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Ah&act-We study the~om~h~~~l defo~ations of a thick elastic-~~pl~tic target being 
penetrated by a rigid long cylindrical rod, and assume that target defo~atio~ as seen by an observer 
situated at the penetrator nose tip are steady. We presume that the target response can be adequately 
modeled by the Brown-Kim-Anand flow rule. We analyze the effect of different material parameters 
on the deformations of the target in order to elucidate their relative importance, and hence enumerate 
more critical ones. We also study the effect of the penetrator nose shape and the penetrator speed on 
the deformations of the target. 

INTRODUCTION 

One of the unresolved issues in penetration mechanics as well as in large deformation 
elastoplasticity is the choice of an appropriate constitutive relation used to model the finite 
plastic deformations of a material. Many of the recently proposed theories (e.g. [l-4]) of large 
defo~ation elastopl~ticity are based on different kinematic ~sumptions and necessitate the 
h~thes~ng of constitutive relations for variables that are not simply related to each other. 
Here we use one such theory, namely that due to Brown-Kim-Anand (hereafter referred to as 
BKA) [4], and study in detail the effect of varying the material parameters in it on the 
deformations of the target. This should help identify the critical parameters in the constitutive 
relation, at least for the penetration problem. A similar study was conducted earlier [5,6] for 
the Litonski-Batra and the Bodner-Partom flow rules. 

We refer the reader to review articles by Backman and Goldsmith [7], Wright and Frank [8], 
Wright [9], and Anderson and Bodner [lo] for a review and discussion of most of the work 
done on ballistic penetration. Different engineering models have been proposed by Awerbuch 
fll], Awerbuch and Bodner 1121, Ravid and Bodner 1131, Ravid et al. [14], Forrestal et al. [15], 
and Batra and Chen [16]. For impact velocities in the range of OS-10 km/s, Birkhoff et al. 1171, 
Pack and Evans [IS], Allen and Rogers (191, Alekseevskii 1203, and Tate [21] have proposed 
using the Bernoulli equation or its modification to analyze the impact phenomenon. The last 
three references introduced a resistive pressure, dependent upon the material strength, in the 
Bernoulli equation. Tate [22-241, Pidsley [25], Batra and Gobinath [26], Batra and Chen [16], 
and Jayachandran and Batra [27] have estimated the value of the resistive pressure. Whereas 
Tate used a solenoid fluid flow model of the steady state penetration process, other 
investigations used a numerical solution of the problem. Both Pidsley [25] and Wright [9] have 
pointed out that the transverse gradients of the shear stress evaluated on the axial line make 
noticeable ~nt~butions to the resistive pressure terms in the modified Bernoulli equation. The 
books by Zukas et at. [28], Blazynski 1291, and Macauley [30] may be consulted for the 
available literature on ballistic penetration. 

FORMULATION OF THE PROBLEM 

With respect to a cylindrical coordinate system with origin at the center of the penetrator 
nose and positive z-axis pointing into the target, equations governing the target deformations 

are: 
Balance of mass: 

ES 3D:8-D 

divv=O, 
1m 

(1) 
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Balance of linear momentum: 

div (I = p(v Q grad)v, (2) 

Balance of internal energy: 

Constitutive relations: 

-div q + tr(aDP) = plj, (3) 

(I= -pl+s, 

B = 2G(D - DP), 

DP = s/~P(& 8, g), 

~(1, 8, g) = f $sinh-‘($Y), 

g = h,I(max(O, (I -:))r, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

g* = w, (4.6) 

(4.7) 

q=-kgrad8, 8 = T - To, (3 

u=ce, (6) 

where 

2Z2 = tr(Dr)2, (7.1) 

s” = (v . grad)s + SW - Ws, (7.2) 

2D = grad v + (grad v)~, (7.3) 

2W = grad v - (grad v)‘. (7.4) 

