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Summary
A numerical method is presented for the analysis of interactions of inviscid and

compressible flows with arbitrarily shaped stationary or moving rigid solids. The

fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐
order finite difference method based on the fifth‐order WENO scheme. A

constrained moving least‐squares sharp interface method is proposed to enforce

the Neumann‐type boundary conditions on the fluid‐solid interface by using a pen-

alty term, while the Dirichlet boundary conditions are directly enforced. The solu-

tion of the fluid flow and the solid motion equations is advanced in time by

staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark

integration schemes. The stability and the robustness of the proposed method have

been demonstrated by analyzing 5 challenging problems. For these problems, the

numerical results have been found to agree well with their analytical and numerical

solutions available in the literature. Effects of the support domain size and values

assigned to the penalty parameter on the stability and the accuracy of the present

method are also discussed.
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1 | INTRODUCTION

Interactions between compressible flows and complex‐shaped solids are commonly encountered in many engineering
applications. These interactions may encompass a variety of flow phenomena, including shock‐wave reflection and diffraction,
shock‐shock, and shock‐vortex interactions. The simulation of fluid‐solid interactions (FSIs) involving flow discontinuities
(e.g., shock waves) and irregularly shaped solids poses a formidable challenge to even the most advanced numerical methods
and is currently a research topic in computational fluid dynamics.

During the last few decades, extensive attention has been paid to the development of accurate and efficient numerical
methods to study the FSI problems involving complex stationary and moving boundaries. Traditionally, the body‐fitted or
unstructured grid methods1,2 are used to analyze such problems. However, these methods require the generation of
body‐fitted fluid meshes, which is a cumbersome task for complicated solid boundaries. In addition, for time‐evolving mov-
ing‐boundary problems, the fluid mesh needs to be updated or re‐meshed to accommodate the solid deformations or motion.
The successive projection of the flow field solutions from the previous mesh to the new one is prone to errors. In recent
years, immersed boundary methods3 have become popular for simulations of FSIs involving solids with complex boundaries.
The essence of these methods is that the fluid and the solid are modeled, respectively, in Eulerian and Lagrangian frames,
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/fld 675

http://orcid.org/0000-0002-7191-2547
mailto:rbatra@vt.edu
https://doi.org/10.1002/fld.4400
http://wileyonlinelibrary.com/journal/fld


676 QU AND BATRA
and equations governing the fluid flow are solved on a fixed grid, which conforms to that of the solid. This considerably
simplifies the grid generation especially for FSI problems involving moving boundaries, where the need for regeneration
of the fluid mesh is eliminated. In addition, because the fluid grid is typically structured, the application of an efficient Car-
tesian grid solver is straightforward. Although immersed boundary methods have many advantages, the treatment of bound-
ary conditions on a fluid‐solid interface is complicated.

A variety of methods have been developed to enforce boundary conditions on an immersed boundary. Based on the represen-
tation of a fluid‐solid interface, the immersed boundary methods may be classified as either diffused or sharp interface methods.3

In the diffused interface methods,4-6 the fluid‐solid interface is smeared by distributing singular forces over several grid nodes in
the vicinity of the immersed boundary using special functions. A major issue with the diffused interface methods is that they
require excessively fine grids near the immersed boundary to accurately resolve it. The sharp interface methods7-10 strongly
depend on the spatial discretization of the immersed boundary in which a solid boundary is precisely tracked. The advantage
of the sharp interface methods is that for certain formulations, they allow for a “sharp” representation of the immersed boundary.
By contrast, the diffused interface methods produce a “diffuse” boundary and the boundary conditions on the immersed bound-
ary are not satisfied at its actual location but within a localized region around the boundary.10

A critical issue in a sharp interface immersed boundary method is the reconstruction of the solution at nodes nearest to the
immersed interface via appropriate interpolation schemes using known values on the solid surface and the information from
the interior of the flow.11 The reconstruction determines both the global spatial accuracy of such methods and their adaptabil-
ity to flow computations with arbitrarily complex immersed boundaries. The commonly used schemes for the reconstruction
of flow values are the bilinear interpolation for 2‐dimensional (2‐D) problems7 and the trilinear interpolation for 3‐D prob-
lems.9 However, when the interpolation point is very close to the boundary, it may become difficult to accurately find values
of flow variables at the point. For example, in a 2‐D problem, all 4 neighboring points required for the bilinear interpolation
may not be in the fluid domain. In such cases, the information at the desired point can be found either by using a reduced‐
order interpolation scheme or by using boundary‐intercepting points for the interpolation. The inverse distance weighting
interpolation method has also been used to construct the fluid values in sharp interface immersed boundary methods.7,11,12

This scheme is stable for reconstructing variables that smoothly vary without exhibiting a large maximum value. The accu-
racy of the above‐mentioned methods is at most second order. It should be noted that the interpolation using higher‐order
polynomials is expected to be more accurate, but they often lead to numerical instabilities. Moreover, higher‐order formula-
tions require large interpolation stencils, which may intersect the immersed boundaries, and the determination of appropriate
stencils for the interpolation may be difficult. A method is, therefore, needed that will enable higher‐order boundary formu-
lations while allowing for a high degree of flexibility with respect to the interpolation stencil. This can be achieved by using
the moving least‐squares (MLS) reconstruction scheme.13,14 Seo and Mittal15 applied an MLS method based on a high‐order
approximating polynomial to construct the flow values near the immersed boundaries. Their results showed that the conver-
gence rate of the method is about 5 for very fine grids and about 3 for coarse grids. The key to the successful implementation
of this method is to maintain the well posedness of the least‐squares error problem.

