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Abstract

A shear band is assumed to propagate at a uniform velocity in a thermoviscoplastic body being
deformed in mode-II. The deformation ®eld appears steady to an observer situated on and moving with
the shear band tip. The region around the shear band tip is divided into a core region and an inertial
region. The core region is behind the shear band tip, and the inertial region surrounds the band tip but
excludes a small region around the tip. Asymptotic ®elds for the velocity, temperature and the e�ective
stress are determined in the inertial region. The dependencies of the thermal width of the band and of
the rate of energy dissipated within the core region behind the shear band-tip upon the speed of the
shear band are exhibited. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Tresca [1] and Massey [2] observed shear bands during the hot forging of a platinum bar.
Subsequently, Zener and Hollomon [3] reported 20 mm wide shear bands during the punching
of a hole in a low carbon steel plate, and postulated that a material point becomes unstable
when its hardening due to strain and strain-rate e�ects is overcome by the softening due to its
being heated up. Experimental work [4] on torsional tests of thin-walled tubes has revealed that
a shear band initiates much later than when a material point becomes unstable. Batra and Kim
[5] and Deltort [6] have postulated that a shear band initiates in earnest at a material point
when the shear stress there has dropped to 90 and 80%, respectively, of its peak value. Much
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of the work on adiabatic shear bands is summarized in the book by Bai and Dodd [7], the
review paper by Tomita [8], in papers included in the special issue of the Applied Mechanics
Reviews [9], and the Mechanics of Materials journal [10], and in lecture notes [11] edited by
Perzyna.
In a torsion test on a homogeneous and isotropic thick-walled tube with a V-notch around

its circumference, a shear band propagates in a direction normal to the particle velocity [12]. If
a shear band were to be replaced by a crack, this will correspond to mode III deformations.
Kaltho� [13], Mason et al. [14] and Zhou et al. [15] have experimentally studied the initiation
and propagation of a shear band in a prenotched plate impacted on the notched side by a
projectile moving parallel to the axis of the notch. The deformation ®eld near the notch tip is
dominated by mode II deformations. Needleman and Tvergaard [16], Zhou et al. [17] and
Batra and Nechitailo [18] have analysed this problem numerically under the assumption of the
plane strain state of deformation.
Wright and Walter [19] have studied the asymptotic structure of a shear band propagating at

a uniform velocity in a rigid thermoviscoplastic material being deformed in antiplane shear.
They divided the region around the shear band tip into a core region that is behind the shear
band tip and an inertial region surrounding the shear band tip but excluding an in®nitesimal
region around it. Whereas both heat conduction and inertia forces are dominant in the core
region, only inertia forces are considered in the inertial region. In antiplane shear, there is only
one component of velocity directed normal to the plane of deformation. Here we extend their
work to a rigid thermoviscoplastic body being deformed in mode II or in-plane shearing. It is
found that with an increase in the shear band speed, the thermal width of the band sharply
decreases but the rate of energy dissipated per unit volume of the core region behind the band
tip rapidly increases.

2. Formulation of the problem

We study thermomechanical deformations near the tip of a shear band which is propagating
horizontally at a constant speed U in a thermoviscoplastic body undergoing mode II
deformations. The deformations are assumed to be steady with respect to an observer situated
on and moving with the shear band tip. Consider a cylindrical coordinate system with origin at
the position of the shear band tip at time t=0 as shown in Fig. 1. We neglect elastic
deformations and assume the material to be incompressible; the material is thus modeled as
rigid thermoviscoplastic. This is justi®ed because within and adjacent to the shear band, plastic
deformations are very large. Equations governing the thermomechanical deformations of the
body are

trD � 0, �1�

rÇv � divSÿ rp, �2�

rcv
_T � kr2T� tr�SD�, �3�
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S � 2k0�1ÿ aT ��1� bI �mD=I: �4�

