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Abstract-We analyse deformations of an isotropic elastic/perfectly plastic plate subjected to 
environmental effects such as the corrosive forces exerted by the surrounding medium. It is found that 
for the bounding surfaces of the plate to deform plastically, the corrosion process must propagate to a 
point whose distance from the outer bounding surface exceeds one third the half-thickness of the 
plate, and for the central unaffected material to also deform plastically the half-thickness of the 
corroded layer must exceed five eighths the half-thickness of the plate. 

INTRODUCTION 

The mecbani~l behavior of materials subjected to reactive environments is of interest in many 
industries such as the electronics industry wherein dies are etched by dipping the body in a 
reactive chemical solution. Often, one deals with small scale structures, and the surrounding 
medium can cause severe adverse effects leading to its eventual failure. If the forces exerted by 
the environment on the structure could be estimated with some certainty, then the problem of 
analyzing deformations of the structure will reduce to solving an initial-boundary-value 

problem. However, such information is generally lacking. Therefore, we use here a 
semi-inverse approach in the sense that we represent deformations caused by the corrosive 
medium by an eigenstrain, motivate a reasonable expression for it, and ascertain conditions 
under which the body will deform elastically and/or plastically. 

Here we consider a flat plate made of an isotropic elastic/pe~ectly plastic material. We 
envisage that the plate is initially stress free and is exposed to a reactive environment. The 
corrosion process affects the faces of the plate by, for example, selective removal of atoms so 
that pores are generated within the plate, and the pore concentration varies through the 
thickness, being highest at the outermost surface layer in contact with the environment and 
gradually decreasing to zero. An example of such a process is the preferential dissolution of 

copper from Cu,Al alloy in NaCl solution [l]. The corrosion affected layer tends to contract. 
Here we analyze the stress distribution within the plate because of the differential contraction 
of various layers. 

FORMULATION OF THE PROBLEM 

In order to simplify the problem, we consider an infinite plate of thickness 2h and made of an 
isotropic elastic/perfectly plastic material. We use rectangular Cartesian coordinates with origin 
at the mid surface of the plate and x,-axis perpendicular to its faces. The bounding surfaces 
x3 = fh of the plate are exposed to a corrosive environment and are presumed to be traction 
free. The plate layer in contact with the environment deforms because of the exchange of 
particles between the plate and the environment. These deformations induce stresses in the 
plate. 

We assume that the plate deforms quasistatically so that inertia effects are negligible, a state 
of plane stress prevails within the plate, corrosive forces cause only normal stresses, the 
defo~ations of the plate are in~nitesimal in the sense that linear kinematical relations can be 
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used, and all deformation variables are functions of x3 and time t. Thus, 

0ij = U(6i16jl + 6,,6j,) (1) 

where 6, is the Kronecker delta. If the plate were anisotropic, the corrosive forces will likely 
induce shear stresses too, and equation (1) will need to be appropriately modified. The stress 
state (1) satisfies identically the equilibrium equations 

aij,j = 0, (2) 

where a comma followed by index j indicates partial differentiation with respect to Xi, and a 
repeated index implies summation over the range of the index. The pertinent boundary 

conditions are 

h 
Uij(X3 = fhp t) = 0, I adx3=0, 

-h I 
h 

x3(7 dx3 = 0. (3) 
-h 

That is, the top and bottom surfaces of the plate are traction free, and the resultant forces and 
moments on any section of the plate vanish. The presumed stress state (1) satisfies the 
boundary condition (3), for all values of u. 

We assume that the material obeys von Mises yield criterion which, for the stress state (l), 
reduces to 

o2 = y2 (4) 

where Y is the yield stress in a quasistatic simple tension or compression test. 
Our goal is to find a nontrivial solution of equations (1) and (3) which accounts for the 

deformations caused by the corrosive environment, and identify regions of the plate material 
that at a given instant of time are deforming elastically or plastically. 

SOLUTION OF THE PROBLEM 

The stress state (1) and the stress-strain relations for isotropic elastic/perfectly plastic 
materials imply that the only nonzero components of the infinitesimal strain tensor eij are c33 

and 

E,, = 62.2 = E. 

The strain field will satisfy the compatibility conditions if and only if 

(5) 

d2E 
E --= 

*33 - ax: 0. 

