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ANALYSIS OF DEFORMATIONS NEAR A CRACK TIP IN A 
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R. C. BATRA and J. P. ZHANG 

Department of Mechanical and Aerospace Engineering and Engineering Mechanics, 
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Ahatract-Finite plane strain deformations of a compressible nonlinear elastic body made of a Blats-K0 
material and containing an elliptical void are studied. The void is assumed to be either in the interior of 
the infinite body or at an edge. In the latter case, two different loadings, namely tensile tractions applied 
on sides parallel to the major axis of the ellipsoid, and equal and opposite normal tractions applied on 
the vertical side coincident with the minor axis of the ellipsoid, are considered. In the former case, the 
body is loaded by tensile tractions applied on the far away surfaces that are parallel to the major axis 
of the ellipsoid. In each case, it is found that stresses and principal stretches at the void tip stay bounded, 
and the stress concentration factor depends upon the tractions applied at the far away surfaces. 

1. INTRODUCTION 

THE GROWING use of rubber components in critical parts such as shock absorbers and in vibration 
isolation bearings to separate dynamically loaded parts of the structure from the foundation 
necessitates a better understanding of the fracture mechanisms of these materials. The linear theory 
of elasticity-in conllict with its underlying approximations-predicts unbounded deformations 
and stresses near a crack tip. Most rubberlike materials can undergo large deformations in the 
elastic range. Knowles and Stemberg [l] have used the hodograph transformation method to study 
stresses near a crack tip in an elastic body made of a neo-Hookean material and deformed in 
antiplane shear. Subsequently, Fowler [2] used an asymptotic representation of the displacement 
field to study the same problem and obtained results in general agreement with those of Knowles 
and Stemberg [l]. These investigators found that for shearing in the z-direction, the component 
T, of the Cauchy stress tensor T becomes unbounded at the crack tip. 

By analyzing the stress distribution in a plate made of a linear elastic material and containing 
an elliptical hole, Inglis [3] showed that the maximum stress at the major axis of the ellipse equalled 
(1 + 2a/b) times the applied stress normal to the major axis at far away surfaces. Here 2a and 26 
equal the major and minor axes of the ellipse. In this paper, we study the problem when a body 
made of Blatz-Ko material undergoes plane strain deformations, and consider two cases, namely 
when the body has an ellipsoidal void in its interior or it has a half elliptical void with its minor 
axis aligned along the left vertical surface. For the latter case, the body is loaded either by tensile 
tractions normal to the major axis of the ellipse and applied at far away surfaces, or equal and 
opposite normal tractions applied to the left vertical surface on either side of the void. The effect 
of varying the ratio of the major axis to the minor axis of the ellipse on the deformations of the 
body near the void tip is also examined. 

2. FORMULATION OF THE PROBLEM 

Since the deformed shape of the initially elliptical void is not known a priori, we use the 
referential or Lagrangian description of motion. In terms of rectangular Cartesian coordinates with 
the origin at the center of the undeformed void and the coordinate axes coinciding with its major 
and minor axes, equations governing the plane strain deformations of the body are 

Tim.:,., =0, i=l,2; a=1,2. (1) 

T is the first Piola-Kirchhoff stress tensor, a repeated index implies summation over the range of 
the index, and a comma followed by index a indicates partial differentiation with respect to X,, 
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Fig. 1. Axial stress vs axial stretch, and strain energy density W per unit reference volume vs axial stretch 
for a Blatz-Ko material deformed in simple tension. 
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Fig. 2. Schematic sketch and the finite domain analyzed for problem 1. 
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Fig. 3. Schematic sketch and the finite domain analyzed for problem 2. 

which is the position of a point in the unstressed reference configuration. The Fiola-Kirchhoff stress 
tensor is related to the strain energy density W per unit reference volume by 

Here F is the deformation gradient, and x, the present position of the material particle that occupied 
place X, in the reference configuration. We assume that the body is made of a Blat+Ko material [4]. 
For plane strain deformations of the Blati-Ko material 

w=E U-1) 
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Fig. 4(a) (caption overleaf) 
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Fig. 4(b) 
Fig. 4. Schematic sketch and the finite domain analyzed for problem 3. 

