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Abstract-We study dynamic axisymmetric thermomechanical deformations of a viscoplastic cylinder 
with its boundaries assumed to be thermally insulated, its mantle traction free, and its top and bottom 
surfaces compressed at a prescribed rate. We consider two limiting cases of the frictional force 
between the loading device and the cylinder, i.e. either there is no sliding between the two surfaces, 
or there is smooth contact. It is found that the shear bands initiate much later when frictional force is 
neglected than when it is considered. A comparison of the presently computed results with those for 
the case when the body is assumed to be deformed in plane strain compression reveals that the 
initiation of shear bands is delayed significantly for the axisymmetric problem. 

1. INTRODUCTION 

Zener and Hollomon [l] observed 32 pm wide shear bands during the punching of a hole in a 
low carbon steel plate, and postulated that heating caused by the plastic deformation of the 
material made it softer and the material became unstable when this thermal softening equalled 
the combined effects of strain and strain-rate hardening. Subsequent experimental [2,3] and 
numerical [4-61 studies have revealed that shear bands generally form at an average strain 
much more than the one when the shear stress or the effective stress attains its peak value. 
Backman and Finnegan [7] have pointed out that shear bands initiate from flaws, second phase 
particles, or other material defects present in the body and propagate like a crack. The 
analytical and numerical studies have modeled a material defect by introducing (i) a 
perturbation in temperature or strain-rate, (ii) a geometric imperfection such as a notch or a 
smooth variation in the thickness of the specimen, (iii) a weak material at the site of the 
defect, (iv) a void, or (v) a rigid inclusion. Batra [6] studied simple shearing deformations of a 
viscoplastic body and found that large temperature perturbations caused the shear bands to 
initiate at an average strain less than the one when the shear stress attained its peak value in a 
defect-free body. 

Wulf [8] tested 7039 aluminum cylinders in compression at average strain-rates of 
2000-25,000 s-’ and observed that circular cross-sections were deformed into elliptical ones, 
and shear bands formed in specimens which subsequently failed by crack propagation along the 
dominant band. Here we study the dynamic thermomechanical deformations of an isotropic 
circular steel cylinder deformed in compression at a nominal strain-rate of 5000 s-l, and model 
a material defect by introducing a temperature perturbation at the center of the cylinder. We 
assume that the deformations of the cylinder are axisymmetric even after a shear band has 
formed. There is no fracture or failure criterion included in our work; thus, the cylinder can 
undergo unlimited deformations. The computed results show that shear bands form much later 
when the contact surfaces between the loading device and the ends of the cylinder are modeled 
as smooth than when they are taken to be sticking with each other. A comparison of the 
present results with those when the body is assumed to deform in plane strain compression 
reveals that the initiation of shear bands is delayed considerably in a body undergoing 
axisymmetric deformations. 

2. FORMULATION OF THE PROBLEM 

A schematic sketch of the problem studied is shown in Fig. 1. We use cylindrical coordinates 
with origin at the center of the cylinder to analyze its axisymmetric deformations, presume that 
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Fig. 1. A schematic sketch of the problem studied. 

it is made of a thermally softening viscoplastic material, and is loaded at its ends by an 
impulsive load. Because of the symmetry of deformations about the horizontal centroidal 
plane, we analyze deformations of the upper half of the cylinder. In terms of the Lagrangian 
description of motion, equations governing the thermomechanical deformations of the body are 

(PO’ = 0, (1) 

p,-$ = Div T, (2) 

p& = -Div Q + T: Grad v, (3) 

T&#-T 
P ’ 

a=-B 

2,=gz (1+ bZ)m(l - v(9), 

Q-P0 -1 -7F q, q=-kgrad8, 

2D = grad v + (grad v)‘, 2z2= D:D, D=D-i(trD)l, (7) 

d=ch+pB(i-l)/(pp,), J=detF, F = Grad x. 