Eqs. (1)±(4) express, respectively, the balance of mass, balance of linear momentum, balance of
internal energy and the constitutive relation for a thermoviscoplastic body. In them, D is the
strain-rate tensor, r the mass density, v the velocity ®eld, S the deviatoric Cauchy stress tensor,
p the hydrostatic pressure, cv the speci®c heat, k the thermal conductivity, T the temperature
rise, k0 a strength parameter, a the thermal softening coe�cient, I 20(2tr D2) an invariant of
the strain-rate tensor, b the rate constant and m the strain-rate sensitivity parameter. A
superimposed dot indicates the material time derivative and operators div and tr signify the
divergence and trace operators. The body force and the source of internal energy have been
neglected. Also, Fourier's law of heat conduction has been assumed, and both the speci®c heat
and the thermal conductivity are taken to be constants. The constitutive relation (4) is a
generalization, due to Batra [20], of the one-dimensional relation proposed by Litonski [21] to
three-dimensional problems. Batra [20] and others [22,23] have used it to analyse steady state
penetration problems. It has also been employed by Batra and Liu [24] and Wright and Walter
[19] to study shear bands in thermoviscoplastic materials.
We nondimensionalize variables in a way similar to that done by Wright and Batra [25].

That is, we scale distance with the half-width H of the slab, time with the reciprocal of the
nominal strain-rate gÇ0, stress with k0, and temperature with k0/(rcv). For a typical hard steel,
r=8000 kg/m3, cv=448 J/(Kg K), k0=330 MPa, b=104 s, a=0.0008/K, k=50 W/(mK).
In terms of non-dimensional variables, Eqs. (1)±(4) look as before except that k0=1 in Eq.

Fig. 1. A schematic sketch of the problem studied, and illustrations of the core and inertial regions.
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(4), and the coe�cient of _T in Eq. (3) equals 1. At a nominal strain-rate gÇ0 of 105/s and
H=2.5 mm, the coe�cient of vÇ in Eq. (2) equals nearly 1.0, and that of H2T in Eq. (3)
2.23�10ÿ5. Hence, there will be a thermal boundary layer formed adjacent to the hot shear-
banded region. Following Wright and Walter [19], we call the small region behind the shear
band tip the core region. Heat conduction is neglected in regions far away from the shear
band; however, inertial e�ects are considered. The core and inertial regions are sketched in Fig.
1.

2.1. Inertial solution

The balance of mass or the continuity Eq. (1) is identically satis®ed by expressing the radial
and tangential components u, v of the velocity v in terms of a stream function f.

u � 1

r

@f
@y
� 1

r
f,y, v � ÿ@f

@r
� ÿf,r: �5�

Substitution from Eq. (5) into Eqs. (2)±(4) yields
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ry�1=2, �9�

s � k0g�1� bI �m, �10�

g � 1ÿ aT, �11�
where

Drr � 1

r
f,ry ÿ

1

r2
f,y, �12�

Dry � 1

2

�
1

r2
f,yy �

1

r
f,r ÿ f,rr

�
, �13�

are deviatoric strain-rates, and s=(tr SST)1/2/2. The non-zero components of the Cauchy
stress tensor, sss � ÿp1� S, are given by
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srr � 2
s

I
Drr ÿ p, �14�

syy � ÿ2s
I
Drr ÿ p, �15�

sry � 2
s

I
Dry: �16�

The elimination of pressure p from Eqs. (6) and (7) gives
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In order to develop an asymptotic solution, we introduce below a new polar coordinate

system r, c centered at and moving with the shear band tip in the r, y plane. Thus

�r � ��r cos yÿUt�2 � �r sin y�2�1=2, �18�

c � tanÿ1
�

r sin y
r cos yÿUt

�
: �19�

As the shear band tip moves into the relatively undeformed material, we presume that
deformation ®elds appear steady to an observer situated on and moving with the shear band
tip. Thus f and other ®eld variables depend only upon r and c and not explicitly on time t.
Since the coordinate system r, c moves with a uniform velocity U in the horizontal direction, it
constitutes an inertial frame of reference. Eqs. (5) and (8)±(17), when written in the r, c
coordinate system, look as before with the velocity components taken along the translating
axes except that r and y are replaced by r and c, respectively,