The main objective of this study is to develop a robust numerical method for FSI analyses of inviscid and compressible flows
with arbitrarily shaped stationary or moving rigid solids. A constrained MLS sharp interface method is proposed to enforce cou-
pling conditions on the fluid‐solid interface. The Neumann‐type boundary conditions on the interface are imposed by incorpo-
rating a penalty term in the MLS formulation, whereas the Dirichlet boundary conditions are directly enforced. To estimate the
robustness and the accuracy of the proposed constrained MLS method, simulation results for several test problems are presented
and compared with their analytical/numerical solutions available in the literature.

The remainder of the paper is organized as follows. In Section 2, equations governing the fluid flow and the solid motion are
described. Numerical methods, including the finite difference WENO scheme and the constrained MLS immersed boundary
method, are presented in Section 3. Numerical results for 5 example problems are presented and discussed in Section 4 to
demonstrate the accuracy and the robustness of the present method. Concluding remarks are given in Section 5.
2 | PROBLEM FORMULATION

Consider the problem of a rigid solid moving in a compressible fluid. The rigid body and the fluid, respectively, occupy
finite domains Ωs and Ωf at time t having the common boundary, Γsf. Euler equations governing the 2‐D flow in the x1x2
plane of an inviscid, homogeneous, and compressible fluid can be written as

∂Q
∂t

þ ∂E
∂x1

þ ∂F
∂x2

¼ 0; (1)
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where Q= [ρ, ρu1,ρu2,E]
T is the vector of conserved variables; E ¼ ρu1; ρu21 þ p; ρu1u2; E þ pð Þu1

� �T and

F ¼ ρu2; ρu1u2; ρu22 þ p; E þ pð Þu2
� �T are flux vectors in the x1 and the x2 directions, respectively; ρ is the fluid mass

density; ui (i=1 , 2) is the velocity of the fluid in the xi direction; p is the pressure; and E is the specific total energy.
The effect of gravity is not considered. Equation (1) is supplemented with the following equation of state for an ideal gas

p ¼ γ−1ð Þ E−
1
2
ρukuk

� �
; (2)

where γ is the ratio of the 2 specific heats and is taken as 1.4 for air, and a repeated index implies summation over the range
of the index.

Equations of motion for the rigid solid are written as

dXc

dt
¼ U; M

dU
dt

¼ Fs þ Ff ; (3)

dΘ
dt

¼ ω; J
dω
dt

¼ Ts þ Tf ; (4)

where Xc is the translational displacement of the mass center of the solid, and Θ is the angular displacement between a reference
line and a body‐fixed line. U and ω are the translational velocity vector and the angular velocity of the solid about the x3‐axis,
respectively. M and J are the mass and the moment of inertia of the body about the x3‐axis, respectively. Fs and Ts are the
external force and the external torque about the x3‐axis acting about the x3‐axis on the solid that are not associated with the fluid
motion. Ff and Tf are the net force and the net torque imparted by the fluid to the solid.

On the fluid‐solid interface, the normal component of the fluid velocity must match that of the solid. That is,

u XΓ tð Þ; tð Þ⋅n ¼ U⋅n; (5)

where u and U, respectively, denote the velocity of the contacting fluid and the solid particles with the position vector XΓ(t), and
n is a unit vector normal to the fluid‐solid interface.

The fluid force and the moment exerted on the rigid body are given by

Ff ¼
ð

Γsf

−pnð ÞdΓ; (6)

Tf ¼
ð
Γsf

XΓ−bXc

� �
× −pnð ÞdΓ; (7)

where bXc denotes the position vector of the center of mass of the solid. In order to complete the problem formulation, initial
conditions and an additional boundary condition on XΓ(t) are needed. The latter is listed as Equation (17) below and the former
are prescribed for each problem studied.
3 | NUMERICAL METHODS

3.1 | Fluid field discretization

The governing equations of the fluid are discretized on a uniform Cartesian grid. The semi‐discrete form of Equation 1 is
written as

∂Qi; j

∂t
þ 1
Δx1

Eiþ1=2; j−Ei−1=2; j
� 	þ 1

Δx2
Fi; jþ1=2−Fi; j−1=2
� 	 ¼ 0; (8)

where Qi , j is the vector of conserved variables at the (i, j)th grid node (i , j are the grid indices), Δx1 and Δx2 are the grid
spacing, Ei ± 1/2 , j are fluxes at the right and the left cell boundaries, and Fi, j± 1/2 are fluxes at the top and the bottom cell
boundaries.
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We split the flux vectors Ei± 1/2 , j and Fi , j ± 1/2 into the sum of positive and negative components:

Ei±1=2; j ¼ Eþ
i±1=2; j þ E−

i±1=2; j; Fi; j±1=2 ¼ Fþ
i; j±1=2 þ F−

i; j±1=2 : (9)

The Lax‐Friedrichs flux splitting method16 is used to numerically calculate the fluxes E± and F±:

E± ¼ 1
2
E±R Λj jLQð Þ; F± ¼ 1

2
F±T Ψj jSQð Þ : (10)

The calculation of E± and F± requires interpolated values of the fluxes E, F and the conserved variable vector Q at the inter-
faces, which are determined by using the fifth‐order WENO scheme.17-19

The basic idea underlying the WENO approach is to introduce a convex linear combination of low‐order polynomial recon-
structions that yields high‐order resolution in smooth regions and keeps the essentially non‐oscillatory property near disconti-
nuities. Depending on the choice of the numerical scheme, the actual stencil coefficients and weights are different.20 We
describe the WENO scheme for a 1‐D scalar problem, and the variable φ is used to represent either the variable or the flux.
The WENO scheme computes numerical fluxesφ±

iþ1=2 at the cell interface i+1/2 through interpolated polynomials on a number

of grid points per candidate stencil. The WENO reconstruction for φ±
iþ1=2 in the x1 direction is17

φþ
iþ1=2 ¼ ∑

K−1

k¼0
ϖkbφk

iþ1=2; (11)

where K is the number of candidate stencils, bφk
iþ1=2 is the interface variable/flux based on the kth candidate stencil, and ϖk is a

non‐linear weight coefficient. A (2K− 1)th‐order accurate numerical approximation can be obtained by choosing optimal
upwind biased weight coefficients.

