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Abstract-We study axisymmetric thermomechanical deformations of a thick target being penetrated 
by a fast-moving rigid cylindrical rod with a hemispherical nose, and presume that target deformations 
appear steady to an observer situated at the penetrator nose tip. Both isotropic and kinematic 
hardening of the target material are considered. It is found that kinematic hardening increases the 
normal stress acting on the penetrator nose surface and the temperature rise of target particles 
abutting the penetrator. However, the value of the hydrostatic pressure at a point in the deforming 
target region is affected very little by the consideration of kinematic hardening. For suitable values of 
material parameters appearing in the evolution equation of the back-stress, the computed values of 
the back-stress at target particles abutting the penetrator nose surface equal three times the yield 
stress of the target material in a quasistatic simple compression test. 

1. INTRODUCTION 

During the penetration of a thick target by a fast-moving cylindrical rod, target and penetrator 
material particles in the vicinity of the target/penetrator interface are deformed severely, and 

are also heated up significantly. Consequently, the material undergoes microstructural changes 
such as the generation/annihilation of dislocations, dynamic recovery and recrystallization, 
development of texture, nucleation and growth of microcracks and voids, and possibly the 
development of shear bands that form during the intense plastic deformations of a material, 
especially at high strain rates. One way to account for these microstructural changes is to use 
constitutive equations which employ a suitable number of scalar and tensor valued internal 

variables (e.g. see Coleman and Gurtin [l], Chan et al. [2], Inoue [3], Lubliner [4], and Anand 
[5]). Here we use one scalar variable to describe the isotropic hardening, and a traceless 
symmetric second-order tensor, also known as the back stress tensor, to account for the 
kinematic hardening of the material. The Litonski-Batra constitutive relation (e.g. see Batra 
and Jayachandran [6]) is modified to incorporate the kinematic hardening and used herein to 
study the thermomechanical axisymmetric deformations of the target. The hemispherical nosed 
cylindrical penetrator is assumed to be rigid and the target deformations steady, as seen by an 
observer situated at the penetrator nose tip and moving with it. We note that Batra and 
Jayachandran [6] recently analyzed thermomechanica1 deformations of a target by using three 
~nstitutive relations, namely, those due to Litonski-Batra, Bodner-Pa~om [7], and Brown et 

al. 181. Each of these was calibrated to give almost identical effective stress vs logarithmic strain 

curves for a block made of target material and deformed in plane strain compression at an 
average strain-rate of 3300 s-‘. Even though these constitutive relations account for the 
evolution of the microstructural changes in different ways, they gave essentially identical results 
for the resisting force experienced by the penetrator, normal stress on the penetrator nose 
surface, and the distribution of the tangential speed and the second-invariant of the strain-rate 
tensor on the penetrator nose surface. 

This work is in the spirit of the one initiated by Batra and Wright [9], and is aimed at 
providing guidelines for selecting and improving upon the previously used kinematically 
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admissible fields in engineering models of target penetration. Subsequently, Batra and 

co-workers [lo-191 have studied different aspects of the problem. Review articles by Backman 
and Goldsmith [20], Wright and Frank [21], and Anderson and Bodner 1221, and books by 
Blazynski [23], MaCauley [24], and Zukas et al. [25,26] provide a summary of the work 
completed on the penetration problem, For penetration speeds in the range of OS-10 km/s, 
Birkhoff et al. [27], Pack and Evan [28], Ailen and Rogers [29], Alekseevskii [30], and Tate 

[31] have proposed using the Bernoulli equation or its mudi~~at~on to study the steady state 
~netratio~ process. The last three references introduced a resistive pressure, dependent upon 
the material strength, in the Bernoulli equation. Tate [32-341 used a solenoid fluid flow model 
of the steady state penetration process to estimate the resistive pressure, and Batra et af. 
[l&12] and Pidsley [35] used a numerical solution of the governing equations to find the 

resistive pressure. Engineering models of different complexity have been proposed by 
Awerbuch [36], Awerbuch and Bodner [37], Ravid and Bodner [38], Ravid et al. [39], 
Forrestral et al. (401, and Batra and Chen [41]. Chen and Batra 1423 proposed an expression for 
the frictional force on the target/penetrator interface in terms of the relative speed of sliding of 
target particles on the penetrator nose surface and the normal traction acting there. 

