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Abstract

The Zienkiewicz—Zhu error estimate is slightly modified for the hierarchical p-refinement, and is then applied to three
plane elastostatic problems to demonstrate its effectiveness. In each case, the error decreases rapidly with an increase in
the number of degrees of freedom. Thus Zienkiewicz—Zhu’s error estimate can be used in the hp-refinement of finite
element meshes. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

One way to control the quality of a finite element solution with an optimal use of computational
resources is to refine the mesh adaptively. The adaptive finite element analysis generally consists of
two stages: a posteriori error estimate and the mesh refinement. The goal is to refine the mesh so
that the error is within the specified tolerance and is as uniformly distributed throughout the
domain as possible. Two types of a posteriori error estimates, namely the post-processing and the
residual, have been employed. The post-processing type error estimate was proposed for the
h-refinement by Zienkiewicz and Zhu [1]. They used the nodal averaging method to obtain
recovered stresses and compared stresses interpolated from the recovered stresses with those
computed from the finite element solution at the quadrature points to find the error in the
numerical solution. Henceforth, we will refer to this error estimate as the Zienkiewicz—Zhu’s (Z2)
error estimate. Many authors [2—5] have shown its effectiveness in the h- and r-refinements. The
nodal averaging procedure or the ¸

2
projection technique for obtaining recovered stresses is valid
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only for linear elements. The residual-type error estimate has been proposed to evaluate errors
for higher-order hierarchical elements [13—15]. The residual error for an hierarchical element
is defined as the difference between the displacement fields over the original and a refined mesh, and
is computationally more expensive than the Z2 error estimate. We note that the Z2 error estimate
has not been applied to the p-refinement [6—15] because shape functions used to interpolate
displacements within an element are also used to interpolate recovered stresses. The hierarchical
shape functions cannot be used for interpolation since they do not satisfy the basic features of
interpolation functions, e.g., they do not generally add upto 1. However, the hp-refinement
[23—25], based on different error estimates for each h- and p-refinements, gives very accurate
solutions. Because of the different error estimates used, the algorithm for the hp-refinement is
complicated.

Here we use the superconvergent patch recovery method of Zienkiewicz and Zhu [19—22] to
compute errors for hierarchical elements and adopt these for uniform p-refinement. This method
computes stresses at optimal sampling points where the accuracy of stresses is an order of
magnitude higher, and then recovers stresses at a node by using the least-squares method to fit
a polynomial to the stresses computed at the optimal sampling points. Zienkiewicz and Zhu
showed, through numerical experiments, the validity of this technique for higher-order isoparamet-
ric elements. We tacitly assume that stresses for the hierarchical element computed at these optimal
sampling points are also accurate, and demonstrate the validity of our approach by analysing
results for three plane elastostatic problems employing quadrilateral elements. We are limited to
uniform p-refinement because of our inability to determine optimal sampling points in a transition
element between two different order hierarchical elements.

2. Z2 error estimate for p-refinement

Shape functions for a hierarchical finite element [6—18] are different from those for conventional
finite elements [7—10]. Among the many choices available for forming higher-order shape functions
[10], we adopt Legendre polynomials because of their orthogonal property and yielding numer-
ically stable stiffness matrices [9,10,16—18]. Fig. 1 shows hierarchical quadrilateral elements of
order 1 — 4, and their shape functions are listed in Table 1. As indicated in Table 1, there should be
a hierarchical node at the center of the element of order 4 in order to have complete polynomials in
the shape functions. In terms of the hierarchical shape functions N, we express displacement fields
u and v as
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where uN
*

and vN
*

are unknown variables in the global coordinates; n "4p when p)3, and
n"4p#1 when p"4. Only for a linear element, i.e., p"1, uN

*
and vN

*
are nodal displacements.

With displacements given by (1), the element stiffness matrix can be expressed as
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BTDB dX, (2)
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Fig. 1. Hierarchical finite elements: (a) linear; (b) quadratic; (c) cubic; (d) quartic.