-lot-- 
l 21a 

Fig. Sa. Finite element mesh, in the undeformed configuration, used to analyze the first problem for 
alb = 4. 
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Fig. 5b. Deformed mesh in the vicinity of the void surface for t/p = 0.15. 

where 

J = det F, I = tr(FF*) = tr(FTF). (4) 
In these equations, p is the shear modulus of the material at zero strain. The Cauchy stress tensor 
u is related to the first Viola-Kirchhoff stress tensor T by 
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Fig. 6(a,) (capfion ouerleaf). 
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Fig. 6a. Variation of the maximum principal stretch within the domain for t/p = 0.15 and for the first problem. 

Thus, for plane strain defo~ations of the Blatz-Ko material 
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Fig. 6b. Variation of the maximum principal stretch in the vicinity of the crack surface for t/p = 0.01. 
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Fig. 6c. Variation of the maximum principal stretch in the vicinity of the crack surface for t/p = 0.1. 

is the left Cauchy-Green tensor. The stress-strain curve and the strain energy density vs axial 
stretch curve for a Blatz-Ko material depicted in Fig. 1 indicate that the axial stress reaches a 
limiting value with an increase in the axial stretch, and the strain energy density continues to 
increase unboundedly for large axial stretches. 

Substitution from eqs (2) through (7) into eq. (1) gives two coupled highly nonlinear partial 
differential equations which ought to be solved for x, and x2 under the pertinent boundary 
conditions. Here we study the following three problems. 

As the first problem, we study finite plane strain deformations of an infinite body containing 
an ellipsoidal cavity and subjected at infinity to tensile loads perpendicular to the major axis of 
the ellipsoidal void. Schematic sketches of the problem studied and of the finite domain analyzed 
are shown in Fig. 2. Here we have assumed that the deformations of the body are symmetrical 
about the horizontal and vertical centroidal axes and, thus, study deformations of the material in 
the first quadrant only. The horizontal and vertical dimensions of the region studied are chosen 
large enough so that their locations have a negligible effect on the deformations of the body in the 
vicinity of the void. The applicable boundary conditions are 

Ti2 = tdi2 on the upper horizontal surface 

Ti, = 0 on the right vertical surface 

x, =X,, T,, =0 on the left vertical surface 

T&N,=0 on the void surface 

x2 =X2, T,,=O on the bottom horizontal surface. (8) 

The boundary conditions due to the assumed symmetry of deformations hold on the left and 
bottom surface, the right surface is taken to be traction free, and uniform tensile tractions are 
applied on the top surface. 

In the second problem, the body has a half ellipsoidal void with its minor axis coincident with 
the left vertical surface and tensile loads perpendicular to the major axis of the ellipsoid are applied 
to the top and bottom surfaces. The deformations of the body are taken to be symmetrical about 
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the horizontal centroidal axis. Accordingly, we study deformations of the upper half of the body. 
Schematic sketches of the problem studied and of the finite domain analyzed are shown in Fig. 3. 
The pertinent boundary conditions are 

T2 = f& on the upper horizontal surface 

Ti, =0 on the left vertical surface 
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Fig. 7. Contours of the strain energy density Wper unit undeformed volume within the deformed region. 
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Fig. 8a. The ratio u,.,,/u vs distance from the crack tip at points on the horizontal axis through the crack 
tip for t/p = 0.15. 

Fig. 8b. Maximum stress at the crack tip vs the applied traction. 

Til = 0 on the right vertical surface 

T,N,=O on the void surface 

x2 - -X2, T,,=O on the bottom horizontal surface; (9) 

and the bottom right corner is kept fixed to eliminate the rigid body motion. 
For the third problem, we assume that the body has a half ellipsoidal void with its minor axis 

abutting the left vertieal surface of the body. Equal and opposite normal loads are applied on this 
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surface with the remaining surfaces held traction free. The finite domain analyzed is shown in Fig. 4 

with the following boundary conditions applied on its surfaces. 

T,2 = 0 on the upper and bottom horizontal surfaces 

xi = Xi on the right vertical surface 

Ti, = -t&, on the left vertical surface above the void 

Ti, = tdi, on the left vertical surface below the void 

Tim N, = 0 on the void surface. (10) 

Each of the three problems formulated above is difficult to solve analytically, so we seek 
approximate solution by the finite element method. 