Equations (1) (2), and (3) are written in the Eulerian description of motion. The operators 
grad and div denote the gradient and divergence operators on fields defined in the present 
configuration. In equations (l)-(7), v is the velocity of a target particle relative to the 
penetrator, u the Cauchy stress tensor, s its deviatoric part, p the hydrostatic pressure not 
determined by the deformation history, an open circle on s indicates its Jaumann derivative 
defined by equation (7.2) for the steady stress field, q is the heat flux vector, and U is the 
specific internal energy. Furthermore, G is the shear modulus, DP the plastic strain-rate, p 
defined by equation (4.4) may be interpreted as the shear viscosity of the target material, g is 
an internal variable whose evolution rate is postulated to be given by equation (4.5), Q the 
activation energy, R the gas constant, T the absolute temperature, To the ambient absolute 
temperature, m the strain-rate sensitivity, ho a constant rate of athermal hardening, and the 
quantity g* represents a saturation value of g associated with given values of the temperature 
and strain-rate. In order to characterize the viscoplastic response of a material, one needs to 
assign values to 5, m, h o, a, 2, n, A, Q, and R. Equation (4.2) is Hooke’s law in the rate form 
when the dependence of the shear modulus upon the mass density or the hydrostatic pressure is 
neglected, equation (5) is the Fourier law of heat conduction, and equation (6) is a constitutive 
relation for the specific internal energy. The thermal conductivity k and the specific heat c are 
taken to be constants. The strain-rate tensor D defined by equation (7.3) is assumed to have 
additive decomposition into elastic and plastic DP parts, and W defined by equation (7.4) is the 
spin tensor. 
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As has been pointed out by Batra and Gobinath [26], the problem formulation does include 
thermal stresses caused by the uneven temperature rise at different material particles. 
However, the change in the mass density due to temperature rise of a material particle is not 
considered. 

Henceforth, we use non-dimensional variables defined below and indicated by an overbar. 

h 
_ 

&$3, &=L 

PC PCVO ’ 
gd.&, j$, 6,$, g*z$. 

Here a, is the yield stress of the target material in a quasistatic simple compression test, r, is 

the radius of the cylindrical part of the penetrator, u. is the steady speed of penetration, and h, 
is the coefficient of heat transfer between the target and the penetrator. 

The governing equations, when written in terms of nondimensional variables, become 

divv=O, (9.1) 

-gradp + div s = a(v - grad)v, (9.2) 

s + &[(v l grad)s + SW - Ws] = 2/3D, (9.3) 

tr(aDP) + 6 div(grad 6) = (v - grad)8, (9.4) 

where 

,=py’D 
f 

00 

UO k 
(j=- Y'E' 

ww0 ’ (10) 

are non-dimensional numbers, and we have dropped the overbars. Henceforth, we work in 
terms of nondimensional variables. The values of cy, y, and 6 signify, respectively, the 
importance of inertia force relative to the flow stress of the material, material elasticity, and the 
heat transfer due to conduction. 

We note that the governing equations are highly nonlinear, and we seek their approximate 
solution by the finite element method, which necessitates that we consider a finite region. The 
bounded region R of the target whose deformations are analyzed is depicted in Fig. 1, which 
also shows the discretization of the domain into finite elements. The boundary conditions 
imposed on this finite region are 

v, = 0, v* = -1.0, p=o, s,=o, sfje=o, s,,=o, %I = 0, 8= eo, 

on the boundary surface EFA, (11.1) 

CT IZ = 0, v, = 0, $ = 0, on the axis of symmetry DE, (11.2) 

v*n=o, t*(un)=o, q . n = h,(O - e,), 

on the target/penetrator interface DCB, (11.3) 

0 0, 
de 

ZE = v, = 0, z = 0, on the bounding surface BA. (11.4) 

The validity of replacing boundary conditions at the boundaries of the semi-infinite target 
region by conditions (11.1) and (11.4) on the bounding surfaces EFA and BA of the finite 
target region studied was established by analyzing the problem over successively larger regions 
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19r, 

Fig. 1. Finite target region studied and its discretization. 

each new region containing the previous one, until the solution variables at points on the 
target/penetrator interface DC changed by less than 4.7%. Of the variablesp, v, 8, s, and g of 
interest, the variation in s was the largest and it occurred at points near the nose periphery. 
The boundary conditions on p and components of s on the surface EFA are needed, since here 
we need to solve equation (9.3) for s, along with equations (9.1), (9.2), and (9.4) for p, v and 
8; e.g. see Shimazaki and Thompson [31]. Conditions (11.2) follow from the assumed 
axisyrnmetric nature of deformations. The imposed boundary conditions (11.3) on the 
target/penetrator interface DCB imply that there is no interpenetration of the target material 
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into the penetrator, the contact surface is smooth, and the heat flux between the target and the 
penetrator is proportional to the temperature difference between the two; 8, being the average 
temperature of the penetrator. The boundary conditions (11.4) on BA are a good approxima- 

tion, provided that the surface BA is far removed from DC, as is the case here. 

