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Effects of Casimir force on pull-in instability in micromembranes
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Abstract – We analyze pull-in instability of electrostatically actuated microelectromechanical
systems, and study changes in pull-in parameters due to the Casimir effect. When the size of the
device is reduced, the magnitude of the Casimir force is comparable with that of the Coulomb force
and it significantly alters pull-in parameters. We model the deformable conductor as an elastic
membrane and consider different geometries. Beyond a certain critical size the pull-in instability
occurs with zero applied voltage, and the device may collapse during the fabrication process.
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Introduction. – Electrostatically actuated micro-
electromechanical systems (MEMS) are becoming
increasingly useful in many applications such as switches,
micro-mirrors and micro-resonators, see, e.g., [1–3]. At
the microscopic scale the electrostatic actuation may
dominate over other kinds of actuation. Most of the
electrostatically actuated systems [4] are comprised of
a conductive deformable plate suspended over a rigid
ground plate. An applied electric voltage between the
two conductors results in the deflection of the elastic
plate, and a consequent change in the system capacitance.
The applied electrostatic voltage has an upper limit
beyond which the two plates snap together and the device
collapses. This phenomenon is called pull-in instability
and the corresponding voltage the pull-in voltage; it was
simultaneously observed experimentally by Taylor [5] and
Nathanson et al. [6].
With the decrease in device dimensions from the micro

to the nanoscale additional forces on nanoelectromechan-
ical systems (NEMS), such as the Casimir force [7,8],
should be considered. The Casimir force represents the
attraction of two uncharged material bodies due to modifi-
cation of the zero-point energy associated with the electro-
magnetic modes in the space between them. The existence
of the Casimir force poses a severe constraint on the minia-
turization of electrostatically actuated devices. At the
nanoscale, the Casimir force may overcome elastic restor-
ing actions in the device and lead to the plates’ sticking

during the fabrication process. An important feature of the
Casimir effect is that even though its nature is quantistic,
it predicts a force between macroscopic bodies.
van der Waals forces are related to electrostatic inter-

action among dipoles at the atomic scale [9]. Whereas the
Casimir force between semi-infinite parallel plates depends
only on the geometry, van der Waals forces depend on
material properties of the media. The Casimir force is
effective at longer distance than van der Waals forces [9].
van der Waals forces are accounted for in NEMS where
interactions occur at the atomic scale, as for example
in carbon nanotubes [10]. van der Waals forces are not
considered in the work presented below.
Here, we analyze the effect of the Casimir and the

Coulomb forces on the pull-in parameters of NEMS for
a large variety of common two-dimensional (2-D) geo-
metries. We show that beyond a critical size, the pull-in
instability occurs at zero voltage. This means that the
system collapses during the manufacturing process. We
also analyze symmetry-breaking in annular membranes
due to the combined effects of the Coulomb and the
Casimir forces. Different investigators have studied stick-
ing in MEMS, but they did not consider the combined
effect of the Casimir and the Coulomb forces. In [11,12] a
rectangular membrane using the 1-D distributed model
and considering nonlinear stretching effects has been stud-
ied, while in [13] a lumped one degree-of-freedom (d.o.f.)
model has been used to analyze the stiction phenomenon
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Fig. 1: Sketch of the electrostatically actuated device.

between two conductors made of different materials.
In [14] the effect of Casimir force on pull-in parameters
of NEM switches has been studied through a reduced one
d.o.f. model.
In this work effects of surface roughness and surface

curvature [12,15], temperature and finite conductivity [16]
on the Casimir force are not considered. However, we note
that for two metallic surfaces separated by 0.6µm–6µm,
finite conductivity and surface roughness corrections can
be as high as 20% and 20%–30% of the net Casimir force
at the nearest points [17] respectively.