For the fifth‐order WENO scheme, K=3, and bφk
iþ1=2 is given by

bφ0
iþ1=2 ¼

2φþ
i þ 5φþ

iþ1−φ
þ
iþ2

6
; bφ1

iþ1=2 ¼
−φþ

i−1 þ 5φþ
i þ 2φþ

iþ1

6
; bφ2

iþ1=2 ¼
2φþ

i−2−7φ
þ
i−1 þ 11φþ

i

6
: (12)

The weight coefficient ϖk is defined by

ϖk ¼ αk

∑2
l¼0αl

; αk ¼ dk
εþ βkð Þp ; (13)

where d0, d1, and d2 equal 0.3, 0.6, and 0.1, respectively. The exponent p is set equal to 2 to achieve fast convergence to zero in
non‐smooth flow regions, ε=10−6 is a small parameter used to avoid the denominator becoming zero, and

β0 ¼
13
12

φi−2φiþ1 þ φiþ2

� 	2 þ 1
4

3φi−4φiþ1 þ φiþ2

� 	2
; (14)

β1 ¼
13
12

φi−1−2φi þ φiþ1

� 	2 þ 1
4

φi−1−φiþ1

� 	2
; (15)

β2 ¼
13
12

φi−2−2φi−1 þ φið Þ2 þ 1
4

φi−2−4φi−1 þ 3φið Þ2; (16)

are the smoothness indicators.
For computing the numerical flux φ−

iþ1=2, the previously mentioned procedure is modified symmetrically with respect

to i+1/2.
The third‐order total variation diminishing Runge‐Kutta scheme is used for the time integration of Equation 8.
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3.2 | Sharp interface immersed boundary method

The fluid flow over a complex solid is found by solving Equation 1 on a fixed structured grid that is not necessarily aligned
with the solid. We use the sharp interface immersed boundary method10 to study the interaction of the fluid flow with arbi-
trarily shaped stationary or moving solids. Algorithmically, the sharp interface immersed boundary method involves 2 steps:
(a) the grid node classification and (b) the reconstruction of the flow variables and imposition of appropriate boundary con-
ditions in the immediate vicinity of the immersed body. At each time instant, all nodes on the Cartesian grid are divided into
2 groups for the given position and the geometry of the solid, namely, the fluid nodes and the solid nodes, depending on
which side of the fluid/solid interface a node is located. A solid node immediately next to the fluid‐solid interface is termed
a “ghost point” (GP) (see Figure 1). A set of Lagrangian solid marker points is used to represent the surface of the solid,
and these points are generated by using a piecewise linear spatial discretization scheme. A “normal probe” is extended from
a GP to intersect with the immersed boundary (at a boundary point denoted as the “boundary intercept” [BI]). The probe is
extended into the fluid to the “image point” (IP) such that the BI is midway between the image and the GPs. The fifth‐order
WENO scheme needs up to 3 GPs in each xi direction. An efficient ray‐tracing technique21 is used to select these GPs.
Referring the reader to O'Rourke21 for details, we note that it involves casting a random half‐infinite ray starting from
the point under consideration and determining the points where it intersects the discretized edges of the solid boundary.
If the number of points of intersections is odd, then the point closest to the starting point is located inside the solid, and
identified as GP.

The procedure of a sharp interface immersed boundary method is to interpolate values of the fluid variables at the IPs in
terms of those of the surrounding fluid nodes and then use these values and the fluid‐solid boundary conditions to determine
the corresponding values at the ghost nodes. Boundary conditions are imposed by prescribing the primitive variables at the
GPs. Before giving details of the method, we describe the numerical boundary conditions on the fluid‐solid interface. Accord-
ing to Equation 5, the normal velocity component un of the fluid particle equals the normal velocity Un of the solid particle at
the same location on the interface. The normal derivatives of the tangential velocity uτ and of the mass density on the fluid‐solid
interface are assumed to be zero, i.e., ∂uτ/∂n=0 and ∂ρ/∂n=0. A Neumann‐type boundary condition for the pressure is obtained
from the momentum equation by projecting the pressure gradient onto the surface‐normal direction22:

−∇pjBI ⋅n ¼ −
∂p
∂n






BI

¼ −
ρu2τ
R

� �




BI
þ ρ

Du
Dt

� �




BI
⋅n; (17)

where R is the signed local radius of the wall curvature of XΓ(t) taken as positive (negative) if the center of curvature is on
the side of the solid (fluid) body. The quantity, ∂u/∂t, on the right‐hand side of Equation (17) is the acceleration of the material
FIGURE 1 Definitions of various points in immersed boundary method: , fluid node; , solid node; , solid marker; , boundary intercept
(BI); , image point or node; , ghost point or node [Colour figure can be viewed at wileyonlinelibrary.com]
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node on the interface. For a stationary or steadily moving rigid solid, ∂u/∂t is approximated as zero, and the boundary condition
for the pressure becomes ∂p= ∂n ¼ ρu2τ=R.