3. NUMERICAL SOLUTION AND RESULTS 

In order to solve any one of these problems numerically, we use the Galerkin approximation [5] 
to obtain its weak formulation that incorporates natural boundary conditions. The finite region 
studied is divided into four-noded quadrilateral subdomains. The displacement field is approxi- 
mated by a bilinear function on each quadrilateral so that over the entire domain it is represented 
by a piecewise linear continuous function. Substitution of this displacement field into the weak 
formulation of the problem gives a set of nonlinear algebraic equations which are solved iteratively 
by the Newton-Raphson method. The applied load is divided into several steps, and within each 
load step, equilibrium iterations are performed until, at each node point 

!q < IO-3 

14 ’ ’ 
(11) 

where Au is the just-computed increment in the nodal displacement because of the unbalanced 
forces and u is the total computed displacement of that node. We used the 2 x 2 Gauss quadrature 
rule to evaluate various integrals numerically. 

The developed code was validated by analyzing the simple tension problem, the simple 
shearing problem, and the plane strain problem of an infinite elastic body made of a Blatz-Ko 
material and containing a circular cavity. The last problem with a uniform pressure applied to the 
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Fig. 9. The stress concentration factor vs a/b for problem 1 and for f/r = 0.05, 0.10, and 0.15. 
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Fig. 10a. Radius of curvature of the deformed crack tip vs a/b. 

Fig. lob. Radius of curvature of the deformed crack tip vs the normal traction applied at the far away 
surface. 

void surface has been studied analytically by Abeyaratne and Horgan [6]. The maximum difference 
between the values of the hoop stress at any point on the inner surface of the void as obtained 
from the analytical solution and the numerical solution was found to be less than 1%. 

3.1. Results for the first problem 

Figure 5a depicts the finite element mesh, in the undeformed configuration with a/b = 4 for 
the ellipsoidal void, that is used to analyze the first problem; a blow-up of the mesh around the 
ellipsoidal void in the deformed configuration is shown in Fig. 5b. In this and subsequent figures, 
the length scale has been normalized with respect to the semi-major axis of the ellipsoidal void in 
the undeformed configuration. The mesh used is very fine in the vicinity of the crack tip and 
gradually becomes coarser as one moves away from it. Figure 5b reveals that the crack tip has been 
blunted during the deformation. That the deformation of the body is homogeneous everywhere 
except in the vicinity of the crack should be apparent from the plot of the maximum principal 
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stretch given in Fig. 6a for t/p = 0.15. It establishes that the domain considered is adequate. 
Recalling that the length of the vector is propo~ional to the ~g~tude of the maximum principal 
stretch and it occurs along the vector shown, the deformation is extremely complex near the crack 
tip. The peak value of the maximum principal stretch occurs at the crack tip and is finite as 
compared to the infinite value predicted by the linear theory of elasticity. Note that the width of 
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Fig. 11. Distribution of the maximum principal stretch within the deformed domain for a/b = 15 and 
r/~ = 0.1 for problem 2. 
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Fig. 12. Contours of the strain energy density W per unit undeformed volume for problem 2. 

the region studied has contracted significantly because of the tensile tractions applied on the top 
horizontal surface. The plots of the maximum principal stretch in the deformed region around the 
crack surface for t/p = 0.01 and 0.1 are given in Figs 6b and 6c, respectively. Their comparison 
with the plot of Fig. 6a indicates that the deformation of the crack tip depends noticeably upon 
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the applied traction, and the direction and magnitude of the maximum principal stretch at the crack 
tip depend in a complicated way upon the applied surface tractions on the top horizontal surface. 

The contours in the present configuration of the strain energy density W per unit undeformed 
volume are depicted in Fig. 7 for t/p = 0.15. That the strain energy density stays finite at points 
near the crack tip confirms the assertion made above that the deformations at points near the crack 
tip stay bounded. It is clear that W decays fairly rapidly as one moves away from the crack tip. 
The values of ~,,/a at points on the horizontal axis through the crack tip are plotted in Fig. 8a. 
The abscissa equals the distance from the crack tip, and ~7 is the tensile traction measured per unit 
deformed area applied on the top horizontal surface, whereas t is measured per unit undeformed 
area. According to the linear theory of elasticity, a,,,,/~ at the crack tip should equal 9 for a/b = 4. 
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Fig. 13a. Distribution of the normal stress a& at points on the horizontal axis through the void tip. 