Formulation of the boundary-value problem. –

Referring to the geometry depicted in fig. 1, we assume
that the deformable electrode in the undeformed confi-
guration is a plate-like body, and that the initial gap g0
between the two conductors and the thickness h of the
deformable plate are much smaller than its characteristic
length L, with h/L< 1/400. Accordingly [4], we assume
that the rigidity due to in-plane stretching dominates over
the bending stiffness in carrying the external load. Under
these assumptions, we model the deformable plate as a
linear elastic membrane.
From an electrical point of view, the system behaves as

a variable gap capacitor. The magnitude fe of the electro-
static force acting on the deformable electrode along its
normal is given by [4] fe =−ε0||∇ψ||

2/2, where ε0 is the
vacuum dielectric constant, ψ the electrostatic potential,
∇ the gradient operator, and || · || the Euclidean norm. The
electrostatic potential satisfies the Laplace equation in
the region Ω× (0, g) with boundary conditions ψ|z=0 = 0,
ψ|z=g = V , where Ω is the 2-D region occupied by the
membrane, g= g0+w is the gap between the two conduc-
tors, w the displacement field, g0 the initial gap, and V
the applied voltage (see fig. 1). By nondimensionalizing the
in-plane Cartesian coordinates x, y with respect to L, the
vertical coordinate z and the displacement field w with
respect to the initial gap g0, and the potential field with
respect to V the Laplace equation for the electrostatic
potential becomes

δ2

(

∂2ψ̂

∂x̂2
+
∂2ψ̂

∂ŷ2

)

+
∂2ψ̂

∂ẑ2
= 0. (1)

Here, the aspect ratio of the device δ= g0/L has been
introduced, and nondimensional quantities have been
denoted with a superimposed hat. We assume that δ� 1,

and neglect the term multiplying δ2. Then, the solution of
the electrostatic problem is ψ(x, y, z) = V z/(g0+w(x, y)).
The electrostatic force acting on the deformable electrode
is given by

fe =−
ε0V

2

2g2
0
(1+ ŵ)

2

(

1+ δ2

(

(

∂ŵ

∂x̂

)2

+

(

∂ŵ

∂ŷ

)2
))

.

(2)
Since we assumed that δ� 1 and the deformations are
small, we neglect the δ2 term on the right-hand side of
eq. (2), and obtain an expression for the electrostatic force
that depends only on the actual gap g. Thus, the validity
of the analysis is limited to those variable gap capacitors
whose actual gap is differentially uniform, that is, the two
conductors are locally parallel to each other (see, e.g., [4]).
We use the proximity force approximation (PFA) for the

Casimir force fc consistent with the assumptions made
in the mechanical and the electrostatic models. In the
PFA curved surfaces are viewed as a superimposition of
infinitesimal parallel plates; see, e.g., [18,19] and references
therein. Gies and Klingmüller [19] have shown that for a
sphere of radius R separated from a flat plate by a distance
g, the PFA gives results within 1% accuracy for g/R< 0.1.
By adopting the same nondimenisonalization as before
we have

fc =−
�cπ2

240g4
0
(1+ ŵ)

4
, (3)

where � is Plank’s constant and c the speed of light
in the vacuum. Theoretical work has been devoted to
estimating corrections to eq. (3) for geometries with known
and fixed departures from the parallel configurations,
see, e.g., [18,19]. However, eq. (3) is consistent with the
parallel-plate approximation for the electrostatic force,
and the small deformations assumption in the mechanical
model. As shown in [19], the PFA yields results within
0.1% error for the ratio L/g∼ 102.
Under these assumptions, the equation in non-

dimensional variables governing the deflection, w, of the
device is

�w(x, y) =
λ

(1+w(x, y))2
+

µ

(1+w(x, y))4
, (4)

where for convenience we have dropped the superimposed
hat on w. The first and the second terms on the right-hand
side of eq. (4) equal the Coulomb and the Casimir forces,
respectively, and ∆ is the Laplacian operator. Parameters
λ and µ are defined by