_u � �uÿU �
�

cos cu,�r ÿ sin c
�r

�u ,c

�
� v

�
sin cu,�r � cos c

�r
u,c

�
, �20�

and similar expressions hold for vÇ and gÇ . Henceforth, we omit the superimposed bar on r.
Since strain-rates near a shear band are typically of the order of 105/s and the rate constant

b equals 104 s or so, bIw1 and (1+ bI )m 2(bI )m within and adjacent to a shear band. Eq. (10)
is thus replaced by s=k0g(bI )

m.
In the inertial region, as pointed out above, we neglect the e�ect of heat conduction, i.e. the

®rst term on the left-hand side of Eq. (8). Furthermore, we assume the following asymptotic
form of the solution in this region.

f � f1r
a ~f�c�, �21�

s � f2r
c ~s�c�, �22�
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g � f3r
d ~g�c�, �23�

I � f4r
e~{�c�, �24�

p � f5r
h ~p�c�: �25�

Here f, sÄ, gÄ, |Ä and pÄ are non-dimensional functions of c only, a, c, d, e and h are constants,
and f1, f2, f3, f4 and f5 are dimensional quantities. Substituting from Eqs. (21)±(25) into Eqs.
(8)±(17) and (20), and requiring that the variable r drop out of each equation in the limit as
r40, leaving only coupled ordinary di�erential equations in c, it is necessary that

f � Gr
2m�1
1�m ~f�c�, �26�

s � rUGr
m

1�m ~s�c�, �27�

g � a
cv

G2 r
2m
1�m ~g�c�, �28�

I � Gr
ÿ1
1�m ~{�c�, �29�

p � rU
1�m

m
Gr

m
1�m ~p�c�, �30�

and that functions ~f , sÄ, gÄ, |Ä and pÄ satisfy

� ~g ~{mÿ1 ~x1�0� 4
2m2 �m

�1�m�2 � ~g ~{mÿ1 ~f 0� 0 ÿ 3m2 � 2m

�1�m�2 � ~g ~{mÿ1 ~x1� � ~x02 � m2

�1�m�2 ~x2, �31�

~s ~{ � 2m

1�m
cos c ~g ÿ sin c ~g 0, �32�

~s � ~g ~{m, �33�

~{ �
"

4m2

�1�m�2 �
~f 0�2 � ~x2

1

#1=2

, �34�

~p � � ~g ~{mÿ1 ~x1� 0 � 2
3m2 � 2m

�1�m�2 � ~g ~{mÿ1 ~f 0� ÿ ~x 02, �35�

where
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G �
�

rcvU

a k0bm

� 1
1�m

, �36�

~x1 � ~f0� 2m� 1

�1�m�2
~f , �37�

~x2 � sin c ~f 0 ÿ 2m� 1

1�m
cos c ~f , �38�

and a prime denotes di�erentiation with respect to c. One can verify that Eqs. (26)±(30)
are dimensionally correct. Eqs. (31)±(34) are nonlinear and coupled fourth-order ordinary
di�erential equation for ~f and second-order ordinary di�erential equation for gÄ. They
determine the angular distribution of the inertial solution.
Chen and Batra [26] have determined asymptotic ®elds near a stationary crack tip in a rigid

thermoviscoplastic body undergoing either antiplane shear or plane strain deformations. In
each case they found the e�ective stress and the e�ective plastic strain rate to behave as
rÿm/(1+m ) and rÿ1/(1+m ), respectively, as r40. Both inertia and heat conduction e�ects were
considered, and g was assumed to have the form g0(t )+ f3(t )r

hgÄ(y ) near the crack tip. For the
problem studied herein, the deformation ®elds appear steady to an observer situated on and
moving with the shear band tip. The order of singularity in the two problems turns out to be
same for the e�ective plastic strain rate but di�erent for the e�ective stress. The order of
singularity for s, g and I in the present shear band problem is the same as that found by
Wright and Walter [19] for a shear band propagating at a uniform velocity in a rigid
thermoviscoplastic body deformed in antiplane shear. They grouped the terms di�erently.
Rewriting Eq. (28) as

g � rU 2

k0

�
rcv

ak0

� �1ÿm��1�m�
�

r

Ub

� 2m
1�m

~g�c�

we see that g varies as U 2 implying thereby that the temperature ahead of the shear band
decreases sharply for faster propagation of the shear band. Eq. (30) implies that at a ®xed
value of r, the hydrostatic pressure in the inertial region increases rapidly as m approaches
zero.
Henceforth, we set t=0 in the present con®guration so that r=r and c=y; this facilitates

the interpretation of the results.