Equations (l), (2), and (3) express, respectively, the balance of mass, balance of linear 
momentum, and the balance of internal energy; equations (4),, (6)2, and (8)i are, respectively, 
the presumed constitutive relations for the Cauchy stress u, heat flux q measured per unit area 
in the present or deformed configuration, and the rate of change of the specific internal energy 
e. In equations (l)-(8), p is the present mass density, p. the mass density in the reference 
configuration, v the velocity of a material particle, the operators Div and Grad signify the 
divergence and the gradient operations in the reference configuration, the operator grad is the 
gradient of a quantity in the present configuration, A: B equals tr(ABT) for second order 
tensors A and B, and a superimposed dot indicates the material time derivative. Furthermore, 
F is the deformation gradient, D the strain-rate tensor, D the deviatoric strain-rate tensor, x 
gives the present location of a material particle that occupied place X in the reference 
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configuration, T the first Piola-Kirchhoff stress tensor, Q the heat flux measured per unit area 

in the reference configuration, 8 the temperature rise, a0 is the yield stress in a quasistatic 
simple compression test, B is the bulk modulus, parameters b and m describe the strain-rate 
hardening of the material, Y characterizes its thermal softening, k its thermal conductivity, and 
c the specific heat. Defining the deviatoric stress tensor s by 

s=o+B 1-$(trD)l=2pb, 

we get 

(9) 

The constitutive relation (4)* with cc given by (5) generalizes the one proposed by Litonski [9] 
for simple shearing deformations of the material. Batra [lo] proposed and used equation (4)* to 
study the steady-state axisymmetric deformations of a thermoviscoplastic target being 
penetrated by a fast moving rigid cylindrical rod, and it has been referred to as the 
Litonski-Batra flow rule. Batra and Jayachandran (111 have shown that the Litonski-Batra 
flow rule and those proposed by Bodner and Partom [12] and Brown et al. [13], when 
calibrated against a hypothetical compression test and subsequently used to study the 
axisymmetric steady-state penetration problem, predict essentially identical patterns of target 
deformations. We note that Bell [14], Lin and Wagoner 1151, and Lindholm and Johnson [16] 
concluded from their test results that the flow stress decreases linearly with the temperature 
rise for the materials they tested. 

We introduce nondimensional variables, indicated below by a superimposed bar, as follows: 

6 = a/uo, B = s/C&, B = B/a,, ‘i’= T/o,, t = v/uo, f = tv,lH, 

ii = xlRo, 0 = e/co, d = b(v,/H), v = veo, P = PIP09 

e, = u~~(P,c), b = DH/uo, f = IHluo. (11) 

Here 2H is the height of the cylinder, R. its radius, and u. the imposed speed on the top and 
bottom surfaces. Henceforth we use nondimensional variables and drop the superimposed bars. 

We study only axisymmetric deformations of the viscoplastic cylinder, and presume that they 
are symmetric about the horizontal centroidal plane. Pertinent boundary conditions for the 
material in the first quadrant of the R-Z plane are: 

v, = 0, TzR = 0, QR = 0 on the axis of symmetry t = R = 0, 

v, = 0, T,=O, Q,=O on z=Z=O, 

&=O, T&=0, QR=O on the mantle of the cylinder r = Ro, 

v, = -U(t), Q, = 0 and either T,= = 0 or u, = 0, on the top surface 2 = H. (12) 

That is, boundary conditions resulting from the presumed symmetry of deformations are 
applied on the left and bottom faces, the mantle of the cylinder is taken to be traction free, 
normal velocity is prescribed on the top surface, and either zero radial velocity or zero 
tangential traction is applied on the top surface, which simulates the condition of no sliding or 

no frictional force acting between the loading device and the cylinder surface. All bounding 
surfaces of the cylinder are presumed to be thermally insulated from the surroundings. We take 

the function U(t) as 

U(t) = t/0.005, O~ts0.005, 

= 1, tr0.005, (13) 
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and the initial conditions as 

p(R, 2, 0) = 1.0, v(R, 2, 0) = 0, 

8(R, 2, 0) = t-(1 - 62)gexp(-562), a2=R2+Z2. (14) 

Thus the block is initially at rest, has a uniform mass density, but nonuniform temperature 
which is high at the origin and rapidly falls off to zero as we move away from it. The initial 
temperature (14)3 models a material defect and its magnitude E at the origin represents in some 
sense the strength of the defect. 