2. FORMULATION OF THE PROBLEM 

With respect to a cylindrical coordinate system with origin attached to the center of the 
hemispherical penetrator nose and positive z-axis pointing into the target, equations governing 
the axisymmetric steady deformations of the target are: 

Balance of mass 

divv=O, (1) 

Balance of linear momentum 

div ci = p(v + gradfv, (2) 

Bu~a~ce of sternal energy 

-div q + fr(aDP) = p(v - grad)U, (3) 

where 

2D = grad v + (grad v)=, 2W = grad v - (grad v)~, 

q = -k grad 8, 

U=cf?, 

(4) 

(5) 

(61 

a= -plfs, (71 

B = (v * grad)s + SW - Ws = 2C(D - Dp)? 

s - B = 2&I, 13, +)D”, 

k = (v - grad)B + BW - WB = g,DP - &ZB, tr B = 0, 

w z (v l grad)@ = 

21’ = tr(Dp)2. 
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Here v is the velocity of a material particle, (r the Cauchy stress tensor at the present location 
of a material particle, p the mass density, q the heat flux, D the stretching tensor, and W the 

spin tensor. The balance laws (1) (2), and (3) are written in the Eulerian description of 

motion, and the operators grad and div denote the gradient and divergence operators on fields 
defined in the present configuration. Equation (1) implies that both the elastic and plastic 
deformations of the target are assumed to be isochoric. Equation (5) is the Fourier law of heat 
conduction with k the thermal conductivity and 8 the temperature rise of a material particle. 
Equation (6) is the presumed constitutive relation for the specific internal energy U, wherein c 
is the specific heat. In equations (7)-( 13)) u is the Cauchy stress tensor, s its deviatoric part, p 

the hydrostatic pressure not determined by the deformation history, B the traceless symmetric 
second-order tensor used to account for the kinematic hardening .of the material, and 1~ is a 
scalar internal variable that accounts for the isotropic hardening of the material. The evolution 
equation (10) for B has been proposed by White et al. [43]. Equation (9) with p given by 
equation (11) is a generalization of the Litonski-Batra law to account for the kinematic 
hardening of the material. Here on is the yield stress in a quasistatic simple tension or 
compression test, parameters b and m characterize the strain-rate sensitivity of the material, v 
its thermal softening, and b its workhardening. In a quasistatic simple tension or compression 
test. 

1v n 
a=a, l+- 

( 1 1vo 

describes the stress-strain curve, where q is now interpreted as the plastic strain. In a dynamic 
test, the effect of the history of deformation upon the present state of deformation is accounted 
for through the parameter I+!I. 

We nondimensionalize variables by scaling stress-like quantities by a,,, length by q,, time by 
(ro/vo), and the temperature by the reference temperature 8,, defined by 

8, = o,lpc. (14) 

Here r. equals the radius of the cylindrical part of the penetrator and u. the penetration speed. 
In terms of nondimensional variables, the aforestated governing equations become 

div v = 0, (15.1) 

- grad p + div s = cx(v * grad)v, (15.2) 

s - B + /3y((v * grad)s + SW - Ws) = Z/!?D, (15.3) 

tr(oDP) + 6 div(grad 0) = (v - grad)8, (15.4) 

where 

(v . grad)B + BW - WB + &1B = E,DP, 

(v * grad)q = tr(oDp)/( 1+ z)n, 

a_pv7: % k 
9 Y=E' and 6=- 

orl . PC~O’O 

(15.5) 

(15.6) 

(15.7) 

are nondimensional numbers. Henceforth, we will use nondimensional variables only. For a 
given problem, CY, y, and 6 are constants, but p varies from point to point in the deforming 
region because of the variation in 1~. The value of (Y signifies the importance of inertia forces 
relative to the flow stress of the material, and may be thought of as the reciprocal of the 
Reynolds number in a viscous fluid. The values of y and 6 give the effect of material elasticity 
and heat conduction, respectively. For typical penetration problems involving long rod 
penetrators, 6 is of the order of 10e5; hence target deformations may be considered adiabatic. 
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Fig. 1. The finite region studied and its finite element discretization. 

Before stating boundary conditions, we note that the governing equations (15) are highly 
nonlinear and coupled, and are very difficult, if not impossible, to analyze. Here we seek their 
approximate solution by the finite element method, which necessitates that we consider a finite 
region of the target. The finite target region studied is shown in Fig. 1, and we impose on it the 

following boundary conditions. 

t*(m)=0 on ri, (16.1) 

v-n=0 on Ti, (16.2) 

q 1 n = ft,(@ - 0,) On Ti, (16.3) 



= 0, 
a0 

ft zt V*=O, -0 ar- on the surface AB, (16.4) 

21,=0, Q’-1, 8 =o, V&=0, p=o, &=:O, see- J -0 s,, = 0, 

s 0, lz = B,, = 0, BB8 = 0, B,, = 0, B,, = 0 an the bounding surface EFA, 

(16.5) 