A constrained MLS method is proposed to approximate the value of a generic variable φ at an IP x in a local support domain
Ωl (see Figure 1). A local rectangular Cartesian coordinate system (ς1, ς2) is introduced at the IP. Thus, for an arbitrary
point x(∈Ωl), ς ¼ x−x. In the local coordinate system, the distribution of φ(ς) in Ωl, over a number of fluid nodes {ςi},
i=1 , 2 , ⋯ ,N, is represented in terms of the m basis functions ψT(ς) = [ψ1(ς),ψ2(ς), ⋯ ,ψm(ς)]:

φh ςð Þ ¼ ∑
m

i¼1
ψ i ςð Þηi ςð Þ ¼ ψT ςð Þη ςð Þ; ∀ς∈Ωl ; (18)

where φh(ς) is the approximant of φ(ς), and η(ς) is a coefficient vector defined as η(ς) = [η1(ς), η2(ς), ⋯ , ηm(ς)]T, which is
a function of the space coordinates of the IP x (or ς in local coordinates).

For 2‐D problems considered here, the basis functions are

Linear : ψT ςð Þ ¼ 1; ς1; ς2½ � ; (19)

Quadratic incompleteð Þ : ψT ςð Þ ¼ 1; ς1; ς2; ς1ς2½ � ; (20)

Quadratic completeð Þ : ψT ςð Þ ¼ 1; ς1; ς2; ς21; ς1ς2; ς
2
2

� �
; (21)

Cubic completeð Þ : ψT ςð Þ ¼ 1; ς1; ς2; ς21; ς1ς2; ς
2
2; ς

3
1; ς

2
1ς2; ς1ς

2
2; ς

3
2

� �
: (22)

For a point ς located on the fluid‐solid interface, the normal gradient of φh(ς) can be expressed as

∂
∂n
φh ςð Þ ¼ ni

∂
∂ςi

ψT ςð Þ
� �

η ςð Þ ¼ bψT ςð Þη ςð Þ; ∀ς∈Γsf ; (23)

in which

bψT ςð Þ ¼ ni
∂
∂ςi

ψT ςð Þ; (24)

and ni is the direction cosine of n along the ςi‐axis.
The approximation of the value of φ at an IP x is affected by the solution of the field equations in the fluid domain and

boundary conditions on the fluid‐solid interface. The relative importance of the field variables and the boundary conditions
depends on the distance d ¼ x−xBIj j between the IP and the BI xBI. More specifically, the closer the IP is to the immersed
boundary, the more dominant is the boundary condition on values at the IP. On the other hand, the farther the IP is from the
immersed boundary, values of variables at the IP are influenced more by the solution of the field equations. Let N denote
the number of nodes used to interpolate φ at the IP x. The value of N is determined by the number of nodes lying in the support
domain Ωl. In order that the local approximation is the best in a least‐squares sense, the coefficient vector η(ς) is selected by
minimizing the following functional:

H ηð Þ ¼ ∑
N

i¼1
Wi ς−ςið Þ ψT ςð Þη ςð Þ−φi

� �2
; (25)

subjected to the constraint

bψT ςð Þη ςð Þ−C ¼ 0: (26)

In Equation 25, φi is the fictitious value of the variables at the fluid nodes xi in the support domain Ωl or at the BI xBI, and
Wi ς−ςið Þ is the weight function associated with the positions of the IP and the fluid nodes. The constraint equation 26 repre-
sents the Neumann‐type boundary conditions 17 and C is calculated from the right‐hand side of Equation (17).
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The problem of minimizing H ηð Þ under the constraint expressed by Equation 26 is solved by using the penalty method.
That is, the modified following functional

eH ηð Þ ¼ ∑
N

i¼1
Wi ς−ςið Þ ψT ςð Þη ςð Þ−φi

� �2 þ κ bψT ςð Þη ςð Þ−C� �2
; (27)

where κ is a preassigned penalty parameter, is minimized.

The stationary condition ∂ eH= ∂η ¼ 0 gives the following matrix equation

A ςð Þη ςð Þ ¼ B ςð Þη ςð Þ þ C; (28)

for the coefficient vector η(ς). In Equation (28),

A ςð Þ ¼ ΨTWΨþ κbψTbψ; B ςð Þ ¼ ΨTWφ ςð Þ; C ¼ κbψT xð ÞC ; (29)

where

Ψ ¼

ψ1 ς1ð Þ ψ2 ς1ð Þ ⋯ ψm ς1ð Þ
ψ1 ς2ð Þ ψ2 ς2ð Þ ⋯ ψm ς2ð Þ
⋯ ⋯ ⋯ ⋯

ψ1 ςNð Þ ψ2 ςNð Þ ⋯ ψm ςNð Þ

2666664

3777775; W ¼

W ς−ς1ð Þ 0 0 0

0 W ς−ς2ð Þ 0 0

0 0 ⋱ 0

0 0 0 W ς−ςNð Þ

2666664

3777775 (30)

Substitution from Equation 28 for η(ς) into Equation 18 leads to the following relation:

φh ςð Þ ¼ ψT ςð ÞA−1 ςð ÞB ςð Þφ ςð Þ þψT ςð ÞA−1 ςð ÞC; ∀ς ∈ Ωl ; (31)
Remark 1. The constrained MLS approximation is well defined only when the matrix A ςð Þ in Equation 28 is
non‐singular. This holds if the rank of the matrix Ψ equals m. A necessary condition for a well‐defined approxi-
mation is that at least m weight functions are non‐zero. The size of the local support domain Ωl of any geometric
shape should be large enough to cover a sufficient number of fluid nodes to ensure the regularity of the matrix
A ςð Þ. In this work, the support of an image node ς is taken to be a circle of radius rs centered at ς. This allows
for a high level of flexibility for choosing the fluid points. One needs to find a sufficient number of fluid points
around the IP to accomplish the interpolation, and the simplest way is to increase the radius rs until the required
number of fluid interpolation points is identified.