COMPUTATIONAL CONSIDERATIONS 

As shown in Fig. 1, the region R is divided into quadrilateral elements, the elements being 
smaller near the target/~netrator interface DC and gradually becoming larger as we move 
away from this surface. There was no attempt made to optimize the mesh for a given number 
of nodes. However, keeping R fixed, results were computed with three successively finer 
meshes containing 700, 900, and 1250 elements. The peak values of p, 8, and I for these three 
meshes were found to be (12.07, 3.42, 1.38), (12.17, 3.69, 1.52), and (12.10, 3.67, 1.53), 
respectively. Henceforth, we employ the mesh with 1250 elements. 

Within each element the values of IJ,, IJ,, s,, s,, szz, see, 8, and g are approximated by 
bilinear polynomials expressed in terms of their values at the four corner nodes, and the 
hydrostatic pressure p is assumed to be constant. The discontinuous pressure field j,j thus 
computed is smoothened a posteriori by using 

Nap dV, i = 1,2, . . . , M 

where M equals the number of nodes, and N,, N2, . . . , N,,, are the piecewise bilinear finite 
element basis functions. 

We used the Petrov-Galerkin formulation [32] of equations (9.3) and (9.4), and the 
Galerkin approximation [32] of equations (9.1) and (9.2). The iterative process used to solve 
the resulting nonlinear algebraic equations was stopped when 

(c IIt+,” - ,-1,,2)1’2 40.01p ilCp”,,y (13) 

where the summation sign implies the sum of the value of the indicated quantity at all nodes, 

]]+]I2 = tr(~=) when Cp is a second order tensor, ]]+il” = r# + #z when + is a vector, and 

fl+ll = I#1 when + is a scalar. The convergence criterion (13) is applied to v, s, 8, p, and g. This 
convergence criterion is weaker than that used by Batra [5], who checked for the convergence 
of the solution variables at each node. Batra used 6-noded triangular elements and 
approximated the solution variables, except for p, by piecewise quadratic polynomials, and p 
by piecewise linear polynomials defined in terms of their values at the three corner nodes. 

The code developed by Jayachandran and Batra [27] was modified to solve the present 
problem. The boundary condition (11.3)1 on the target/penetrator interface is satisfied by using 
the method of Lagrange multipliers. 

RESULTS AND DISCUSSION 

When computing results, we assigned the following values to various material and geometric 
parameters. 

p = 7860 kg/m3, a0 = 405 MPa, G = 80 GPa, c = 473 J/kg “C, 

k = 50 W/m “C, h, = 20 WI m2 “C , 8, = OT, r. = 10 mm, 

A=6.346x 10’5s-’ t Q = 275 kJ/mol, S = 405 MPa, ho = 5000 MPa, 

5 = 3.25, m =O.l, n = 0.002, a = 1.5, a!= 10, r, = 1.0. (14) 
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Here 2r, equals the length of the principal axis of the elliptical penetrator nose in the 
z-direction. For the values of p, cro, and c given above, the reference temperature e. used to 
nondimensionalize the temperature rise equals 108.9”C. Since we are interested in delineating 
the effect of different values of material and geometric parameters in the BKA fIow rule on the 
deformations of the target, the base values assigned as in (14) to different parameters are of 
less significance. The present study should enumerate the relative importance of various 
material parameters and hence help design experiments for the precise determination of more 
critical ones. The range of values of material parameters considered herein is probably more 
than that likely to occur for any real material. The variables that are assigned values different 
from those given above are so indicated in the figures along with their new values. 

All of the results presented below and values of variables indicated in figures, unless stated 
otherwise, are non-dimensional. 

(a) Efect of penetration speed 

Figure 2 depicts, for a = 2, 6, 8, and 10, the variation of the normal stress, strain-rate 
measure I, tangential speed, and the temperature rise at target particles abutting the 
hemispherical penetrator nose surface. The angular position 3, indicated in Fig. 1, is measured 
from the centroidal axis. In this and other figures, various quantities have been scaled 
appropriately so as to fit on the same plot. The normal stress on the penetrator nose surface is 