=0, 
a0 

52 u,=o, z = 0 on the axis of symmetry DE. (16.6) 

Here R and t den&e, respectively, a unit normal and a unit Sargent vectur tu the surface, ff, is 
an average temperature of the penetratur, h, is the heat transfer coefficient between the 
penetrator and the target, and ri denotes the target/penetrator interface. The boundary 
conditions (16) incorporate the assumptions that l-‘i is smooth, there is no interpenetration of 
the target material into the penetrator and vice versa, the deformations are axisymmetric, and 

the bounding surfaces AB and EFA are far removed from the penetrator nose surface. The 
boundary conditions (16.5) on p and components of s and B on the surface EFA are needed, 
since we solve equations (15.3) and (15.5) for s and B, along with the other equations for p, v, 
8, and 1~lr; e.g. see Shimazaki and Thompson E44f. 

We refer the reader to [lo] for detaiis of obtaining a finite element solution of the prubfem, 
and ensuring that the region R studied herein is adequate. The computer code used to analyze 
the the~orne~hani~a~ problem discussed in [f was modified to include the effect of kinematic 
hardening. 

3. NUMERICAL RESULTS 

In an attempt to study the effect of kinematic hardening on the solution variables, the values 
of material parameters g1 and ez in equation (15.5) were varied over a wide range. However, 
the other material and geometric parameters were assigned the following values, taken from 
[6], for an HY-100 steel. 

p = 7360 kg/m3, a0 = 405 MFa, G = 80 GPa, E = 473 J/kg%, 

k = 50 W/m”C, h = 20 W/m~C, 0, = 0, r, = 10 mm, 6= lOs, 

v=l 2x10-3/“c . , zpo=O.l, m = O*Ol, n =0.13, cy = 2.0. (17) 

Thus, the reference temperature used to nondimension&e Ihe temperature rise equals 
108.9”C. 

Wang and Batra [45] have recently studied the initiation and growth of shear bands in a 
thermaNy softening viscoplasitc block obeying constitutive relations similar to equations 
(Q-(12) and deformed in plane strain compression at an average strain-rate of 5000~~‘. Their 
road-displacement curves (cf. Fig. 10 of f45]) for the homogeneous block show that an increase 
in the vaIue of E1 hardens the material and an increase in the vahx of & softens it in the sense 
Ehat the load required to compress the block by a certain amount is more for higher values of 
g, and less for larger values of Z$ Earlier computations by Batra and Jayachandran /6] and 
Jayachandran and Batra [19] suggest that a change in the values of Zj, and &, should affect the 
deformations of the target in an analogous manner. 

All of the results presented below and values of variables indicated in figures, unless stated 
otherwise, are nondimensional. 

3, I Resulfs with lj2 varied 

Figure 2 depicts the distribution of the normal stress, t~rn~ra~re rise, tangential speed, and 
the second invariant of the strain-rate tensor, also referred to as the strain-rate measure, on the 
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Fig. 2. Distribution of the normal stress, tangential speed, temperature rise, and the second invariant 
of the strain-rate tensor on the hemispherical nose surface of the penetrator for 5, = 1.0 and four 
different values of f,. - no kinematic hardening; - - - L& =o.o; ----- & = 1.0; - . - g* = 10.0; 

-~*-f,=lOO.o. 

penetrator nose surface for g1 = 1.0 and .!& = 0, 1.0, 10.0, and 100.0. We have also included the 
result, taken from [6], when there is no back-stress, i.e. c1 = & = 0. The angular position q,, 
indicated in Fig. 1, is measured from the centroidal axis. For a fixed value of Er, an increase in 
the value of & increases the recovery term in the expression (10) for the evolution of the 

back-stress. The computed results indicate that the normal stress on the penetrator nose 
surface is essentially the same for & = 10 and 100. However, lower values of & influence 
significantly the distribution of the normal stress, temperature rise, tangential speed, and the 
strain rate measure on the penetrator nose surface. The observation that the hydrostatic 
pressure p at the stagnation point equals 8.71, 8.53, 8.37, and 8.34 for & = 0, 1, 10, and 100, 
respectively, suggests that changes in the value of the normal stress are due to higher values of 
the deviatoric stresses which are necessitated by the evolution of the back stress there since the 
plastic deformation depends upon (s - B). The nondimensional axial resisting force F 

experienced by the penetrator and given by 

nf2 
F= 

I 0 ( 
n-an)sin2#d+ (18) 
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Fig. 3. Distribution of (tr (B BT))ln upon the penetrator nose surface for g, = 1.0 and four different 
values of &. See Fig. 2 for the legend to curves. The curve for & = 100 essentially coincides with the 

horizontal axis. 