Remark 2. The weight functions Wi ς−ςið Þ play an important role in the constrained MLS approximation.
In practice, Wi ς−ςið Þ is generally chosen such that it is non‐zero over the local support domain Ωl. Here, the
following power function is used as the weight function over Ωl:

Wi ς−ςið Þ ¼ 1−r2i =r
2
s

� 	ϑ
; if ri≤rs

0; if ri>rs

(
; (32)

where ri= |ςi− ς| is the distance between the fluid node ςi and the point ς, and the integer ϑ can be adjusted to
optimize the constrained MLS approximation. The variation of the weight function with the non‐dimensional dis-
tance ri/rs for different values of ϑ is shown in Figure 2. It is observed that as the value of ϑ increases, the weighted
influence in the constrained MLS approximation is significant for smaller values of ri/rs.

Remark 3. To construct the normal velocity at an IP, the Dirichlet‐type boundary condition needs to be enforced
at the BI, i.e., un=Un. In such a case, the penalty parameter κ in Equation 27 is taken as zero, and an uncon-
strained MLS approximation is used. For the interpolation of the mass density, the tangential velocity, and the
pressure at an IP, 2 different situations are considered. If the IP is very close to the immersed boundary, then
the constrained MLS scheme is used to construct these variables because the contributions of the Neumann‐type
boundary conditions of the immersed boundary are significant to the fluid values at the IP. However, when the IP
is far away from the immersed boundary, then the Neumann‐type boundary conditions are not considered in the
MLS approximation of the variables at the IP. These 2 situations are monitored by checking the distance |ςBI− ςIP|



FIGURE 2 Variation with ri/rs of the weight function [Colour figure can be viewed at wileyonlinelibrary.com]
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between the IP and the BI. If ςBI−ςIPj j≤min Δx1;Δx2f g , the constrained MLS approximation is maintained;
otherwise, the unconstrained MLS approximation is applied by setting κ= 0 in Equation 27.

Remark 4. For a solid boundary with sharp corners or a slender body, the method of Chaudhuri et al23 is used.
The geometric data of the GPs are separately maintained for each space direction. The fluxes in the x1 and the x2
directions are computed based on the GPs associated with the corresponding direction.
Once the flow variables at the IP have been computed, values of the flow variables at the corresponding GP are determined
by using the boundary conditions on the immersed boundary. A linear interpolation along the normal is used and the value of
the primitive variable at the GP is given by

φGP ¼ EφIP þ QBI; (33)

where φGP and φIP are flow variables at the GP and the IP, respectively; QBI is evaluated at the BI; and E is a parameter. For
Dirichlet‐type boundary conditions (normal velocity),QBI ¼ 2φBI andE ¼ −1; for Neumann‐type boundary conditions (density,
tangential velocity, and pressure), E ¼ 1 and QBI ¼ −Δl ∂φ= ∂nð ÞjBI, where Δl is the distance between the ghost and the IPs.
Note that Equation (33) results in a second‐order accurate interpolation scheme.

Based on Equations 17 and 33, the flow variables at a GP are related to those of the IP by

ρGP ¼ ρIP; (34)

uGP ¼ uIP−2 uIP⋅n
� 	

nþ 2 UBI⋅n
� 	

n; (35)

EGP ¼ pGP

γ−1
þ 1
2
ρGP uGP



 

2; (36)

in which

pGP ¼ pIP−Δl
ρu2τ
R

−ρ
Du
Dt

⋅n
� �





BI
: (37)

The previous equations complete the numerical evaluation of values of the flow variables at the GPs.
The boundary treatment outlined is for non‐moving solid bodies provided that the grid‐interface relation, and the flow var-

iables at the GPs are updated at each time step. However, the role of a fixed Cartesian grid node near the immersed interface
may vary as the solid body moves across a node. As shown in Figure 3, an interior fluid node at time tn− 1 may become a newly

http://wileyonlinelibrary.com


FIGURE 3 Immersed interface moving relative to the Cartesian grid. Left, boundary intrudes into the fluid ( newly emerging GP); right,
boundary withdraws from the fluid ( newly emerging FP) [Colour figure can be viewed at wileyonlinelibrary.com]
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emerged GP at time tn as the boundary intrudes on to the fluid region, or a GP at tn− 1 may become a newly emerged fluid node
(called “fresh point”, i.e., FP) at tn as the boundary withdraws from the fluid region. For the first case, the solution for the fluid
can be advanced in time since all flow variables in the fluid region at time tn are well defined. The computation of values at each
newly emerged GP follows the same procedure as that for a normal GP. Complications are encountered in the second case
because the newly emerged FPs were previously in the solid and they have no history in the fluid phase at current time tn.
To close the equations, the flow variables at the FPs are determined by a field‐extension procedure.24 A normal intercept is
extended from a FP to the boundary and this intersects at a BI. Because the simulations of the fluid flow are limited by the
Courant‐Friedrich‐Levy (CFL) condition, the moving velocities of the immersed boundary are also subject to a similar
constraint. This implies that, for any time step, the distance between a FP and a BI is less than the minimum grid spacing,
i.e., |ςBI− ςFP| <min {Δx1,Δx2}. The values of flow variables at each FP are interpolated by using the constrained MLS
method, and the interpolation procedure for the FP is similar to that of an IP.
3.3 | Loosely coupled partitioned algorithm

Equations for the fluid and the solid are solved by a loosely coupled and serially staggered algorithm. The solution procedure for
the entire domain is summarized below:

• The position of the rigid solid and the mass density, the velocity, and the pressure of the fluid are known at time tn.
• The fluid pressure exerted on the rigid solid is determined. Knowing the total force and the total torque applied on the solid,

the position of the solid is advanced to time tn+ 1 by solving Equations 4 and 5 with the implicit Newmark integration
scheme.