Fig. 13b. T’he normal stress uYY at the void tip vs the applied normal traction Q at the far away surface. 
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Fig. 14. Dependence of the stress concentration factor K upon the ratio a/b. 

For the nonlinear problem being discussed, we obtain 5.6 for rrY,./rr at the crack tip. However, the 
slope at c = 0 of the curve depicting oyu at the crack tip vs u in Fig. 8b is found to be 7.54. The 
dependence of the stress concentration factor K, defined as uvv at the crack tip/a at the top surface, 
upon the ratio a/b is shown in Fig. 9. Whereas the linear theory of elasticity predicts this curve 
to be a straight line of slope 2, irrespective of the load applied, we obtain a nonlinear dependence 
of the stress concentration factor upon a/b, and its values depend upon the applied traction at far 
away surfaces. For each value of the applied traction K first increases with an increase in the value 
of a/b and plateaus out for large values of a/b. The asymptotic value of K is higher for lower values 
of the applied traction. 
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Fig. Ea. Radius of curvature of the deformed void tip vs a/b. 

Fig. 15b. Radius of curvature of the deformed void tip vs the normal traction applied at the far away 
surface. 
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The dependence of the radius of curvature of the deformed crack tip upon the ratio a/b and 
upon the normal traction applied at the far away surface is shown in Figs 10a and lob, respectively. 
For applied traction t = 0.15~ the radius of curvature of the deformed void tip decreases with an 
increase in the value of a/b until it reaches the minimum value of 0.04 for a/b = 12, and then it 
increases very slowly. For a/b = 4, the radius of curvature of the deformed void tip continues to 
increase with an increase in the value of the tensile traction applied at the far away surfaces. 

3.2. Results for the second problem 

Figure 11 exhibits the distribution and direction of the maximum principal stretch at various 
points within the deformed domain for a/b = 15 and t/p = 0.1. It is clear that the defo~ation of 
the body at points near the void surface, and especially of points close to the void tip, is extremely 
complicated. As for the first problem, the vector of the maximum principal stretch is normal to 
the void surface at most of the points except near its boundaries. At points near the void tip, the 
maximum principal stretch is directed along the deformed void surface. Because of severe 
deformations near the void tip, the radius of curvature there changes appreciably. The contours 
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Fig. 17. Contours of the strain energy density W per unit undeformed volume for problem 3. 

in the present configuration of the strain energy density W per unit undeformed volume are plotted 
in Fig. 12. The peak value of W occurs at the void tip and it decays quite rapidly with the distance 
from the void tip. Note that beyond the fifth contour around the void tip, Wchanges from 0.002173 
to 0.002092, implying thereby that the deformation of the region outside of the fifth contour is 
essentially homogeneous. In Fig. 13, we have plotted the variation of uYu at points on the horizontal 
axis through the void tip, and e,.,, at the void tip vs the applied traction e at the far away surface. 
The stress auv decays very rapidly with the distance from the void tip. For a linear elastic material, 
G,,,, at the void tip is proportional to the applied traction 0. For the nonlinear material being studied 
here, the dependence of euv at the void tip upon Q is nonlinear and the ratio of the two, often called 
the stress concentration factor K, depends upon u. Since aY,, reaches a plateau at large values of 
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c, the stress concentration factor first increases and then decreases with an increase in the value 
of 6. 

Figure 14 shows the dependence of the stress concentration factor K upon the ratio a/b for 
t/p = 0.01, 0.05, and 0.1. In each case, K first increases with an increase in the value of a/b and 
then appears to reach a limiting value; the limiting value depends upon the applied traction and 
is highest for t/p = 0.01. In Figs 15a and 15b, we have plotted the radius of curvature of the 
deformed void tip vs the ratio a/t, for a fixed value of the apptied traction, and for a/b = 15, the 
dependence of the radius of curvature of the deformed void tip upon the tensile traction applied 
at the far away surfaces. These curves are similar to those for the first problem. 
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Fig. 18b. Lkpendence of the maximum shear stress o ,2 upon the tractions applied on the Ieft face. 