Thus, 

4x3, t) = F,(t) +x,&(t) (7) 

where F, and F2 are functions of time t, satisfies the compatibility condition (6). The functions 
F, and F2 are to be determined so that boundary conditions (3) are satisfied. 

In order to delineate whether a material point is deforming elastically or plastically, we work 
below in terms of strain-rate rather than strain, and assume that at any time t, it has the 
decomposition [2] 

i = i’ + (1 - g)iP + 1* (8) 

where E’, eP, and E* are elastic, plastic, and eigen strains, respectively, and a superimposed 
dot indicates the time derivative. The eigenstrain tensor E* gives the local constraint-free 
deformation of the corroded or affected layer. However, the actual deformation is not E* due 
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to the substrate constraining [3], The function g&, t) is defined as 

g(xj, t) = 0 if the material point is deforming plastically at time t, and 

g(x3, t) = 1 otherwise, 

For a point (xJ, t) deforming elastically, we have 

where E is Young’s modulus, and Y is Poisson’s ratio for the plate material, and we have used 
equation (7) and Hooke’s law. However, if a material point is deforming plastically, then the 
yield condition (4) is satisfied, and we have 

ir=O when g(xx, t) =O. (11) 

Since a material point is deforming either elastically or plastically, we can combine equations 
(10) and (11) into the following 

Recalling that the plate is initially stress free, equations (3)2 and (3)s are equivalent to 

I 

h 

I 

h 

iT(x3, t) dxj = 0, XJti(X1, t) c& = 0, 03) 
-h -h 

which, when combined with equation (12), give 

where 

If e* were known, then equations (12) and (14) could be solved for g and Ir and, hence, Q from 

CT= ‘g&d& 
I (16) 

0 

with 
g&s, t) =0 for (12= Y2, CK?>O, 

g(n,,t)=l for c?<Y’ or c?=Y’ and a&15:0. (17) 

For a general C*, equations (12) and (14) need to be integrated with respect to time t by 
using a numerical method such as the forward difference method. However, if the eigenstrain 
function e* is simple enough so that it is possible to predict aprimi the plastic zone, then these 
equations can be integrated analytically. 

Assuming that no unloading occurs in the time interval 0 I; t I T, and recalling that the plate 
is initially stress free, then 

cf(G, f) = be&, t> 

o(x3, t) = (sgn cr)Y 
where 

for g(x3, t) = 1, 

for g(xl, t) = 0, W-9 

for cr>O, 

for CI < 0, 
w@) = 

{ 

+1 
_1 
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and boundary conditions (Q and (3& become 

I 
h [ga + (1 - g)(sgn a) Y] dXj = 0, 

-h 
(20) 

with 

a” (l-v) 
z-[&+&-e*]. (22) 

Henceforth, we work with equations (18)-(22). 
We now choose the eigenstrain function E* to model a corrosion process. It is reasonable to 

assume that the corrosion process proceeds symmetrically from the outer bounding surfaces 
into the plate, and at time t has progressed to the point for which x3 = fl. The eigenstrain 
should be maximum at the outer bounding surfaces and should decrease gradually to zero at 
x3 = fl. A reasonable expression for E* satisfying these conditions is 

(23) 

where y is a positive constant to be determined from the test data. Since the plate is being 
deformed by corrosive forces only and E* is taken to be symmetric in x3, it follows that g(x3, t) 
is also symmetric in x3. Thus, equations (X3)-(22) give 

fi =f I hgs* d&-j-E 
0 0 

2 ’ - ’ lh(l - g)(sgn 0)Y dy3, 
0 0 

F2 = 0, (24) 

Cl- glNw 4Y b3. 

When the corrosive environment removes material from the plate, the eigenstrain near the 
bounding surfaces of the plate will be compressive and the resulting stresses will be tensile. 
However, the stresses within the central portion will be tensile in order to make the resultant 

force across the plate equal to zero. If there is any plasticity induced, it will first occur at the 
outer faces and then, as the affected layer grows, the central part of the plate may also be 
deformed plastically. We investigate below conditions for the plate to be deformed plastically. 