• The position, the velocity, and the acceleration of the solid are updated. Image points and GPs at time tn+ 1 are determined
by the ray‐tracing method. The flow variables at the GPs are determined using the sharp interface immersed boundary
method. The density, the velocity and the pressure of the fluid are then computed at time tn+ 1.

• Proceed to the next time step.
4 | RESULTS AND DISCUSSION

In order to demonstrate the accuracy and the robustness of the proposed method, 5 problems of varying complexity involving
compressible flows over stationary and moving solids have been solved. These FSIs encompass a number of flow phenomena,
including shock reflection, diffraction, etc. The accuracy of the method is discussed by comparing present results with the pre-
viously published analytical and computational ones. The CFL number that must be less than 1 for stability of the numerical
solution is set equal to 0.3 for all problems studied herein.

Unless otherwise mentioned, the incomplete polynomials defined in Equation 20 are adopted in the MLS interpolation.
Suitably non‐dimensionalized values of variables are used, the penalty parameter κ in the constrained MLS method is

taken =103, and in the radius rs ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx1ð Þ2 þ Δx2ð Þ2

q
of the support domain, we set β=3.0.
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4.1 | Double Mach reflection of a strong shock

The first problem analyzed is usually known as the double Mach reflection test,25 which is commonly used to evaluate the per-
formance of high resolution schemes. This problem is described by a right‐moving shock wave, initially perpendicular to the x
direction and encountering an inclined rigid wedge. As vividly discussed by Woodward and Colella,25 a number of shock‐wave
reflection phenomena (e.g., regular, single, complex, and double Mach reflection) may appear depending on the Mach number
of the incident shock wave and the angle of the wedge. The computational domain for this problem is taken as [0, 2] × [0, 1], and
the rigid wedge starts from x=1/6 making 30° angle with the bottom surface. An initial right‐moving planar shock wave of
Mach number 10 is set at x=1/6. The pre‐shock values of the mass density and the pressure are: ρ=1.4 and p=0, and their
post‐shock values are found by using the Rankine‐Hugoniot conditions. The fluid is assumed to slip on the wedge surface,
and on all other boundaries, the Dirichlet‐type conditions are used. The contours of the computed density at t=0.09 using a
800 × 400 uniform grid are given in Figure 4.

It is observed from Figure 4 that a complex shock structure with 2 triple points evolves when the shock runs up the wedge.
The incident shock, the reflected shock, and the Mach stem come across at the primary triple point; a bow‐shaped shock, a
Mach stem, and a secondary reflected shock form the secondary triple point. Slip lines emanate from the 2 triple points. A
curled flow structure is generated when the reflected shock hits the primary slip line, and its resolution measures the robustness
of the numerical scheme. The main challenge in applying a high‐resolution scheme to this problem is the delineation of the sec-
ondary slip lines.25 As shown in Figure 4, all of the above‐mentioned flow structures are well captured by the present method.
We refer to Woodward and Colella25 and Chi et al26 for similar results obtained with a grid‐aligned method.

The computed results for the mass density along the wedge surface are shown in Figure 5 for simulations performed using
400 × 200, 500 × 250, 600 × 300, and 800 × 400 uniform grids. The presently computed results are compared with the
FIGURE 4 Contours of the mass density at t= 0.09(60 contours plotted within the density range [0, 21.82]) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 Comparison of the variation of the mass density along the wedge surface [Colour figure can be viewed at wileyonlinelibrary.com]
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grid‐aligned solutions of Chi et al26 who used a rotational transformation technique and assumed that the shock wave moves at
an angle of 60° to the x1‐axis and the domain boundary at the bottom is reflective from x=1/6. This configuration does not
require dealing with the cut‐cell problem of the wedge surface and can be used as a reference for comparison. As shown in
Figure 5, the present results converge very fast except in the region of the curled flow. The results obtained with a coarse grid
400 × 200 are in satisfactory agreement with the reference solutions.

To illustrate the effect of the penalty parameter on the numerical solutions, we have plotted in Figure 6 the mass density
along the wedge surface by using the 800 × 400 uniform grid and different values of the penalty parameter. Note that for the
unconstrained MLS method, κ=0. It is found that negative values of the mass density and of the pressure occur for κ=0,
and numerical results do not converge. However, the constrained MLS method is stable for a large range of values of κ, i.e.,
10≤ κ≤ 108, and provides converged solutions. It is not required that κ be large enough for the boundary conditions to be well
satisfied, and κ=103 always gave converged results.