~fo~ations of a compressible nonlinear elastic material 431 

3.0' 

2.5. t/r - 0.01 

6 

‘1 
‘1 

‘\ 
‘A__ 

u. 
-2_______.------- 

rf 

t/r - 0.05 *.._ 
. . 

--.. __.* 
__-- 

__-- 

is 

2.0. %_ 
-.__ __.--- _.-- 

--__ *-__________---- 

II 

:I e/u-(I.l ----:-‘: 
0 3 6 9 12 15 

Fig. 19. Dependence of the stress concentration factor upon the ratio cr/k 

3.3. Results for the third problem 

In this problem, the part of the left vertical surface above the void is subjected to normal 
compressive tractions and that below the void to equal normal tensile tractions; the right vertical 
surface is held stationary. Figure 16 depicts the distribution of the maximum principal stretch at 
various points in the deformed region, and also in the vicinity of the void surface for t/p = 0.1 
and a/b = 15. It is reasonable to expect that the applied loads will induce tensile deformations in 
the horizontal direction in the region below the horizontal line through the void tip and compressive 
deformations in the region above this line. Since we have plotted the maximum principal stretch, 
the directed lines in the lower half of the body are parallel to the applied tensile load, and those 
in the upper half of the body are perpendicular to the applied compressive load. The void tip is 
not deformed as much as it is in the second problem, and the maximum principal stretch at the 
void tip is not as large as it is in the previous two cases. The maximum principal stretch on the 
lower surface of the void is along the surface, that on the upper surface of the void is nearly vertical. 

The contours in the present configuration of the strain energy density W per unit undeformed 
volume plotted in Fig. 17 indicate that material points on the upper surface of the void that are 
near the void tip are deformed more severely as compared to those on the lower surface of the 
void. The strain energy density decays rapidly with the distance from the void tip, signifying that 
much of the region away from the void surface has been deformed homogeneously. Figure 18a 
depicts the variation of the shear stress cr,* at points on the horizontal line through the void tip. 
As one moves away from the void tip, the shear stress drops very rapidly initially and then quite 
slowly. The rate of drop of the shear stress with the distance from the void tip is much less as 
compared to that of the normal stress at similarly situated points in the previous two problems. 
The variation of the maximum shear stress en at the void tip upon the normal traction Q applied 
on the left vertical surface, plotted in Fig. 18b, indicates that CJ,~ equals nearly 2~; the dependence 
of cl2 upon c is, of course, nonlinear. However, the nonlinear effects manifest themselves for higher 
values of cr. 

The dependence of the stress concentration factor K, defined as cl2 at the void tip divided by 
the normal traction tr on the left vertical surface, upon the ratio a/b, shown in Fig. 19, indicates 
that for t = O.Olfi, K first decreases with an increase in the value of a/b and eventually reaches a 
plateau. However, for t = O.O5p, K decreases when a/b is increased from 4, takes on a minimum 
value for a/b = 9, and then increases with an increase in the value of u/b. For a higher value of 
the applied traction, namely, t = 0.1~~ K first increases very slowly when a/b is increased from 4 
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to 6, but quite rapidly for higher values of a/b. The dependence of K upon a/b in this case is quite 
different from that in the previous two cases wherein K attained a limiting value when a/b was 
increased. 

4. CONCLUSIONS 

We have studied plane strain deformations of a body made of a Blatz-Ko elastic material and 
containing an ellipsoidal void. Three different problems, sketched in Figs 2, 3 and 4, are studied 
by the finite element method. In each case, the applied loads induce finite deformations of the body, 
and the void tip is deformed severely. The deformations of the material close to the void surfaces 
are too complicated to be described analytically. The peak value of the maximum principal stretch 
and of the strain energy density per unit volume in the reference ~nfi~~tion occurs at the void 
tip. The strain energy density decreases rapidly with the distance from the void tip. For each one 
of the three problems studied, the deformations of the material at the void tip stay bounded. The 
radius of curvature of the deformed void tip depends strongly upon the ratio a/b and also on the 
applied tractions. 
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