3. BRIEF DESCRIPTION OF THE SOLUTION TECHNIQUE 

The problem formulated above is highly nonlinear and too ~mpli~ted to solve an~yti~lly. 
It is difficult, if not impossible, to prove an existence and/or a uniqueness theorem for it. Here 
we seek an approximate solution of the problem numerically by the finite element method, and 
use an updated Lagrangian description of motion. That is, to find the deformed configuration 
of the body at time (t + AZ) we take its configuration at time t as the reference configuration. 
However, the defo~ations during this time interval At may be finite. We first reduce the 
coupled nonlinear partial differential equations governing the thermomechanical deformations 
of the body to a set of coupled, nonlinear, and ordinary stiff differential equations by using the 
Gale&in approximation. A finite element mesh consisting of 3-noded triangular elements with 
3-point quadrature rule and lumped mass matrix, obtained by the row-sum technique, is used. 
At each node point of the finite element mesh, two components of the velocity, the 
temperature and the mass density, are taken as unknowns. The stiff ordinary differential 
equations are integrated with respect to time by using the backward difference Adam’s method 
included in the subroutine LSODE developed by Hindmarsh [17]. The Gear method, also 
included in LSODE, could not be used because of the limited core storage available. 

We delineate narrow regions of intense plastic deformation by using an adaptive mesh 
refinement technique developed by Batra and Ko [18] and described in the Appendix. After 
having obtained soiution for a few time steps with a coarse mesh, the mesh is refined so that 
the integral of the second invariant of the strain-rate tensor over each element is essentially the 
same. Thus, smaller elements are generated in regions where the material is deforming 
severely, and coarser elements elsewhere. 

4. COMPUTATION AND DISCUSSION OF RESULTS 

Assuming that the cylinder is made of a typical steel, we assigned the following values to 
various material and geometric parameters. 

b = 10,000 s, a0 = 333 MPa, k = 49.2 Wm-‘“C-’ f m = 0.025, 

c = 473 Jkg-“*C?, p. = 7800 kg rnm3, B = 128 GPa, 

Y = O.O222T’, u0=25ms-‘, H = Ro=5.0mm, E = 0.2. (15) 

We have stated dimensional quantities to clarify the units used. Thus, the cylinder is 
compressed at an average strain-rate of 5000 s-r. For values given in (U), 8, = 89,6”C, and the 
nondimensional melting temperature 6, defined as l/v equals 0.5027. We have taken a rather 
large value of the thermal softening coefficient Y so as to reduce the computational time. It 
should not affect the qualitative nature of results. In view of the lack of test data in a shear 
band, and the unavailability of detailed information about the evolution of a shear band in a 
compression problem, one can only see whether or not computed results predict well 
qualitatively various aspects of the shear band formation. 
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Fig. 2.-(Caption overleaf). 
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Fig. 2. (a) Refined finite element meshes at nondimensional times t = 0.160, 0.190, and 0.197 for the 
no slipping case; (b) t = 0.26, 0.30, and 0.315 for the case of the smooth contact. 
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The finite element mesh at time t = 0 had 400 uniform triangular elements with 441 nodes. 

The mesh was refined when the second invariant I of the deviatoric strain-rate tensor at the 
origin equalled 5, and subsequently for every increment of 0.01 in the nondimensional 
temperature 8 at the specimen center. The finite element meshes so generated in the 
configurations at time t = 0.160, 0.190, and 0.197 when there is no slipping allowed at the 
contact surface between the loading device and the cylinder ends are depicted in Fig. 2(a). 
These plots discern the barrelling effect observed in compression tests, and also the severely 
deforming narrow region. The strain-rate near the top right corner is very high, too, and the 
elements there are deformed significantly. However, such is not the case when the contact 
surfaces between the loading device and cylinder ends are taken to be smooth. This is clear 
from the plots of the finite element meshes generated at time t = 0.26, 0.30, and 0.315 given in 
Fig. 2(b). In this case, the lateral displacement of material particles on the end faces is more 
than that of the similarly situated particles on the centroidal horizontal plane, and there is the 
reversed barrelling effect. This reversed barrelling was observed by Wulf [19] in high strain-rate 
compression of titanium and some titanium alloys, who used graphite grease to hold the 
specimens and also as a lubricant. Even though the average strain in the cylinder is more than 
that with the no slipping case, the deformations appear to be less intense within the band. This 
is mainly due to the differences in the deformations of the region near the top right corner for 
the two cases. To elucidate this, we have plotted in Fig. 3 the evolution of the second invariant 
I of the deviator+ strain-rate tensor at the top right comer. These plots indicate that the region 
near the top right corner deforms severely when the loading device is assumed to be glued to 
the cylinder ends. Computations with no temperature perturbation introduced at the center 
showed that a shear band initiated from the top right corner and propagated inward when 
sticking friction was considered, but no such localization effects were observed when the 
contact surfaces were taken to be smooth. 