Figure 7 shows the effect of the support domain size on the accuracy of the mass density and the pressure on the wedge
surface. The density and the pressure are evaluated at each solid marker on the wedge surface, and the support domain of a solid

marker bς is taken as a circle of radius rs ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx1ð Þ2 þ Δx2ð Þ2

q
centered at bς. The simulations are performed on a 800 × 400

uniform grid. In order to show the performance of the constrained MLS method, the inversed distance weighted (IDW) inter-
polation scheme7,11,12 commonly used in the immersed boundary methods is also used to evaluate the mass density and the
pressure at each solid marker on the wedge surface. The same Dirichlet‐ and Neumann‐ boundary conditions used in the
constrained MLS method are considered in the IDW interpolation scheme. From Figure 7, it is observed that for the constrained
MLS method, reasonably accurate solutions of the mass density and the pressure are obtained by using support domains with
FIGURE 6 For 10≤ κ≤ 108 variation of the computedmass density along thewedge surface [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Effects of the support domain radius on the mass density and the pressure distributions along the wedge surface. Left, density
distribution; right, pressure distribution [Colour figure can be viewed at wileyonlinelibrary.com]
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small radii. An increase in the radius of the support domain does not significantly affect the mass density and the pressure dis-
tributions on the wedge surface. As mentioned previously, the number of fluid points in a support domain of small radius may
not be sufficient for a well‐posed problem in the unconstrained MLS method. However, in the constrained MLS method, the
flow variables on the solid surface are mostly affected by the boundary conditions, and the penalty term plays an important role
in the constrained MLS formulation, which always leads to a well‐posed least‐squares interpolation. This implies that in the
constrained MLS method, a support domain with a small radius can be used to interpolate the flow variables near the immersed
boundary. Therefore, the present method can potentially work for computing flows with small gaps without using local grid
refinement. In addition, the results in Figure 7 show that the IDW interpolation scheme leads to oscillations in the density
and pressure distributions. However, changing the support domain radius in the IDW interpolation scheme cannot eliminate
the oscillations in the results.

4.2 | Mach 3 flow in a wind tunnel with a forward facing step

We consider a 2‐D wind tunnel flow past a rigid step that has been extensively studied (e.g., see Refs. 27,28). Figure 8 shows
the geometry and the boundary conditions. All boundary conditions except those for the inflow, the outflow, and the rigid step
are imposed by reflecting boundaries. The fluid is allowed to slip on the surface of the step. The outflow boundary is calculated
by interpolating states of interior nodes. The problem is initialized by a right‐going Mach 3 flow.

The computed density contours at t=2.0 and t=4.0 by using a 600 × 300 uniform grid, rs ¼ 2:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx1ð Þ2 þ Δx2ð Þ2

q
and

κ=1×103, are given in Figure 9. Although a singularity exists at the corner of the step, no special technique near the corner
is used. It is clear that the method effectively captures all features of the flow field, and the density contours compare very
closely with those obtained by Smith et al.27

4.3 | Supersonic flow over a circular bump
This problem is studied to demonstrate the application of the constrained MLS method for a compressible flow of the inflow
Mach number 1.65 past a solid with a curved boundary. The dimensions of the channel and the circular bump are depicted in
Figure 10. The slip conditions are applied on the upper and the lower surfaces of the channel. Because flow at the outlet is
supersonic, all variables at the right boundary of the channel are extrapolated.
FIGURE 8 Geometry of a Mach 3 wind tunnel with a forward facing step

FIGURE 9 Forward step problem. Top, t= 2.0 (30 equally spaced density contours from 0.19 to 6.99); bottom, t= 4.0 (30 equally spaced density
contours from 0.32 to 6.15) [Colour figure can be viewed at wileyonlinelibrary.com]
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Contours of the computed Mach number using a 600×200 uniform grid are shown in Figure 11. It is observed that 2
oblique shocks are generated at the 2 corners of the bump, and the leading edge shock reflected from the top wall intersects
with the shock leaving the trailing edge. The reflection and the intersection of the shocks are very well resolved without intro-
ducing oscillations. This is in excellent agreement with the results of Ref. 29.

The computed Mach number profiles along the lower and the upper walls of the channel are depicted in Figure 12. These
converged solutions obtained with 600×200 and 900×300 grids are compared with those of Moukalled and Darwish29 using
the body‐fitted method. It is evident that the present solutions using the 600×200 grid are in good agreement with those of Ref. 29.

A grid resolution study is performed to analyze the convergence rate or the accuracy of the constrained MLS method. The
computed L2 and L∞ error norms of the density are shown in Figure 13. The L2 error norm is a good measure of the global error,
and the L∞ error norm effectively captures the local error around the immersed boundary. Because exact solutions do not exist
for this problem, the numerical solution obtained with the 1200×400 uniform grid is used as a baseline for computing errors. A
line denoting the second‐order convergence rate is also included in the log‐log plot. Although the incomplete polynomials
defined in Equation 20 are used in the constrained MLS interpolation, the results show that the proposed constrained MLS
immersed boundary method is globally and locally second‐order accurate for the flow interacting with a stationary rigid body.
4.4 | Moving piston in 2‐D shock tube

For flows involving moving boundaries, a problem involving a rigid piston translating at a constant velocity in a 2‐D shock
tube is examined. The dimensions of the shock tube are L×H=1m×0.2m; the location and the geometric data of the piston
FIGURE 10 Compressible flow past a circular bump

FIGURE 11 Contours of the Mach number for a supersonic flow over a bump [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Variation along the channel length of the Mach number at the upper (right) and the lower (left) boundaries of the channel [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 L2 and L∞ norms of the error in the density versus the computational grid size [Colour figure can be viewed at wileyonlinelibrary.com]
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are (X,Y)= [0.4 m, 0.44 m]× [0 m, 0.2 m]. The piston instantaneously moves from left to right with a constant speed u=300 m/s
into an initially quiescent fluid with ρ=1.0 kg/m3 and p=105 Pa. In Figure 14, we have exhibited, for 4 values of the penalty
parameter κ, the computed profiles of the mass density and the velocity using the 400×60 uniform grid. The mass density
and the axial velocity distributions along the x‐axis on the line y=0.1 m at time t=8×10−4 s are compared with the exact
solutions given by Shyue.30 It is observed that for κ=0, spurious density with a large value appears behind the piston, and the
velocity oscillates at the location of the rarefaction wave head. It is because the flow variables at the fresh nodes cannot be
accurately reconstructed by the unconstrained MLS method. However, for κ≥ 10, results obtained by the constrained MLS
method seem unchanged and agree well with the exact solutions.