independent of (Y for V/J = 45”, and the normal stress at a point on the penetrator nose surface 
increases with LY for r/~ < 45” and the reverse happens for I/J > 45”. Such a behavior was also 
observed by Batra and Wright [33f for a rigid plastic target, by Jayachandran and Batra [27] for 
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Fig. 2. Distribution of the tangential speed, strain-rate measure, normal stress, and the temperature 
rise at target particles on the penetrator nose surface for CY = 2,6,8, and 10. 
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an elastic-plastic target, by Batra [5] for a viscoplastic target obeying the Litonski-Batra flow 
rule, and by Batra and Adam [6] for a viscoplastic target following the Bodner-Partom flow 

law. The values of the nondimensional strain-rate measure Z at and near the penetrator nose tip 
decrease with an increase in the value of (Y. We note that the change in the dimensional values 
of Z is more than that in the nondimensional values since the former are obtained by 
multiplying the latter by v,/r,,. However, the temperature rise is nearly uniform over the 
penetrator nose surface, and its value decreases with an increase in the value of a; mainly 
because more heat is transferred due to convection at higher speeds. We note that Batra [5], 
and Batra and Adam [6] observed similar behavior for the Litonski-Batra and Bodner-Partom 
flow rules, respectively. 

In Fig. 3 we have plotted the variation of the strain-rate measure Z, temperature rise 8, 
(-a,,), and the axial velocity for (Y = 2,6, 8, and 10. Whereas the strain-rate measure Z and 
the temperature rise drop sharply as one moves away from the nose tip, the value of (-a**) 
decreases slowly to zero mainly because the hydrostatic pressure p drops off slowly with the 
axial distance from the nose surface. For (Y = 10, v. = 771 m/s, and the peak values of Z and the 
temperature rise equal, respectively, 3.55 x 16 s-l and 408°C. It seems that there is a thin layer 
of material, of thickness nearly 0.2ro, around the penetrator nose surface in which the 
temperature rise is quite high. Severe deformations of the target material occur at particles 

situated within a distance of 3ro from the penetrator nose surface. Thus, the target region 
studied is quite adequate. 

Fig. 3. 

0 1 2 3 4 5 6 7 a 

Distance from the nose tip 

Variation of the strain-rate measure, temperature rise, axial velocity, and (-q,) 
the axial line for (Y = 2,6, 8, and 10. 

at points on 
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For the hemispherical nosed penetrator, the axial resisting force F is given by 

1017 

I 

n/Z 
F= (a - an)sin 28 de. (1% 

0 

The corresponding axial force in physical units is given by (&ao)F. The dependence of the 
axial force upon a; exhibited in Fig. 4(a), reveals that F depends upon (Y weakly. A least 
squares fit to the computed values of F gives 

F = 7.92 + 0.033~~. (lo) 

Thus, the dependence of F upon (Y is quite weak. 

@) Effect of penetrator nose shape 

In Fig. 5 we have plotted the distribution of the normal stress, temperature rise, tangential 
speed, and the strain-rate measure I on the penetrator nose surface for three different nose 
shapes with m/r0 = 0.2, 1.0, and 2.0. As expected, the normal stress stays essentially uniform 
on the nose surface of a blunt nosed (m/r0 = 0.2) penetrator, and it suddenly drops to zero near 

the nose periphery. The curve for the normal stress vs the angular position 111 is concave 
downward for the hemispherical nosed penetrator, but is concave upward for the ellipsoidal 
nosed penetrator. The peak values of Z occur at the nose tip or the stagnation point for both 
hemispherical nosed and ellipsoidal nosed penetrators, but at points on the nose periphery for 
a blunt nosed penetrator. The peak value of I for a blunt nosed penetrator is nearly twice that 
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Fig. 5. Distribution of the normal stress, strain-rate measure, tangential speed, and the temperature 
rise on the penetrator nose surface for three different nose shapes (-blunt nose, ---- hemispherical 

nose, and --- ellipsoidal nose). 
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9 
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Fig. 6. Variation of the axial velocity, (-a,,), temperature rise, and the strain-rate measure at points 
on the axial line for three different nose shapes. 

for an ellipsoidal nosed penetrator. The temperature distribution is essentially uniform over the 

nose surface for each one of the three nose shapes considered; the temperature rise being 

highest for an ellipsoidal nosed penetrator. 
Figure 6 exhibits the variation of I, (--a,,), the temperature rise 8, and the z-velocity on the 

axial line versus the distance from the penetrator nose tip. The values of I, 8, and (--CT,,) 
decrease slowly and the magnitude of the relative z-velocity increases less rapidly for the blunt 
nosed penetrator as compared to the other two nose shapes. Knowing the value of a,, at the 
stagnation point, one can find the value of the strength parameter R, in the modified Bernoulli 
equation. The values of R, for hemispherical, blunt and ellipsoidai noses were found to be 7.89, 
7.63, and 7.83, respectively. Thus, the value of R, is independent of the nose shape, as was 
assumed by Tate. For the hemispherical nosed penetrator, a least-squares fit to the computed 
values of R, for o = 2,6,8 and 10 gave 

R, = 8.25 - 0.038~~ 

implying that the dependence of R, upon o is weak, again confirming Tate’s assertion. 