That the localization of deformation is significantly delayed for the axisymmetric problem 
with no friction is evidenced by the plot in Fig. 4(a) of the evolution of the second invariant Z of 
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the deviatoric strain-rate tensor at the centroid of the cylinder. We have also included the 

corresponding result for the case when a cylindrical body of square cross-section (10 x 10 mm) 
and made of the material of the circular cylinder studied herein is deformed in plane strain 
compression at an average strain-rate of 5OOtl s-l. It is transparent from these plots that the 
rapid increase in the values of I occurs at the lowest value of the average strain when the body 
is deformed in plane strain compression and at the highest value of the average strain when the 
deformations are axisymmetric and the contact surfaces are smooth. Also, during the time I 
increases rapidly, its rate of increase seems to be the least for axisymmetric deformations with 
smooth surfaces. However, when I at the cylinder center is plotted against the temperature 
there [cf. Fig. 4(b)] the effect of boundary conditions at the end faces is minimal. Since the 
temperature at the cylinder center increases monotonically until the material there melts, the 
abscissa represents a distorted time scale. 
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Fig. S.-(Caption ouerkaf). 
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Fig. 5. Contours of the second invariant of the deviatoric strain-rate tensor at two different times: (a) 

no slipping--f = 0.180, 0.197; (b) smooth contact-r = 0.2h0, 0.315. 

The contours of the second invariant Z of the deviatoric strain-rate tensor at two different 
times are plotted in Fig. 5(a) for the case of no sliding between the cylinder ends and the 
loading device, and in Fig. 5(b) for the case of smooth contact. In each case the contours of 
increasingly higher values of Z originate at points where the deformation localizes first and 
propagate outward. By estimating the distance through which the ends of the contour have 
diffused out and the time taken to do so, we determine the speed of propagation of the contour 
of Z = 10 to be 216 m/s for the one originating at the center and 389 m/s for that initiating at 
the top right corner. However, when the cylinder ends are taken to be smooth, the contour of 
Z = 10 propagates at 313 m/s. We note that Marchand and Duffy [2] estimated the tentative 
speed of a shear band to be either 255 or 510 m/s depending upon whether or not it propagated 
in both directions around the specimen circumference. The rather good match between 
the computed speeds and those given by Marchand and Duffy, while gratifying, is really 
illusive since the speed of propagation of the shear band depends upon the state of defor- 
mation within and around it. We have not established any such correlation between the 
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computed deformation field and that observed experimentally. We should study a 3- 
dimensional problem in order to accomplish this. 

Figure 6 exhibits contours of temperature at two different times for the two cases studied 
herein. For the case of sticking surfaces, the temperature at the top right comer is comparable 
to that at the cylinder center, even though the initial temperature at the center is considerably 
higher that that at the top right corner. It suggests that the deformations of the region near the 
top right comer are more intense than those of the material near the center of the cylinder. 

The distribution at different times of the second invariant I of the deviatoric strain-rate 
tensor at points on the horizontal centroidal axis is depicted in Fig. 7. It is clear that the 
severely deforming region adjoining the centroid of the cylinder becomes narrower as the 
cylinder continues to be compressed. That the intense deformations are confined to a 
somewhat narrow band is evidenced by the plots, given in Fig. 8, of the normalized effective 
stress, temperature, and the second invariant I of the deviatoric strain-rate tensor, at the final 
time considered, on lines AB and CD perpendicular to the estimated centerline of the shear 
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Fig. 6. Contours of the temperature at two different times: (a) no slipping-f =O.%O, 0.197; (b) 
smooth contact-t = 0.260,0.315. 

band. A quantity is normalized with respect to its peak value at points on AB or CD, and the 
abscissa equals the distance of a point from A or C. The centerline of the shear band was 
determined from the contours of the second invariant I of the deviatoric strain-rate tensor, and 
was assumed to be made up of two line segments for the case of smooth contacting surfaces, 
and three line segments when the contact surfaces are rough. These lines are shown in the 
insert in Fig. 8. Note that the centerline of the band changes with time, which inhibits depicting 
results using 3dimensional graphics. The plots in Fig. 8 suggest that a narrow region around 
the points of intersection of lines AB and CD with the centerline of the band, undergoes 
intense deformations. The nondimensional effective stress, s,, is defined as 

Its lower values at points close to the centerline of the band indicate that thermal softening 
there exceeds the strain-rate hardening. 