2.2. Boundary conditions for the inertial solution

For in-plane shear or mode II deformations, the radial velocity u � �1=r�f,y is an odd
function of y. Hence, f is an even function of y. Since the temperature is an even function of
y, therefore, gÄ is also an even function of y. Hence

~f 0�0� � ~f1�0� � ~g 0�0� � 0: �39�
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Fig. 2. Angular distribution of: (a) the thermal softening function gÄ; (b) the e�ective plastic strain-rate; (c) the
e�ective stress; and (d) the hoop stress for f0=ÿ 0.013, ÿ0.0143 and ÿ0.016, g0=1, m=0.02.
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Fig 2 (continued)
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Eqs. (32) and (33) yield

~g 0 sin y � ~g

�
2m

1�m
cos yÿ ~{m�1

�
: �40�

Evaluating this equation at y=0, assuming that gÄ (0)$0, recalling Eqs. (34), (37) and (39), we
obtain

~f0�0� �
�

2m

1�m

� 1
1�m
ÿ 2m� 1

�1�m�2
~f�0�: �41�

In order to solve Eqs. (31)±(35) for ~f and gÄ, we need six boundary conditions but
Eqs. (39) and (41) constitute only four boundary conditions. A possibility is to regard gÄ(0) and
~f�0� parameters and ®nd solutions of Eqs. (31)±(35) for various values of gÄ(0) and ~f�0�.
Numerical experiments show that solutions of Eqs. (31)±(35) for di�erent values of gÄ(0)0g0
are similar to each other, however, these equations have a solution only for values of de� >
~f�0� � f0 in a very narrow range; the solution technique is brie¯y discussed in the next
section. Figs. 2(a)±(d) exhibit the variation of gÄ, the e�ective stress ~se � �32 tr�SST��1=2, the
e�ective plastic strain-rate ~_g e � �23 tr� ~D ~D��1=2, and syy with y for g0=1.0, m=0.02, and three
di�erent values of f0. It is clear that, for these three values of f0, results are qualitatively
similar, and a higher value of vf0v results in a lower temperature rise and a higher value of the
e�ective stress at y 21808. The angular width of the severely deforming region ahead of the
shear band decreases with an increase in the value of vf0v.
We can derive an additional boundary condition by exploiting the fact that an adiabatic

shear band is usually very narrow, and only a few micrometers wide. Following Olmstead et al.
[27], Wright and Walter [19] and Glimm et al. [28] we model it as a material singular surface.
Equations expressing the balance of mass, linear momentum and internal energy across a
material singular surface with no ¯uxes through its lateral edges and no production and
supply of mass, linear momentum and internal energy in its interior, are (e.g. see MuÈ ller
[29,30])

�v � n� � 0, �42�

�sssn� � 0, �43�

�q � n� � �sssn� � �v� � 0, �44�
where q=ÿkHT is the heat ¯ux, n is a unit vector normal to the material singular surface,
and [ f ] denotes the jump of f across the material singular surface. Because heat conduction has
been neglected in the inertial region, Eq. (44) will not be considered. For in-plane shear
deformations, velocity v at y=2p has components (u, v ) and since n=(0, 21), and v is an
even function of y, therefore, Eq. (42) is identically satis®ed. Eq. (43) requires that the
tangential traction (shear stress) sry and the normal traction (hoop stress) syy at y=2p be
continuous across the material singular surface y=2p. Note that sry is an even function and
syy is an odd function of y. Therefore, the continuity of syy across the singular surface requires
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Fig. 3. Angular distribution of: (a) the e�ective plastic strain-rate; (b) the e�ective stress; (c) the thermal softening
function; (d) the radial velocity; and (e) the circumferential velocity in the inertial region for g0=0.5, 1.0, 1.5, and

m=0.02.
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Fig. 3±(continued)
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that syyvy=pÿ=0, or�
2m

1�m
~g ~{mÿ1 ~f 0 � 1�m

m
~p

������
y�pÿ
� 0: �45�

We will comment in Section 3 on the discontinuity of the radial velocity and the continuity of
shear tractions sry across the singular surface.