(17) 

(c) Eflect of variation in material parameters 

In order to see which material parameters are likely to affect significantly the target 
deformations, we have plotted in Fig. 7, for various values of material parameters, the 
equivalent deviatoric stress s, vs the equivalent strain E, curves for a block made of the target 
material and deformed in plane strain compression at an average strain-rate of 3300 s-l. We 
realize that the strain-rate in the penetration problem varies from almost zero to lo5 S-I. 
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However, it is hoped that the plotted S, vs E, curves will delineate the relative importance of 
various parameters. The equivalent deviatoric stress and the equivalent strain are defined as 

3 
s, = J 2 tr(ss’)““, (18.1) 

(18.2) 

where lo and 1 are the heights of the block in the undeformed and deformed configurations, 
respectively. The values considered herein are the lower limit, base value listed in (14), and the 
upper limit value of the variable used to study the penetration problem. It is evident that an 
increase in the value of ho, n, m, g, and & enhance the hardening of the material, and an 
increase in the value of 5, a, and A results in the softening of the material. Here enhanced 
hardening of the material implies that the maximum value of S, increases. The value of the 
equivalent strain at which the equivalent stress attains its peak value changes noticeably with 
the value of a material parameter. The curves in Fig. 7 reveal that all material parameters. 

except possibly a and ho, affect the S, vs E, curves appreciably, and will very likely have a 
significant effect on the deformations of the target. 

Even though we studied the penetration problem by varying one material parameter at a 
time, we present below results that elucidate the dependence of the computed quantities upon 
n, m, a, and A. The results obtained by varying ho, S, and Q are similar to those computed by 
changing n and m, and the variation in the value of 5 gives results similar to those obtained by 
varying a and A. In this parametric study, the penetrator nose was taken to be hemispherical. 
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Fig. 8. Distribution of the temperature rise, normal stress, strain-rate measure, and the tangential 
speed on the penetrator nose surface for different values of n. 
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Figure 8 depicts the distribution of the normal stress, strain-rate measure Z, tangential speed, 
and the temperature rise at target particles abutting the nose surface for IZ = 0.0, 0.0001, 0.002, 
0.005, 0.02, and 0.05. The parameter n influences the saturation value g* of the internal 
variable g associated with a given temperature/strain-rate pair. The equivalent stress vs 
equivalent strain curve of Fig. 7(b) elucidates that the peak value of S, increases appreciably 
when n is increased from 0 to 0.05. For the penetration problem, this is reflected in the 
enhanced values of the normal stress on the target/penetrator interface. In order to see how 
much of this increase is due to the higher values of the hydrostatic pressure, we note that the 
values of p at the stagnation point for the above referenced values of n equal, respectively, 
11.80, 11.81, 12.10, 12.77, 16.23, and 20.39. Thus, the hardening of the material due to an 
increase in the value of n also contributes to the increase in the value of the normal stress. The 
value of n affects minimally the tangential speed on the penetrator nose surface, but the value 
of the strain-rate measure Z near the stagnation point decreases, and that near the nose 
periphery increases with an increase in the value of it. The higher values of the temperature 
rise for larger values of n suggest an increase in the value of the heat generated due to plastic 
working. As n increases, the temperature at the nose periphery increases more than that at the 
stagnation point, in part due to an increase in the value of Z at the nose periphery and decrease 
in the value of Z at the stagnation point. 

The dependence of the axial force F upon )2, plotted in Fig. 4(b), suggests that F increases 
sharply with an increase in the value of n. The variation of various solution variables on the 
axial line for different values of y1 is shown in Fig. 9. The values of (-ozz) and the temperature 
rise at target particles located within 2~ of the penetrator nose surface are noticeably affected 
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by the value of II. The dependence of the tangential speed upon )2 is rather weak, as is the 
dependence of all quantities upon n at points situated more than 2r,, from the penetrator nose 
tip. For each value of rr considered herein, the axial stress decays slowly with the distance from 
the nose tip. 