In order to find how coarse a grid one can use to get good results, we used 3 different grids, 200 × 40, 600 × 80, and 800 × 160.
The density and the axial velocity at time t=8×10−4 s along the line y=0.1 m depicted in Figure 15 reveal that numerical
results obtained even with a relatively coarse 200 × 40 grid are in excellent agreement with the exact solutions, and the
present approach predicts the correct shock location. The x− t diagrams of the density and the pressure are shown in Figure 16.

The computed L2 and L∞ error norms of the mass density are plotted in Figure 17 versus the grid size. A line representing
the second‐order accuracy slope is also included. It is clear that for a moving boundary problem, the proposed constrained MLS
immersed boundary method is globally and locally second‐order accurate.
4.5 | Lift‐off problem of a rigid circular cylinder

The moving body problem studied by Monasse et al31 and Pasquariello et al32 is now simulated. The setup consists of a 2‐D
channel filled with air and a rigid cylinder of density 7.6 kg/m3 and a diameter of 0.1 m, initially resting on the lower wall
FIGURE 14 Comparison of the computed density and velocity profiles with the exact solutions [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 15 For3uniformgrids, variationof the computedmassdensityand the axialvelocity [Colour figure canbeviewedatwileyonlinelibrary.com]

FIGURE 16 The x− t diagrams of the mass density and the pressure (the position of the solid is in shown dark blue color). Left, density; right,
pressure

FIGURE 17 L2 and L∞ norms of the error in the density versus the computational grid size [Colour figure can be viewed at wileyonlinelibrary.com]
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at the position: (Xc,Yc) = (0.15 m, 0.05 m). The cylinder is driven and lifted upwards by an incident shock wave with Ma=3
starting at x=0.08 m. The pre‐shock conditions are prescribed as ρ=1 kg/m3, u= v=0 m/s, and p=1 Pa for x≥ 0.08, and
the post‐shock conditions for x<0.08 as ρ=3.857 kg/m3, u=2.629 m/s, v=0 m/s, and p=10.33 Pa. The rectangular fluid
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domain has dimensions 1.0 m×0.2 m. The boundary conditions on the left surface are set as inflow with the corresponding
post‐shock flow parameters. The right‐side boundary conditions are non‐reflecting, while slipping of the fluid is allowed on
the top and the bottom rigid walls.

The computed results for the horizontal and the vertical positions of the mass center of the cylinder at t=0.255 s are com-
pared in Figure 18 with those of Monasse et al31 and Pasquariello et al.32 Different grid resolutions of 1/dx=1/dy=400, 600,
and 800 are used in the computation. The presently computed final position of the cylinder is in reasonable agreement with
those of the 2 reference solutions.

The instantaneous density and pressure contours computed using a uniform 800 × 160 grid at t = 0.14 s and 0.255 s are
presented in Figures 19 and 20, respectively. The results show that the solid positions and the shock patterns determined by
the present method agree well with those reported by Monasse et al31 and Pasquariello et al.32 A strong vortex below the rigid
cylinder exists throughout the entire cylinder trajectory, which is also reported by Monasse et al31 and Pasquariello et al.32 This
vortex is probably associated with a Kelvin‐Helmholtz instability of the contact discontinuity present under the cylinder.
FIGURE 18 Computed results for the cylinder center position for 3 grids in the fluid domain: horizontal position (left), vertical position (right)
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 Density contours at 2 different times: (top) t= 0.140 s (50 contours from 0 to 7.8); (bottom) t= 0.255 s (50 contours from 0 to 6)
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 20 Pressure contours at 2 different times: (top) t= 0.140 s (50 contours from 0 to 28); (bottom) t= 0.255 s (50 contours from 0 to 22)
[Colour figure can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSIONS

A ghost‐cell sharp interface method combined with a constrained MLS approximation is developed to implement boundary
conditions on the fluid‐solid interface for compressible flows over irregularly shaped either stationary or moving rigid solids.
The fluid flow equations are discretized by the Lax‐Friedrichs flux splitting scheme, and the spatial derivatives are approxi-
mated by using the finite difference method based on the fifth‐order weighted essentially non‐oscillatory scheme. The interpo-
lation of the flow variables at an image node is implemented by a constrained moving least‐squares interpolation method. The
Dirichlet‐ and the Neumann‐type boundary conditions on the fluid‐solid interface are enforced in the interpolation process. The
computed results for the following 5 challenging problems have been found to compare well with those available in the litera-
ture: (i) double Mach reflection of a strong shock, (ii) Mach 3 flow in a wind tunnel with a forward facing step, (iii) supersonic
flow over a circular bump, (iv) moving piston in a 2‐D shock tube, and (v) lift‐off problem of a rigid circular cylinder. It
validates the accuracy of the present method in analyzing the fluid‐rigid solid interaction problems.

We note that instead of using a penalty parameter in Equation (27), one could use the method of Lagrange multipliers to
enforce the constraint expressed by Equation (26), e.g., see Refs. 33 and 34.
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