λ=
ε0V

2L2

2σ0hg30
, µ=

�cL2π2

240σ0hg50
, (5)

where σ0 is the tension in the membrane. Note that the
Coulomb force is proportional to V 2 but the Casimir force
does not depend on V . As the voltage V increases, the
parameter λ increases while µ stays constant. Both λ
and µ depend upon the device dimensions through L2/h.
Whereas λ is inversely proportional to g30 , µ is inversely
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Fig. 2: Pull-in parameter λPI vs. the Casimir force parameter µ.

proportional to g50 . Scaling down the device dimensions
(h, g0, and L) by a factor F

h→ h/F, g0→ g0/F, L→L/F (6)

increases λ by a factor of F 2 and µ by a factor of F 4,
that is

λ→ F 2λ, µ→ F 4µ. (7)

Thus, for F > 1, µ increases much faster than λ with a
decrease in the device dimensions.

Effect of the scale on pull-in parameters. – We
consider three sample geometries: a rectangular strip, a
circular disk and an annular disk. The rectangular strip
has length L and width L/8. The smaller edges are
clamped and the other two are left free. The circular
disk has radius L and is clamped along its periphery.
The annular circular disk has outer radius L and inner
radius L/10. It is clamped on both the inner and the outer
perimeters.
We solve the nonlinear partial differential eq. (4) using

the Meshless Local Petrov Galerkin method (MLPG) [20]
in conjunction with the pseudoarclength continuation
algorithm [21]. The MLPG method provides smooth
and accurate solutions. The pseudoarclength method is
suitable for analyzing multi-valued load-displacement
diagrams and symmetry breaking.
The problem when solved for λ= 0 gives the critical

value, µcr, of the Casimir force parameter. When µ= µcr
the system collapses spontaneously with zero applied
voltage. The effect of the scale on pull-in parameters
λPI and ||wPI||∞ is investigated by solving eq. (4) with
variable λ for different values of µ in the range [0, µcr]. The
pull-in instability (λPI, ||wPI||∞) occurs when the curve
||w||∞(λ, µ) becomes multi-valued.
In fig. 2 we report the pull-in parameter λPI versus

µ for the three geometries. As µ increases the pull-in
parameter λPI decreases monotonically from its maximum
value λmax

PI
corresponding to µ= 0 to its minimum value

0 for µ= µcr. µ= µcr represents intersection of the curves
with the horizontal axis. The curves may be reasonably
approximated by straight lines. Using this approximation,
the knowledge of the pull-in parameter λmax

PI
and of the

critical Casimir parameter µcr are sufficient to completely
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Fig. 3: Pull-in parameter ||wPI||∞ vs. the Casimir force
parameter µ.

Table I: Characteristic parameters describing the influence of
the Casimir force on pull-in instability.

Geometry λmax
PI

||wPI||
max
∞

µcr ||wPI||
min
∞

Strip 1.40 0.387 0.778 0.234
Disk 0.791 0.444 0.442 0.271
Annular disk 1.55 0.392 0.860 0.238

characterize the Casimir effect on the pull-in parameter
λPI. The slopes of the three fitting straight lines are
strikingly similar and approximately equal −1.8.
In fig. 3 we show the nondimensional pull-in maximum

displacement versus µ. We notice that as µ increases, the
nondimensional maximum displacement decreases from
its maximum value ||wPI||

max
∞

for µ= 0. This means that
reduced deflection ranges are allowable for small devices.
The minimum pull-in displacement ||wPI||

min
∞

is attained
when µ= µcr and refers to the spontaneous collapse of the
system without applied voltage.
Numerical values of λmax

PI
, ||wPI||

max
∞

, µcr, and ||wPI||
min
∞

are summarized in table I. These reveal that the disk
experiences the largest nondimensional pull-in maximum
displacement and the maximum pull-in voltage is for the
annular disk.