In Fig. 10 we have plotted the variation, on the penetrator nose surface, of the tangential 
speed, strain-rate measure Z, normal stress and the temperature rise for strain-rate hardening 
parameter m = 0.01, 0.02, 0.05, 0.1, 1.0, and 10.0. The curves for m 2 0.1 overlap each other, 
indicating the saturation of the strain-rate hardening effects. Whereas the values of Z and the 
tangential speed decrease those of the normal stress and the temperature rise increase with an 
increase in the value of m. For m = 0, the target particles tended to separate away from the 
penetrator nose surface near the nose periphery. Hence, results for this case are not included 
herein. For the aforestated values of m, the hydrostatic pressure p at the stagnation point 
equals 8.87, 10.63, 12.04, 12.10, 12.10, and 12.10, respectively. Thus, an increase in the value 
of the normal stress is due to both an increase in the value of p and the enhanced hardening of 
the material for higher values of m in the range 0.01~ m G 0.1. In this case the temperature 
rise is almost evenly distributed on the target/penetrator interface. On the axial line (cf. Fig. 
ll), the values of I and the tangential speed seem not to depend upon m. However, the values 
of the temperature rise and the axial stress (- a,,) are influenced by the value of m considered. 
The curves depicting the variation of the axial stress and the temperature rise with z, the 
distance from the nose tip, for m = 0.05, 0.1, and 10.0 essentially coincide with each other. 

The axial resisting force F (cf. Fig. 4) experienced by the penetrator increases sharply when 
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the value of m is increased from 0.01 to 0.1, but levels off subsequently. Out of the other 
parameters, ho, g, and Q that increase the hardening of the material, F depends strongly upon 

2 and rather weakly upon h o. The values of F increase rapidly with an increase in the value of 
Q for Q d 150 k.I/mol, and then quite slowly. 

Figure 12 depicts the distribution of the strain-rate measure Z, tangential speed, normal 
stress, and the temperature rise on the penetrator nose surface for a = 0.01, 0.1, 1.5, 3, 10, and 
100. The values of Z and the tangential speed are affected very little by the value of a. Also, the 
values of a s 0.1 and a 3 3.0 have negligible effect on target deformations. The normal stress 
and the temperature rise decrease with an increase in the value of a from 0.1 to 3.0. We note 
that the value of a is usually selected to represent best the experimental hardening curves. The 
axial resisting force F experienced by the penetrator decreases when a is increased from 0.1 to 
3.0, and stays constant subsequently. As evidenced by the results plotted in Fig. 13, the values, 
at points on the axial line, of the temperature rise, strain-rate measure, axial speed, and the 
axial stress are affected very little by the value of a. The effect of changing the value of the 
pre-exponential factor A on the distribution of the aforementioned four variables is shown in 
Fig. 14. The values of the temperature rise and the normal stress decrease, and those of the 
tangential speed and the strain-rate measure I increase with an increase in the value of A. 
Equations (4.6) and (4.7) suggest that an increase in the value of A reduces the saturation 
value g* of g. When g equals g*, further resistance to flow does not develop. The results 
plotted in Fig. 4 indicate that the axial resisting force experienced by the penetrator decreases 
noticeably with an increase in the value of A. 
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strain-fate measure, and the tangential speed on the penetrator nose surface. 

We have studied the steady state axisymmetric deformations of a thermoelastic-viscopiastic 
target being penetrated by a long rigid cylindrical rod by the finite element method, using 
bilinear quadrilateral elements. The target material is modeled by a viscoplastic flow rule 
proposed recently by BKA. Within each element, the fields of the velocity, deviatoric stress 
tensor, temperature, and an internal variable are approximated by bilinear polynomials, and 
the hydrostatic pressure is assumed to be constant. It is found that the axial resisting force 
experienced by the penetrator depends weakly upon the penetration speed. The material 
strength parameter, introduced by Tate, in the modified BernouIIi equation, is found not to 
depend upon the penetrator nose shape. The material parameters that enhance the harde~ng 
of the material in plane strain compression of a block made of the target material increase the 
axial resisting force acting on the penetrator. The severe deformations of the target are 
confined to material particles situated at most one penetrator diameter away from the 
target/penetrator interface. Thus, the target region analyzed herein is adequate, and the 
computed results do not depend upon the extent of the domain analyzed. 
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