2.3. Numerical results

Coupled and nonlinear ordinary di�erential Eqs. (31) and (32) under ®ve boundary
conditions (39), (41) and (45) are solved over the interval (0, p) by the fourth-order Runge±
Kutta integration scheme and the shooting method. Let A be a six-dimensional vector with
components ~f , ~f 0, ~f0, ~f1, gÄ and gÄ '. Then, Eqs. (31) and (32) can be written as

A 0 � f�A,y� �46�
where a prime denotes di�erentiation with respect to y. In order to solve Eq. (46) by the
fourth-order Runge±Kutta method, A(0) needs to be prescribed. Here ~f�0� and gÄ(0) are not
known but Eq. (45) provides a relation among components of A evaluated at y=pÿ. Note
that pÄ given by Eq. (35) is determined by A. We regard gÄ(0)=g0 as a parameter (e.g. see Ref.
[19]) and solve Eq. (46) for numerous values of ~f�0� till the magnitude of the left-hand side of

Fig. 3±(continued)
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Fig. 4. Angular distribution of: (a) di�erent components of the strain-rate tensor; and (b) di�erent components of

the stress tensor in the inertial region for g0=1.0 and m=0.02.
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Fig. 5. E�ect of the strain-rate sensitivity m upon the angular distribution of: (a) the e�ective plastic strain-rate; (b)

the e�ective stress; (c) the thermal softening function; and (d) the radial velocity in the inertial region.
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Fig 5 (continued)

L. Chen, R.C. Batra / International Journal of Engineering Science 37 (1999) 895±919910



Eq. (45) is less than 10ÿ3. Since the coe�cient of gÄ ' in Eq. (32) vanishes at c=y=0, Eqs. (39)
and (41) are assumed to hold at y0=10ÿ5 and Eqs. (31)±(35) integrated over (10ÿ5, pÿ 10ÿ5).
Numerical experiments with y0=10ÿ6, 10ÿ7 and 10ÿ8 gave results identical with those
obtained with y0=10ÿ5.
Figs. 3(a)±(e) depict the variation vs y of the angular functions for the e�ective plastic

strain-rate, ~_g e, the e�ective stress, ~se, the thermal softening function, gÄ, the radial velocity uÄ,
and the circumferential velocity vÄ for g0=0.5, 1.0 and 1.5 and the strain-rate sensitivity
parameter m=0.02. The only material parameter appearing in Eqs. (31) and (32) is the strain-
rate sensitivity m, so the results presented in Fig. 3 are valid for all thermoviscoplastic
materials obeying the constitutive relation (4). These results indicate that the basic behavior of
the inertial solution is not a�ected by the value of g0. In torsional tests on thin-walled 4340
steel tubes, Marchand and Du�y [4] estimated the speed of a shear band to be either 260 m/s
or 520 m/s according to the way the band propagated circumferentially, either in one direction
or simultaneously in both directions. Batra and Zhang [31] numerically simulated Marchand
and Du�y's test and found that a shear band originating from a point propagated
simultaneously in both directions at the same speed. Their computations also show that the
shear band speed strongly depends upon the nominal strain-rate. At a nominal strain-rate of
5000/s, the shear band speed was found to increase from 180 m/s at the point of initiation to
1080 m/s when the shear band reached the diametrically opposite end. For the material
parameters listed earlier for a typical hard steel and U=200 m/s, an increment of ÿ0.1 in g0
corresponds to an increment in T of about 56.6 K at r=10 mm. Thus a large temperature rise
near the shear band tip does not in¯uence the basic behavior of the inertial solution. These
plots also indicate that straight ahead of the propagating shear band, i.e. y=0, the e�ective
stress and the e�ective plastic strain-rate are maximum, but the maximum temperature rise,
T=(1ÿ g )/a, occurs at y=pÿ.
Plots in Fig. 3(a) of the e�ective plastic strain-rate vs y suggest that for g0=0.5 only the

material ahead of the shear band lying in the arc ÿ608EyE608 is severely deformed; this
sector becomes narrower as the value of g0 increases or the temperature decreases. The e�ective
stress remains essentially unchanged in this sector [cf. Fig. 3(b)]. The temperature is a little bit
higher straight ahead of the band and is highest at points close to y 21808. As the temperature
at y=08 increases or g0 decreases, the angular position of the point where the maximum radial
velocity occurs changes from y 2408 to y 2608. The circumferential velocity is negative at y=0
and positive at y 2p, suggesting, thereby, a wavy shear band surface.