The variation of the normalized values of the second invariant of the deviatoric strain-rate 
tensor, effective stress, and the tern~ra~~ along the estimated centerline of the band, shown 
in Fig. 9, indicates that only a narrow region near the center of the cylinder is undergoing 
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Fig. 7. Variation of the second invariant of the deviatoric strain-rate tensor on the centroidal axis at 
different times; the time is indicated on the curves: (a) no slipping; (b) smooth contact. 

intense deformations. When frictional forces are accounted for, the material near the top right 
corner is also deforming severely. In this case, the second invariant of the deviatoric strain-rate 
tensor is higher near the top right corner than that at the cylinder centroid. We 
note that as the cylinder is compressed different material particles on the mantle of the cylinder 
contact the loading surface; thus, a new material particle is situated at the top right corner as 
time varies. Since the temperature rise at a point is a measure of the total energy dissipated 
there, less energy has been dissipated at points on the centerline of the band that are away 
from the corners. We stopped the computations as soon as a material point melted. Even 
though the material there failed, the surrounding material provides strength to the structure 
and the cylinder can still be compressed further. However, in view of the limited computational 
resources available to us, this was not attempted. 

Figure 10 exhibits the variation with average strain of the average normal tractionf, and the 
average tangential traction ft acting on the top surface. These are defined as 

(17) 

where r0 is the radius of the cylinder in the deformed configuration. For the case of smooth 
surfaces fn decreases gradually, but for the frictional case the transients seem to persist during 
the entire duration of the simulation. We note that the integrands in equation (17) are 
evaluated at points on the top surface for which t = i, and the abscissa in Fig. 10 is 
proportional to the vertical displacement of the top surface. For the case of rough surfaces, the 
temperature of material particles adjoining the top surface rises noticeably soon after the load 
is applied, thus making the material there softer and easier to deform. This accounts for the 
sharp decrease in the average normal traction required to compress the cylinder at the 
prescribed rate. Because of the increase in the value of r,, with time, the variation of the 
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total load acting on the top surface with time will be different from that off.. It is interesting to 
see that the average tangential traction on the top cylinder end exceeds the average normal 
traction there and the two are out of phase with each other, implying thereby that ft is not 
proportional to J,. For the body deformed in plane strain compression, the average normal 
traction on the top surface is a little less than that for the same body undergoing axisymmetric 
deformations. 
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band: (a) no slipping; (b) smooth contact. 

5. CONCLUSIONS 

We have studied the initiation and growth of shear bands in a thermally softening viscoplastic 
cylindrical body compressed at a nominal strain-rate of StXlOs-‘. It is presumed that its 
deformations stay axisymmetric even after a shear band has formed. The loading device can 
either slide freely on the cylinder end, or does not slide at all. A shear band forms sooner when 
frictional effects are considered than when they are not. Also, a comparison of the presently 
computed results with those for the same body deformed in plane strain compression reveals 
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contact. 
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Fig. 10. Variation with time of the average normal and tangential tractions acting on the cylinder 
ends. 

that the initiation of a shear band is significantly delayed in the body undergoing axisymrnetric 
deformations. For the case of no slipping, the strain-rate at the top right comer also increases 
significantly, and it equals or exceeds that at the center of the cylinder. The defo.med shape of 
the cylinder looks like a barrel when the loading surface is assumed to be glued to the cylinder 
end, and like a reversed barrel when the surfaces can slide freely over each other. This agrees 
qualitatively with the experimental findings. The average tangential traction required to 
prevent sliding of the loading surface over the cylinder end exceeds the average normal traction 
there, and the two are out of phase with each other. 
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APPENDIX 

At the referee’s suggestion, we describe below the adaptive mesh refinement technique; the material is taken from 
Ref. [18], wherein results, including error norms, for adaptively refined meshes for a plane strain problem are 
compared with those obtained with a fixed mesh. 