Analysis through a lumped model. – A qualitative
analysis of the device may be conducted by using a simple
lumped model proposed in [6]. The device is modeled as
a parallel plate capacitor, where both plates are rigid.
The upper plate is suspended by a linear spring, and the
bottom plate is held fixed. w̄ is the displacement of the
upper conductor, and it represents the maximum value of
the displacement w of the distributed system. The reduced
order model is

−κw̄=
λ

(1+ w̄)
2
+

µ

(1+ w̄)
4
, (8)

where κ is the nondimensional spring stiffness. The
constant κ may be computed by solving a sample static
problem on the distributed system without the Coulomb
and the Casimir forces. Typically a uniformly distri-
buted load on the movable conductor is considered, see,
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Table II: Characteristic parameters describing the influence
of the Casimir force parameter on the pull-in instability as
predicted by the lumped model.

Geometry Lumped model % deviations

κ λmax
PI

µcr λmax
PI

µcr

Strip 8.00 1.18 0.655 15.7 15.8
Disk 4.00 0.593 0.328 25.0 25.7
Annular disk 8.80 1.30 0.721 16.1 16.1

e.g., [14,22]. In this case, the stiffness κ is equal to
1/||w�||∞, where w

� is the solution of

�w� (x, y) = 1 (9)

with the proper boundary conditions. Values of κ for the
strip, the disk and the annular disk are given in table II.
The pull-in instability is determined by imposing the

force equilibrium (8) along with a subsidiary condition
expressing that the restoring force is no longer capable of
balancing the nonlinear attractive forces. This implies that
the gap between the two plates changes without increasing
the applied voltage. Mathematically this condition means
that the derivative of both sides of eq. (8) with respect to
w̄ are equal

κ=
2λ

(1+ w̄)
3
+

4µ

(1+ w̄)
5
. (10)

The solution of eqs. (8) and (10) can be written as

λPI
κ
=Λ
(µ

κ

)

, w̄PI =−W
(µ

κ

)

, (11)

where Λ and W are nonlinear functions independent
of κ. Figure 4 shows functions Λ and W for µ/κ in
the range [0, 256/3125). We note that Λ(0) = 4/27 and
Λ(256/3125) = 0. For the three geometrical shapes consi-
dered here, the function Λ can be reasonably approxi-
mated by the straight line

Λ
(µ

κ

)


−1.8
µ

κ
+0.15. (12)

The function W is monotonically decreasing. At µ= 0,W
equals 1/3, while at 256/3125 it equals 1/5.
Pull-in displacements predicted by the distributed

model significantly differ from those of the lumped model.
In fact, the maximum pull-in deflection depends on the
system geometry and boundary conditions, which are
represented approximately in eq. (11) through κ. The
deflection travel range [1/3, 1/5] predicted by the lumped
model is generally inaccurate.
Even if the influence of the Casimir parameter µ on

the pull-in nondimensional voltage λPI is qualitatively
described by the lumped model, predictions from it are
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Fig. 4: Plots of functions Λ and W.
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Fig. 5: Bifurcation diagrams of the annular membrane, for four
different values of µ.

not accurate, as shown by comparison between results
in table II with those in table I. For each geometry, the
percentage deviations in λmax

PI
and µcr computed from

the distributed and the lumped models are the same.
Thus the lumped model can be used to compare several
preliminary (or prototype) designs of MEMS and the
final few analyzed by the high-fidelity distributed models.

Effect of the scale on symmetry breaking. – We
analyzed the post-instability behavior of the annular ring
under effects of the Coulomb and the Casimir forces by
solving the nonlinear eq. (4) for different values of µ in
the range [0, µcr]. We numerically studied one-half of the
annular membrane, and imposed symmetry conditions on
sides contiguous to the removed domain.
In fig. 5 we show the maximum deflection ||w||∞ versus

the voltage parameter λ for four different values of µ. For
each value of µ the maximum deflection of the MEMS
increases with an increase in λ and hence an increase in the
applied voltage up to pull-in indicated by point P in fig. 5.
This branch of the curve prior to the fold at P corresponds
to stable equilibrium states, while the upper branch to
unstable equilibrium states. At point S in fig. 5, be-
sides the symmetric deformed configuration, asymmetric
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Fig. 6: Deformed shapes of the annular disk for µ� 0.7µcr:
(a) symmetric deformation; (b) asymmetric deformation.