Fig. 4(a) depicts the plot of the angular function for Drr, Dry and gÇe vs y for g0=1.0 and
m=0.02. It is evident that the normal strain rate Drr(=ÿDyy) contributes very little to the
e�ective plastic strain-rate and the shear strain-rate Dry assumes signi®cant values in the sector
ÿ408<y<408. From the plot of the angular function for the stresses in Fig. 4(b), we see that
straight ahead of the shear band, the normal stresses srr and syy vanish and the shear stress sry
is maximum. The boundary condition (45) requires that syy vanish at y 21808. Figs. 5(a)±(d)
exhibit the e�ect of the strain-rate sensitivity parameter m upon the angular functions for the
e�ective plastic strain-rate, e�ective stress, thermal softening function g and the radial velocity.
The general nature of the angular distribution of these functions is una�ected by the value
of m.
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3. Core solution

As suggested by Wright and Walter [19], the one-dimensional theory of adiabatic shear
bands is assumed to be adequate in the core region behind the shear band tip. For small values
of the strain-rate sensitivity parameter m, Glimm et al. [28] have derived the asymptotic
expressions for the temperature and velocity distributions near the band center. Wright and
Walter [19] and Wright and Ockendon [32] have derived Eqs. (48) and (49) below for an a�ne
thermal softening function.

T � Tc ÿ 2mg�Tc�
a

ln

�
cosh

�
y

d

��
�1�O�m��, �47�

g�Tc� �
�

1

k0bm

� 1
1ÿm

�
2km

a

� m
1ÿm
j t j

�
1

2
j DV j

�ÿ2m
1ÿm

, �48�

Fig. 6. Variation of half of the thermal width of the band behind the shear band tip.
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Here Tc is the temperature rise at the band center, d a measure of the shear band width, t is
the magnitude of the shear stress which is assumed to be constant within the band, vDVv is the
magnitude of the jump in the velocity across the band, and y is the y-coordinate of a point in
the rectangular Cartesian coordinate system attached to the shear band tip (cf. Fig. 1). The
shear band is assumed to have ®nite width, which is inconsistent with the earlier assumption
that it is a singular surface. For a nonzero but minuscule width of the shear band, the jump in
the radial velocity can be related to the stress and temperature within the band through the
constitutive relation (4) (for example, see Eq. (47) of Ref. [28]). Thus, the strain-rate within the
band is very large but ®nite, and as the band width shrinks to zero, the strain-rate within the
band approaches a Dirac-delta function.
In the mode-II deformations studied herein, the radial velocity u=(1/r )f,y and the

tangential velocity v=ÿf,r are odd and even functions of y, respectively. Using Eqs. (12)±(16)
and (26)±(30) behind the band tip, we have

t � sxy � �sry�cos2 yÿ sin2 y� ÿ �syy ÿ srr�sin y cos y�
��
r�Rb

,

Fig. 7. Variation of the thermal softening function along y 2p direction in core and inertial regions.
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where ux is the component of the velocity along the x-axis, and 2Rb sin y may be thought of as
the thermal width of the shear band.
Eqs. (11) and (47) imply that

g� y� � g�Tc��1� 2m ln�cosh� y=d��� �52�
in the core region behind the band tip. Eq. (28) gives the distribution of the thermal softening
function in the inertial region. Requiring that behind the band tip, the temperature from the
core region equals that for the inertial region at the core/inertial region interface, we obtain

a
cv

G2 R
2m
1�m
b ~g�y� � g�Tc�

�
1� 2m ln

�
cosh

Rb

d
siny

��
, �53�

Fig. 8. Dependence of the measure of shear band width upon the shear band speed.
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Fig. 9. Dependence of the thermal width of the band upon the shear band speed.