for the hemispherical nose surface was found to equal 7.87 for the case of no kinematic 
hardening, and 9.61, 8.57, 7.86, and 7.77 for E2 =O, 1, 10, and 100, respectively. The 
dimensional values of F are obtained by multiplying the nondimensional ones by IV&. Note 
that in our work the speed of penetration is kept fixed, and whatever additional energy is 
required for the penetration process is presumed to be available. The noticeable increase in the 
temperature rise for & = 0, 1, and 10 is due to the significant values of B, see Fig. 3, and the 
observation, verified by the computed results that tr(BDP) 2 0. Since values of (s - B) affect 
the plastic deformations of the material, an increase in the value of B will necessitate higher 
values of s, which will cause more plastic working and, hence, greater temperature rise. The 
variation of the strain-rate measure, axial stress, temperature rise, and the axial velocity on the 
central line plotted in Fig. 4 reveals that the consideration of kinematic hardening affects these 
variables at points situated at most one penetrator radius from the penetrator nose tip. 

An integration of equation (15.2) along the central streamline (r = 0) gives 

1 
-ow*+p-ss,,-2 

I 

= au 

2 
3 dz = -o,,(O). 

0 ar 
(19) 

Setting z = 0 and comparing the result with Tate’s equation [33,34], we get 

R,=+-; (20) 

where R, equals the strength parameter for the target in Tate’s equation, and t& is the value of 
a,, at the stagnation point. The computed values of R, for c2 = 0, 1, 10, and 100 were found to 
be 10.63, 8.91, 8.05, and 7.97, respectively. For the case of no kinematic hardening, R, = 8.01. 
According to Tate [33,34], 

(21) 

where E equals Young’s modulus for the target material. Thus, Tate’s formula gives R, = 6.64. 
We note that for g2 = 0 and 1, the values of sS,, were higher than those for t2 = 10 and 100. 
Since the plastic deformation is governed by (sZ, - B,,), higher values of B,, necessitate a 
corresponding increase in the values of s,,. For & = 0, 1, 10, and 100, the values of -s,JO) 
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Fig. 4. Distribution of the axial stress, axial speed, temperature rise, and second invariant of the 
strain-rate tensor on the axial line for 6, = 1.0 and four different values of &. See Fig. 2 for the 

legend to curves. 

were found to be 2.92, 1.38, 0.68, and 0.63, respectively. However, the hydrostatic pressure 
equaled 8.71, 8.53, 8.37, and 8.34 for & = 0, 1, 10, and 100. 

In order to delineate whether or not the aforestated dependence of solution variables upon 
Z$ is typical, we have plotted in Fig. 5 results for E, = 104, and & = lo’, 106, 105, 6.5 x 104. 
Even though & varies by three orders of magnitude, the change in the normal stress and the 
tangential speed on the penetrator nose surface is minimal. Furthermore, the increase in the 
tem~rature rise is ~nsiderably less than that for results plotted in Fig. 2, wherein & was also 
varied by three orders of magnitude. These results suggest that the best values of e1 and & 
affect significantly the changes in the solution variables caused by the same relative change in 
the value of &. The axial resisting force experienced by the penetrator was virtually unaffected 
by the change in the value of &, and essentially equaled that for the case of no kinematic 
hardening. The dist~b~tion of ~tr(B’))‘~ on the penetrator nose surface shown in Fig. 6 reveals 
that the values of B for these values of E1 and & are much lower than those for the previous 
case for which rest&s are given in Fig. 3. The values of the target resistance parameter R, were 
determined to be 7.96, 7.98, 7.78, and 7.70 for & = lo*, 106, 105, and 6.5 x 104, respectively. 

Along the axial line, uniaxial strain conditions prevail approximately. Thus, the magnitude of 
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f&z - &) at a point on the axial line should equal 213 the effective flow stress defined as 

(J eff = 2fi yI. (221 

For ,$I = & = 100, the computed values of the error e(z) given by 

2 

were found to be fess than 2 for 1 G z s 7 with the highest value of 1.94 occurring at z = 1 and 

7, Thus, lStz - B,,I = ~cF,~ holds well on the axial line. 

