the specimen center increases nearly linearly for each of the 
three constitutive relations used, except that for the Bodner-Partom law the slope of the 0, vs. 

Y avg curve increases at yaVg = 0.4. As the value of k increases, the heat conducted away from 
the central hotter region to the outer parts of the specimen increases and the rate of 
temperature rise at the specimen center decreases. Because of the adiabatic boundary 
conditions assumed, the temperature everywhere in the specimen increases. 

As a significant part of the temperature rise occurs after the shear stress has attained its 
maximum value, we have plotted in Fig. 3 the homologous temperature f3, at the specimen 
center versus s,/sma. For the Litonski law and the Johnson-Cook law, the On-s,/s,,, curve 
corresponding to k = 50 W/m “C shows a second-order transition at so/s,,,, = 0.945 and 0.92 
respectively. For each of the three constitutive relations studied herein, the value of f&, when 
s, Is,, = 1.0, appears to be independent of k. This value of t& equals 0.2, 0.21, and 0.214 for 
the Johnson-Cook law, the Bodner-Partom law, and the Litonski law respectively. For the 
Bodner-Partom law, the f&+,/s,,,, curves for the five values of k are essentially straight lines, 
and the slope of the straight line decreases with an increase in the value of k. It should be 
noted that for fixed values of k and s,/s,,, the temperature rise at the specimen center 
depends upon the constitutive relation employed. This is because the three constitutive 
relations give different rates of stress drop. 

Figure 4 shows the shear strain at the specimen center, Y,~, versus the average strain. The 
curves for the Bodner-Partom law differ from those for the Litonski law and the Johnson- 
Cook law. For the Bodner-Partom law, with an increase in the value of k, the slope of the 
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Fig. 3. Homologous temperature at the specimen center vs s,/s,,,. (a) Litonski, (b) Bodner-Partom, 
(c) Johnson-Cook. 

Y1oc-Yavp curve when s,/s,, < 1 decreases. For the Litonski law and the Johnson-Cook law, 

the noc-raVg curves for k = 50 W/m “C show similar qualitative behavior. However, y,Ooc 
increases more rapidly for the Litonski law than that for the other two constitutive relations. 
For k = 5000 W/m “C, ylX increases very slowly, mainly because most of the heat developed 
near the specimen center due to plastic working is conducted away. For k = 500 W/m “C and 
the Litonski law, the local strain seems to have reached the saturation value at yavg = 0.82. A 
similar behavior was observed for the Johnson-Cook law at yayg = 1.5, but not for the 
Bodner-Partom law up to yaVp = 4.0. 

We recall that the thermal softening is described by essentially similar functions in the 
Litonski law and the Johnson-Cook law, but by a totally different functional relationship in the 
Bodner-Partom law. We believe that it is the difference in the thermal softening behavior 
stipulated in the three constitutive relations that accounts for the difference in the evolution of 
the temperature and hence the local strain at the specimen center. 

A measure of the localization of the deformation at the specimen center is the ratio of the 
shear strain there to the average strain in the specimen. As localization of the deformation 
occurs in earnest when the shear stress has started to drop precipitously, we have plotted 

YkJYa”g-d%lax in Fig. 5. For the Bodner-Partom law, the curves for k = 0, 5, 50, and 
500 W/m “C essentially coincide with each other, whereas that for k = 5000 W/m “C exhibits a 
different trend and suggests that y,,,c/yaVp = 5.5 for s,/s,,, I O.E!O. For k = 5OOtJ W/m “C and for 
S,/S max 5 0.6 Yloc/Ya”B equals 2.3 for the Johnson-Cook law and 3.1 for the Litonski law. For 
k =50 W/m”C, the curve for the Litunski law shows a sharp jump in the slope at 

~~/&l, x0.85, indicating the rapid growth of the localization of the deformation at the 
specimen center. By the time the shear stress drops to 80% of its maximum value, the shear 
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Fig, 4. Evolution of the shear strain at the specinen center for the three eonstitutive relations and the 
five vaIues of the thermal conductivity. (a) Litonski, (b) Bodner-Partom, (c) Johnson-Cook. 

strain at the specimen center would have increased enormously and the specimen would 
probably have failed. We recall that Marchand and Duf@ !7] observed the maximum shear 
strain within the band to be about 20. For k = 500 W/m “C, y,=/ySVS reached a saturation value 
of 18 for &/S,,- (0.6 for the Bodner-Partom law. For the other two constitutive relations 
used, ytoe/yaVg reached a maximum value of appro~mate~y 18 and 20 at &i’s,, ~0.7 and 0.62 
for the Litonski law and the Johnson-Cook law respectively, The decrease in the value of 
y&yave sigrnfies that the growth of the shear strain at the specimen center is less than the 
increase in the value of yaVs. Thus the width of the severely deformed region must increase. 