Fig. 10. Dependence of the temperature rise at the shear band center upon the shear band speed.
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Fig. 11. Energy dissipation rate per unit surface area of the shear band at y 21808 vs the shear band speed.

Fig. 12. Energy dissipation rate per unit surface area of the shear band vs the thermal width of the band at y 21808.
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which determines Rb as a function of y. Substitution from Eqs. (50) and (51) into Eqs. (47)±
(49) and (52) yields Tc, g( y ) and d. Fig. 6 shows the variation of half of the thermal width of
the band with the distance from the band tip for g0=1.0 where l=k/(rcU )=70 nm. Thus,
the width of the core region varies from about 32 mm very near the band tip to approximately
22 mm at a distance of about 350 mm behind the tip.
Fig. 7 depicts the variation of the thermal softening function in the core and inertial regions

at y 21808 for the typical hard steel considered above with g0=1.0. As expected, the
temperature drops rapidly as one moves away from the center of the shear band. However, in
the inertial region, because of the assumption of locally adiabatic deformations, the
temperature rise decreases slowly. If we had solved the complete set of equations in the core
region, then the temperature ®elds in the two regions would have blended smoothly rather than
abruptly.
Figs. 8±10 exhibit the dependence of the measure d of the shear band width, thermal width

of the band at y 21808, and the temperature at the band center upon the shear band speed U
for g0=1.0. These results evince that d, thermal width and the temperature rise at the shear
band center decrease with an increase in the shear band speed, U. We note that for U=150 m/
s, thermal width 227 mm, and the observed widths of shear bands are close to 20 mm.
As noted above, the shear stress is taken to be constant within the shear band. Thus the rate

of energy dissipated in the band equals the working of the shear tractions. Since the tangential
force acting on a unit surface area of the shear band equals t, the working of the surface
traction will equal t(DV ). Grady [33] has identi®ed this working of surface tractions as the rate
of energy dissipated within the band. Thus, the energy dissipated per second per unit surface
area of the shear band equals tDV and, is a function of the angular position y. For y 21808,
and the typical hard steel, it is plotted in Fig. 11 as a function of the shear band speed. It is
clear that the rate of energy dissipated per unit surface area of the shear band increases rapidly
with an increase in the shear band speed. Fig. 12 exhibits this energy dissipation rate as a
function of the thermal width of the band at y 21808. The energy dissipation rate drops
drastically with an increase in the thermal width; this is consistent with Grady's [33] results.

4. Conclusions

We have determined an asymptotic solution near the shear band tip of equations governing
thermomechanical deformations of a rigid thermoviscoplastic body deformed in mode II. It is
assumed that deformations appear steady to an observer always situated on the shear band tip
which moves with a uniform speed U. The region around the shear band front is divided into
two partsÐthe core region behind the shear band tip and the inertial region excluding the core
region and a small region around the shear band tip. In the inertial region, the inertia e�ects
play a dominant role but heat conduction is neglected, and, in the core region, both inertia and
heat conduction e�ects are important. The thermal width of the band as a function of the
angular position y is determined by ensuring that the temperature is continuous across the
interface between the core and inertial regions. The asymptotic solution in the inertial region is
found in terms of two parametersÐthe shear band speed and the value of the thermal
softening function just ahead of the shear band tip. The structure of the asymptotic solution
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predominantly depends only upon the material strain-rate sensitivity m; other material
parameters and the shear band speed enter through the combination illustrated in Eq. (36).
The nature of the asymptotic solution is essentially una�ected by the value assigned to the
thermal softening function at y=0. In the core region, the temperature gradient is high. The
measure of the shear band width, the thermal width of the band at y 21808 and the
temperature rise at the band center decrease with an increase in the speed U of the shear band;
the ®rst two seem to approach non-zero limiting values. For a typical hard steel and shear
band speed equal to 200 m/s the measure of the shear band width equals about 100 nm and
the thermal width of the band at y 21808 approximately 20 mm. Since observed shear bands
are usually a few micrometers wide, it appears that the thermal width of the band at y 21808 is
a good measure of the shear band width. At U=200 m/s, the energy dissipation rate within
the shear band equals approximately 5 GW per square meter of the surface area of the shear
band and increases sharply with an increase in the band speed.
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