3.2 Results with 5, varied 

With & = 100.0 and c1 assigned values 0.1, 1.0, 10, and 100, computed values of the normal 
stress, temperature rise, tangential speed, and the second invariant of the strain-rate tensor on 
the penetrator nose surface are plotted in Fig. 7. With the recovery term in equation (15.5) 
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fixed, an increase in the value of g, should result in higher values of B, as confirmed by the 
results included in Fig. 8, which in turn gives rise to higher values of the temperature. The 
computed results exhibit this behavior. The temperature distribution on the penetrator nose 
surface stays essentially uniform because of the convective transfer of heat. The values of the 
target resistance parameter R, = 8.84, 8.01, 7.97, and 7.96 for 5, = 0.1, 1, 10, and 100, 
respectively. The axial resisting force F experienced by the penetrator was found to be 7.76, 
7.77, 7.82, and 8.10, respectively, for g, = 0.1, 1, 10, and 100. However, when & was fixed at 
lo6 and g, assigned values ld, 104, 105, and 1.5 x 105, the axial resisting force and the target 
resistance parameter were found to be 7.76 and 7.90, respectively, for all four values of 5, 
considered. That higher values of E1 result in more temperature rise at target particles abutting 
the penetrator nose surface is evidenced by results plotted in Fig. 9. However, the distribution 
of the normal stress and the tangential speed at points on the penetrator nose surface are 
affected very little, even when 5, is increased by three orders of magnitude. Also, the 
hydrostatic pressure p at the stagnation point is not affected much by the consideration of 
kinematic hardening. For example, for Lj2= 106, p at the stagnation point equaled 8.34, 8.36, 

8.22, and 8.18, respectively, for 5, = ld, 104, ld, and 1.5 X 105. The contours of the 
hydrostatic pressure were virtually unchanged when the effect of kinematic hardening was 

considered. 
Figure 10 depicts contours of 1, = (tr(BB*))‘O for E1 = & = 1. The contours of 1, are virtually 

parallel to the crater surface. On any radial line ZB drops off quite rapidly for a distance of r. 

7 0.75 

6 0.50 

5 0.25 
4 0.10 

3 0.05 

2 0.02 
1 0.01 

Fig. 10. Contours of (tr(B BT))‘” within the deforming target region. 
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Fig. 11. Distribution of the normal stress, tangential speed, temperature rise, and the second 
invariant of the strain-rate tensor on the hemispherical nose surface af the penetrator for 5, = 1, 
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from the crater surface, and then quite slowly. The contours of I8 far other values of g1 and 52 
are similar to those shown in Fig. 10 and are not inckded herein, 

We have plotted in Fig. II the d~st~bution on the penetrator nose surface of the normal 
stress, temperature rise, tangentiai speed, and the strain-rate measure for cy = 2, 6, and 10 with 

et = 1 and & = 100 kept fixed. The normal stress distribution on the penetrator nose surface 
resembles that computed by Batra and Wright [9] for the case of no kinematic hardening in the 
sense that its value at the point for which ~3 = 46” is unaffected by the value of a; and it 
increases with cy for @ < 46” and decreases with (Y for q > 46”. We note that Batra and Wright 
used a coarse finite element mesh consisting of Gnoded triangular elements and considered a 
smaller target region than that studied herein. The values of the strain-rate measure increase 
with o for 9 < 6Oo, those of the tangential speed increase with a for 10“ s cx I 80”, and the 
temperature distr~hution on the penetrator nose surface is affected very tittle when (Y is 
increased from two to ten. The dist~bution of (tr@ BTj)fn on the penetrator nose surface, 

ES 31:9-H 
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Fig. 12. Distribution of (tr(BBT))‘12 
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upon the penetrator nose surface for 5, = 1, & = 1, and for 
See Fig. 11 for the legend to the curves. 

depicted in Fig. 12, shows that, at points near the nose periphery, ZB decreases with an increase 
in the value of (Y. The axial resisting force F experienced by the penetrator equals 8.57, 8.72, 
and 8.87 for (Y = 2, 6, and 10, respectively. Results computed with f1 = 1, and Zj2 = 100 showed 
similar trends with a change in a; except that ZB was found to be uniformly distributed on the 
penetrator nose surface and equaled 0.014 for (Y = 2, 6, and 10. 

4. CONCLUSIONS 

We have analyzed steady state axisymmetric thermomechanical deformations of a kinemati- 
tally hardening viscoplastic target being penetrated by a fast moving hemispherical nosed rigid 
cylindrical rod. The deformations of the target appear to be steady to an observer situated at 
the penetrator nose tip. It is found that the consideration of kinematic hardening increases the 
normal stress and the temperature rise at a point on the penetrator nose surface. This increase 
in the normal stress is due to the evolution of the back stress and the values of the hydrostatic 
pressure at a point are changed very little when effects of kinematic hardening are included in 
the analysis. The kinematic hardening increases the values of the target resistance parameter 
appearing in Tate’s modified Bernoulli equation. 
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