We first select a coarse mesh and find a solution of the problem formulated in Section 2. This mesh is refined so that 

a, = 
I 

IdQ, e = 1,2, . . , n,, , 
Q. 

t-41) 

is nearly the same for each element Q,. In (Al), n,, equals the number of elements in the coarse mesh and P, is one of 
the elements. Since one may not have an idea where the solution will exhibit sharp gradients, we choose the coarse 
mesh to be uniform. The motivation behind making a, the same over each element S&, is that within the region of 
localization of the deformation vahtes of I are very high as compared to those in the remaining region. Other variables 
such as the temperature rise, the maximum principal strain, and the equivalent strain which are aiso quite large within 
the band will be suitable replacements for I in equation (Al). The refined mesh will depend upon the variable used in 
equation (Al). In order to refine the mesh, we find 

and 

h,=$, 
l 

H. = $ 2 h,, n=l,2 ,..., nod. 
cc-1 

(A4) 

(As) 

Here, 5 is the size of the element Q, in the coarse mesh, N, equals the number of elements meeting at node n, and nod 
equals the number of nodes in the coarse mesh. We refer to H, as the nodal element size at node n. 

In order to generate the new mesh, we first discretize the boundary by following the procedure given by Cescotto 
and Zhou [28]. Let AB be a segment of the contour to be discretized, s the arc length measured from point A, and HA 
and He be nodai element sizes for nodes located at points A and B, respectively. From a knowledge of the values of H 
at discrete points, corresponding to the nodes in the coarse mesh, on AB we define a piecewise linear continuous 
function H(s) that takes the previously computed values at the node points. In order to discretize AB for the new 
mesh, we start from point A, if H,, < HB; otherwise we start from B. For the sake of discussion, let us assume that A is 
the starting point. We first find temporary positions of nodes on the segment AB by using the following recursive 
procedure. Assume that points 1,2, . . . , k have been found. Then the temporary location of point (k + 1) is given by 

sk+l = sk + ;[H(s,) + Ws:+,)l, 

where 
s;,, = sk + H(Q). (A7) 

Referring to Fig. Al, the above procedure will give rise to the following four alternatives: a = b = 0, a <b, a > b, 
a = b # 0. If a = b = 0, then the temporary locations of node points are their final positions. Depending upon whether 
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I ; 

I a 1 I N 
P B p+l 

I I I 
I 2 3 4'k 

I 
k+l 

I 

Fig. Al. Discretization of a boundary segment for mesh refinement. 
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Active 

Fig. A2. Advancing front and new element generation. 

u < b or 6 4 u, the node points 2 to p or 2 to p + 1 are moved, the displacement of a node being proportional to the 
value of H there, so that either node p or node (p + 1) coincides with B. This determines the final positions of nodes 
on the segment AB. 

Having discretixed the boundary, we use the concept of advancing front (e.g. see L.o [21], Peraire et al. [22,23], and 
Habraken and Cescotto [24]) to generate the elements. An advancing front consists of straight line segments which are 
available to form a side of an element. Thus, to start with, it consists of the discretixed boundary. We choose the 
smallest line segment (say side AB) connecting the two adjoining nodes, and determine the nodal element size 
HM = H(sM) = (HA + It,)/2 at the midpoint M of AB. We set 

I 

0.8z 
- 

if H,,, C0.8AB, 
6= HM if0.8A~~H,,,zz1.4~, (A8) 

1.4z if 1.4=< H,, 

and find point C, at a distince 6 from A and B (cf. Fig. A2). Here E equals the length of segment AE. We search for 
all nodes on the active front that lie inside the circle with center at C, and radius 6, and order them according to their 
distance from Cr with the tint node in the list being closest to C,. At the end of this lit are added points C,, C,, C,, 
C,, and Cs, which lie on C,M and divide it into five equal parts. We next determine the first point C in the list that 
satisfies the following three conditions. 

(i) Area of triangle ABC > 0. 
(ii) Sides AC and BC do not cut any of the existing sides in the front. 

(iii) If any of the points C,, Ca, . . . , Cs is chosen, that point is not too close to the front. The triangle ABC is an 
element in the new mesh. If C is one of the points C,, C,, . . . , C,, then a new node is also created. The advancing 
front is updated by removing the line segment AB from it, and adding line segments AC and CB to it. The element 
generation process ceases when there is no side left in the active front. 

We determine the values of solution variables at a newly created node by first finding out to which element in the 
coarse mesh this node belongs, and then finding values of solution variables at this node by interpolation. This process 
and that of searching for line segments and points in the aforestated element generation technique consume a 
considerable amount of CPU time. These operations are optimized to some extent by using the heap list algorithm 
(e.g. see Khmer [25]) for deleting and inserting new line segments, and quadtree structures and linked lists for 
searching line segments and points and also for the interpolation of solution variables at the newly created nodes. 
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