Table 1
Shape functions for heirarchical elements of order p with 1) p )4

Order (p) Side Shape function Order (p) Side Shape function
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1
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9
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where B is the strain—displacement matrix, D is the elasticity matrix, and the integration is over an
element X

%
. We used (p#1)] (p #1) quadrature rule to numerically evaluate K%.

For conventional finite elements, Zienkiewicz and Zhu [21] computed stresses at the optimal
sampling points, determined their nodal values by fitting curves to the sampling-point values in an
element patch by the least-squares method, and then averaged contributions from all element
patches meeting at a node. This technique, called superconvergent patch recovery, is detailed in
Ref. [19—22]. Even though optimal sampling points have not been established for the hierarchical
finite elements, we assume that they coincide with those for the corresponding conventional finite
elements and depict them in Fig. 2. We use the superconvergent patch recovery technique to
compute recovered stresses.
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Fig. 2. Optimal sampling points: (a) linear; (b) quadratic; (c) cubic; (d) quartic elements.

Following Zienkiewicz and Zhu [1] we define the error e by

e"r*!rL "NprN *!DBuN , (3)

where pN * is the recovered nodal stress vector, p is the order of shape functions in a hierarchical
element, and N1 is a matrix containing pth order Lagrange interpolation functions [10]. In order to
interpolate the recovered stresses for an element with the pth order interpolation functions, we need
(p #1)2 interpolation points. Fig. 3 shows an element patch and interpolation points for various
hierarchical elements. If values at an interpolation point within an element are available from
several element patches, then we average these values.

3. Numerical examples

The use of the Z2 error estimate (3) for uniform p-refinement is illustrated by analysing
the following three plane linear elastostatic problems: an ¸-shaped plate, a plate with a circular
hole and a cantilever plate. Fig. 4 depicts the initial mesh, boundary conditions and the relative
error energy norm, DDeDD/DDuDD vs. the number of degrees of freedom for the ¸-shaped plate. For
comparison, Gago et al.’s [15] results obtained by using hierarchical elements and residual-type
error estimate, and the relative error determined by Gago et al. [15] from Richardson’s extrapola-
tion are also shown. We note that the present results agree well with those of the other two studies.
In each case, the relative energy norm decreases rapidly with an increase in the number of degrees
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Fig. 3. Element patch and interpolation points for hierarchical elements: (a) element patch; (b)—(e) interpolation points
for linear, quadratic, cubic and quartic elements.

Fig. 4. An ¸-shaped plate: (a) initial mesh and boundary conditions; (b) convergence rates of relative percentage error for
uniform p-refinement.

of freedom till around 5% error in the relative error energy norm, and then decreases extremely
slowly.

Fig. 5 shows results for the plate with a circular hole. The stresses at point A, computed with the
superconvergent patch recovery method, converge rapidly to the analytical value with an increase
in the order of the polynomial. It suggests that the optimal sampling points1 for conventional finite
elements can be used for hierarchical finite elements also. Results for a cantilever beam exhibited in
Fig. 6 are self-explanatory.

1Oh and Batra [26] have shown that, for higher-order conventional finite elements, the coordinates of sampling points
slightly differ from those of the reduced integration points.
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Fig. 5. Plate with a circular hole: (a) finite element mesh and boundary conditions; (b) convergence of stress con-
centration factor according to uniform p-refinement; (c) convergence rates of relative percentage error for uniform
p-refinement.

4. Conclusions

It has been shown that the Z2 error estimate, previously used for h-refinement, can also be used
for the hierarchical p-refinement. For three typical plane elastostatic problems, stresses recovered
with the superconvergent patch recovery method converge rapidly to the analytical value with an
increase in the order of the polynomial and thus in the number of degrees of freedom. Hence the
existing h-refinement codes can be easily modified to the hp-refinement by using the same
a posteriori error estimate.
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Fig. 6. Cantilever beam: (a) finite element mesh and boundary conditions; (b) convergence rates of relative percentage
error for uniform p-refinement.
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