First, consider the case when the entire plate thickness is deformed elastically so that 

g(xl, t) = 1 for -h s x3 I: h and 0 5 t 5 T. Then, for a fixed 1 and time t, the stress distribution 

within the plate is given by 
- 

i 

- ; (1 - y, O-t_E,CrI, 

(r=: 

~(l-i)[(~~-i)2-3(1-i)3l, kz:,=a, 

where 
_ u EY x3 
0=---, 

Y 
P=,(,_+ x3=x, 

(25) 

are nondimensional quantities. 
Henceforth, we use nondimensional variables only and drop the superim~sed bars. 
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Fig. 1. Stress distribution within half the plate thickness when the corrosion process has progressed 
from the outer bounding surface to l/6 and l/3 the half-thickness of the plate. 

If the thickness of the corroded layer is small, say 1 - I= l/6, then the tensile stress 
generated at the bounding surfaces is approximately 16 times that at the plate center. As the 
corrosion penetrates into the plate, larger compressive stresses are induced within the central 
portion, and the difference between the magnitudes of the tensile stress at the bounding 
surfaces and the compressive stress within the central portion of the plate decreases. Figure 1 
depicts the stress distribution through the thickness of the plate for (1 - I) = l/6 and l/3. 

For plastic yielding to commence at the bounding surfaces of the plate, u = 1 at x3 = 1 in 

equation (25) and we get 

3 

Y = (1 - 1)3(2 + I) * 

The right-hand side of equation (26) is the minimum value of y for the plastic yielding to begin 
at the bounding surfaces of the plate. When plastic yielding has progressed to a point for which 
x3 =p, that is, through a thickness equal to (1 -p) from the outer bounding surfaces, the stress 
distribution is given by 

I 
- 

[ 

I$9 (p _ 43 + $I], OIX3I1, 

u= Y(l-l)[(x,-I)‘-$(p-1)3]+1-$, I<x,<p, 
(27) 

IL PIX351. 

The stress distribution through the thickness of the plate is depicted in Fig. 2. In order to 
determine p, we set x3 =p and o = 1 in equation (27) with the following result 

(P - O’(2P + 0 = $) 

which has only one real solution for 

3 

yCP(l-I)* (2% 

From equations (26) and (29), we obtain that the thickness of the corroded layer must 
exceed l/3 in order for the bounding surfaces of the plate to begin deforming plastically. The 
size of the plastic zone, which is determined from equation (28), satisfies the inequality 

3 
21-cp-a. 

ES 31:9-s 
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Fig. 2. Stress distribution within half the plate thickness when corrosion has progressed deep enough 
to cause plastic deformations of the outer layer. 

The maximum compressive stress occurs at x3 = 0. For plastic yielding to occur at the plate 
center, we set x3 = 0 and c7 = -1 in equation (27),. The resulting equation, together with 
equation (28), gives the following system of equations for p and y 

(p - Q”(2p + I) = 3 
Y(I - 0 ’ 

which have a physically meaningful solution for p and I only if 

32 

y z 9(1- Z)(l - 21)2 * 

(31) 

(32) 

Also, 

3-21>& 
p=- 

4 2 (33) 

gives I < 318 for plastic Aow to occur at the plate center. The stress dist~butio~ in this case is 

I -1, 05X,5& 

p5x3S11. (34) 

DISCUSSION AND CONCLUSIONS 

We have analyzed stress distribution in a plate subjected to corrosive environmental loads 

which change its material structure by diffusion of atomic particles out of the body and, 
therefore, induce R strain in it. We have assumed that the plate is made of an isotropic 
elastic/~~e~tly plastic material, and that it deforms q#asistatically so that inertia effects are 
negligible. It has been found that when the total thickness of the affected layer is less than one 
third of the plate thickness, the plate deforms elastically and the magnitude of the tensile stress 
generated at the bounding surfaces of the plate exceeds sixteen times the compressive stress 
induced in the unaffected central portion of the plate. This stress distribution supports the 
Sieradzki and Newman [4,5] model for the embrittlement of nanoscale structures. 

As the affected layer grows, the difference between the magnitudes of the maximum tensile 
stress in the affected layer and the peak compressive stress in the central unaffected portion of 
the plate decreases. Once the total thickness of the affected layers exceeds one-third the plate 
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thickness, the bounding surfaces of the plate start deforming plastically, and the plastic flow 
propagates inward. The half-thickness of this plastically deformed layer is given by 

3 
iI<p<h 

where 1 is the half-thickness of the affected layer and 2h equals the plate thickness. The central 
portion of the plate starts deforming plastically in compression when the corrosion process has 
progressed to a point whose distance from the outer bounding surface exceeds (5/8)h. 
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