Marchand and Duffy [71 defined the band width as the width of the regiun over which the 
shear strain stays constant, In the problem studied herein, except when k = 500 or 
5000 W/m “C, the band width so computed will be zero. Therefore, we define the band width 
as the width of the region over which the shear stain equals or exceeds 95% of its value at the 
specimen center. As the localization of the deformation depends upon how far the shear stress 
has dropped from its peak value, we have plotted in Fig. 6 the band width versus the 
square-root of the non-dimensional thermal conductivity /S when s#,&, = 0.95, 0.90, 0.85, 
0.80,0.75, and 0.70. The reason for selecting (@)ln rather than 6 as abscissa is that Dodd and 
Bai [433 found the band width to be proportional to (p)“‘? It is clear that the dependence of the 
band width upon the thermal conductivity is nonlinear and is different for each of the three 
constitutive relations used. The band width decreases with a decrease in the value of the 
thermal ~nductivity. For the Litonski law and the Johnson-Cook law, the band width tends to 
zero as the thermal conductivity decreases to zero, but such is not the case for the 
Bodner-Partom law. For this law and for k = 0, the computed band width depends upon how 
far the shear stress at the specimen center has dropped. We note that the depicted curves were 
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Fig. 5. Localization ratio vs s,/s,,,. (a) Litonski, (b) Bodner-Partom, (c) Johnson-Cook. 

obtained by joining data points with straight lines rather than fitting a smooth curve through 
the data points. These curves do not support Dodd and Bai’s result that the band width is 
proportional to @)I”. 

In Fig. 7 we have plotted the band width as a function of s,/s,,_ for the five values of the 
thermal conductivity and the three constitutive relations used. For k = 50 and 500 W/m “C, the 
band width does seem to reach a stable value as the shear stress at the specimen center drops. 
For the Litonski law, and for k = 0 and 5 W/m “C, satisfactory results could not be computed 
for s,/s ,,._ I 0.95. For the same values of k, and with the Johnson-Cook law, satisfactory 
results could not be obtained for s,/s ,,,= I 0.90. For each of the constitutive relations used, and 
for k = 5000 W/m “C, an interesting situation developed in that the band width decreased first 
as the shear stress at the specimen center dropped. It reached a plateau at s,/s,,, = 0.85, and 
then started to increase. The rate of decrease and subsequent increase of the band width with 
respect to s,/s,,, does depend upon the constitutive relation used. A plausible explanation for 
this computed decrease and increase of the band width is that as the shear stress at the 
specimen center drops and the plastic strain-rate increases sharply, the heat generated as a 
result of plastic working raises the temperature there more than at other points in the 
specimen. Initially, the rate of heat loss to outer parts of the specimen is less than the rate of 
heat generation at the specimen center, and the temperature there rises, making the material 
there softer and thus easier to deform. As the temperature gradient builds up, the rate of heat 
loss increases and eventually equals and exceeds the rate of heat generation at the specimen 
center. Thus the material surrounding the specimen center begins to deform severely, too, and 
the band width increases. 
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5. CONCLUSIONS 

We have studied the problem of shear band development in a thermally softening 
viscoplastic block undergoing overall adiabatic deformations. The thickness of the block is 
assumed to vary smoothly with the thickness at the specimen center, being 5% smaller than 
that at the outer edges. Three constitutive relations, namely, the Litonski law, the 
Bodner-Pat-tom law, and the Johnson-Cook law, have been used to represent the viscoplastic 
response of the material. The values of the material parameters used are such that each 
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Fig. 7. Dependence of the band width upon s,/s,,. Curve 0. k = 0; Curve 1, k = 5 W/m “C; Curve 2, 
k = 50 W/m ‘Cc; Curve 3, k = 500 W/m “C; Curve 4, k = 5000 W/m “C. 

constitutive relation gives essentially the same stress-strain curve as that observed by 
Marchand and Du!Ty [7] for a HY-100 steel deformed in torsion at a strain-rate of 3300 s-‘. 

Results have been computed for thermal conductivity k of 0, 5, 50, 500, and 5CKIO W/m “C. 
For the Bodner-Partom law, all of the results depend smoothly upon the thermal conductivity. 
Also, from a computational point of view, this constitutive relation was the most stable in the 
sense that satisfactory results could be computed for all values of k considered herein. 

For each of the three constitutive relations studied, the rate of evolution of the temperature 
at the specimen center was steepest for k = 0 and decreased with an increase in the value of k. 

A similar behavior was noted for the development of the shear strain at the specimen center. 
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When the time scale is changed to one which is proportional to s,/s,,,, the rate of temperature 
rise at the specimen center shows a transition for k = 50 W/m “C both for the Litonski law and 
the Johnson-Cook law. For the Litonski law and also for k = 50 W/m “C, the rate of 
localization ratio at the specimen center shows a transition at s,/s,,, -0.85. Otherwise, the 
results depend continuously upon solsmax for the values of k considered herein. 

The computed band width decreases nonlinearly with a decrease in the value of k. Both the 
Litonski law and the Johnson-Cook law predict that the band width will decrease to zero as k 

tends to zero. However, the Bodner-Partom law gives a finite value of the band width for 
k = 0. The band width was not found to be proportional to the square-root of the thermal 
conductivity as asserted by Dodd and Bai. 
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