deformed configuration corresponding to a point on the
upper curve originating from S is also possible. For µ=
0.618, those two configurations are reported in fig. 6
for two sets of values of λ and ||w||∞. By considering
one-half of the annular disk, we may have missed other
non-axially symmetric deformation modes (see [23]).
If a micromembrane is pushed by forces other than the

Coulomb force into a configuration corresponding to a
point on the upper branch of the curves in fig. 5, eq. (4)
and the prescribed boundary conditions are satisfied. The
MEMS can theoretically stay in the unstable equilibrium
configuration indefinitely if the external force is removed,
the system is not perturbed, and the appropriate voltage
is applied; see, e.g., [11].
As the Casimir parameter µ varies, the bifurcation

point S(λSB, ||wSB||∞) moves, as listed in table III. Here
λSB and wSB equal, respectively, values of λ and w
corresponding to the points where both symmetric and

Table III: Characteristic parameters describing symmetry
breaking of the annular disk after pull-in instability.

µ/µcr λSB/λPI ||wSB||∞/||wPI||∞− 1

0 0.960 0.282
0.101 0.956 0.270
0.332 0.935 0.254
0.718 0.831 0.255

asymmetric deformed configurations of the annular
membrane are possible. As µ increases the ratio λSB/λPI
decreases, meaning that the difference in the nondimen-
sional voltage corresponding to symmetry breaking and
pull-in instability points increases. As µ increases the
travel range of the device from the pull-in instability
to the symmetry breaking point divided by the pull-in
maximum deflection decreases eventually approaching a
constant value.

An example. – Consider a circular membrane
with parameters L= 100µm, g0 = 1µm, h= 0.1µm,
σ0 = 10MPa. Substituting these values into eq. (5) gives
µ= 8.17× 10−5 and the effect of the Casimir force is
negligible, see fig. 4. Scaling down the device size by a
factor F = 10, we have µ= 0.817, which is larger than
the critical Casimir parameter µcr in table I. This means
that the miniaturized device spontaneously collapses
under zero applied voltage. We note that the thickness of
the scaled-down device equals 10 nm and we may be at
the limit of applicability of the continuum theory. Also,
van der Waals forces may play a role for the nano-scale
device.

Detachment length. – The maximum length of the
MEMS/NEMS that does not stick with the substrate with-
out the application of a voltage is called the detachment
length [14,24]. For a given initial gap g0 the detachment
length can be found by setting µ= µcr in eq. (5). Using
values of µcr listed in table I we get the maximum radius,
Lmax, of a circular MEMS that can be safely fabricated
as 3.203 (σ0hg

5
0/(�c))

1/2. For h= 0.1µm, g0 = 1µm,
σ0 = 10MPa, L

max 
 7.2× 103µm. Conversely, for a given
L, one can find the minimum initial gap, gmin0 , needed
between the two parallel conductors for its safe fabrication
to be (�cL2π2/(240σ0hµcr))

1/5. With an increase in the
initial tension σ0 in the MEMS, L

max increases but gmin0
decreases. One can similarly find Lmax and gmin0 for the
annular disk and the rectangular strip.

Conclusions. – As the device size is reduced, the effect
of the Casimir force becomes more important. In the
miniaturization process there is a minimum size for the
device below which the system spontaneously collapses
with zero applied voltage.
A lumped model is capable of capturing the qualitative

relationship between the pull-in voltage and the device
size. We have given the simple closed form relation (12)
that is suitable for a preliminary design of MEMS. The
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accurate description of the relationship between the device
travel range and the device scale, and the symmetry
breaking in an annular disk after the pull-in instability
necessitate the use of distributed models.
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