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Abstract-Plane strain deformations near the tip of a crack between two homogeneous and isotropic linear 
elastic bodies are studied on the assumptions that the two surfaces on either side of the crack contact each 
other and that the dilatation everywhere in the body is greater than or equal to a constant. The region 
where the dilatation equals the constant is called the locking region. It is found that one of the two half 
planes is in the locking state and the singularity index equals l/2. 

1. INTRODUCTION 

SINCE the time Williams [l] obtained the characteristic oscillating stress singularity near the 
interface crack tip that implied interpenetration of the material, there have been several proposals 
(see e.g. refs [2-8]) to explain this phenomenon. One of these [8] involves the assumption that the 
crack surfaces contact each other, and there may be frictional forces acting between them. Here 
we assume that the contact surfaces are smooth but require that the dilatation at every point in 
the body exceeds or equals a constant greater than - 1. We use Prager’s [9] terminology and call 
the region wherein the dilatation equals the constant the locking region, and the remaining region 
the elastic region. 

2. BASIC EQUATIONS 

We concentrate on finding the deformation and stress fields in the vicinity of the tip of a crack 
between two linear elastic, isotropic and homogeneous bodies undergoing plane strain defor- 
mations in the xl-x2 plane. We assume that deformations satisfy the constraint 

gv = 1 + E,, 2 1 + 6 > 0, (1) 

where du and dY equal, respectively, the volume of the same material element in the present and 
stress free reference configurations, L,~ is the infinitesimal strain tensor, a repeated index implies 
summation over the range 1, 2 of the index, and 6 is a material constant. The region where caol = 6 
is called the “locking region”; in the remaining region, deformations are unconstrained. 

In the locking region, stresses crab are related to the strains cd by 

&ola = 6 (2.1) 

=,8 = -P&l + w, + ~Qq4fi 9 (2.2) 

and in the unconstrained region by 

e,fl= &&fi + 2FQ 9 (3) 

where I and p are Lame’s constants, p(x,, x2) > 0 is the hydrostatic pressure not determined by 
the deformation field, and 6, is the Kronecker delta. Of course, the last term on the right-hand 
side of eq. (2b) could be absorbed in p. In terms of the analytic functions c#J~(z) and $Jz) of the 
complex variable z = x, + ix2, we have in the unconstrained or the elastic region [lo] 

e11+ 022 = 2($: + &), (4.1) 
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022 - oII + 2ia,, = 2($: + $:) 

2~(u,+iu,)=~~,-z~:-_~, 

where a superimposed bar indicates the complex conjugate 

(4.2) 

(4.3) 

of the variable, I#.J ‘ = d#/&, and 
K = 3 - 4v, v being Poisson’s ratio for the material of the body. The stress field in the elastic region 
must satisfy 

%,z = (7,, /(2@ f /J )) > 6. (9 

Similarly, in the locking region, we have 

01 I + e22 = 2(&l + 66) (6.1) 

oII - ez2 + 2i(r,, = 2(24,” + II/h) (6.2) 

2~(~,+iy)=~~-z~~-_~+~LBz (6.3) 

2(1 + p)d > oaaur, (6.4) 

where $,, and & are analytical functions of z, and inequality (6.4) follows from p > 0. 
In order for the surface tractions and displacements to be continuous across the interface 

between the locking and the elastic regions, we must have 

where [fj equals 
the elastic and 
condition [lo]: 

[[q5 +z&+Q=o (7.1) 

K& - 40 - [Z;i;’ + $1 = @, (7.2) 

the difference between the values off on the two sides of the interface betwen 
locking regions. Equations (7.1) and (7.2) imply the following Hilbert 

(K + 1 w, - 240 = &, (8) 

which we assume replaces eq. (7.2). 

3. CRACK-TIP ANALYSIS 

We assume that the crack surface, as shown in Fig. 1, is defined by x2 = 0, xl < 0 with its tip 
located at the origin of the rectangular Cartesian coordinate axes. In polar coordinates z = r eie, 
the cracked body occupies the domain 0 < r < co, --A < 8 < A. We assume that the material of 
the body in the upper half plane is characterized by elasticities (p, , K, ) and that in the lower half 

locking 

l (Lb 
unconstfained 

contacting crack surfaces 

Fig. 1. A schematic sketch of the problem studied. 
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plane by (p2, q). Note that IC = 1 in the locking region. Since the classical solution of the contact 
crack problem gives [8] 

L dd N r -‘I2 sin(8/2), --A < 8 < A, (9) 

which varies monotonically from one crack surface to another, accordingly, we assume that the 
solution is of a single locking domain, say the upper one, adjoining one of the crack surfaces. Thus 
the upper half plane is divided into two parts 

R,, : 8, < 0 f n with elasticities @,, K,, ) (10.1) 

Q2: 0 G 8 c 8, with elasticities b2, K,~) (10.2) 

and the value of 8, is determined by conditions (5) and (6.4). 
We use William’s [l] eigenexpansion method combined with Muskhelishvili’s complex variable 

method [IO] to obtain an r-8 separable asymptotic series solution near the interface crack tip [3,4]. 
Without any loss of generality (see e.g. ref. [4]), we seek solutions d(z) and $(z) of the form 

zp and zp, O<Re(p)< 1, (11) 

in the locking and elastic regions, respectively, where p is to be determined from the solution of 
an eigenvalue problem. For complex p, conditions (5) and (6.4) cannot be satisfied in the limit r +O 
because of the oscillatory nature of the singularity. Accordingly, we assume that p is a real number, 
and take 

C#J =AzP, JI = Bzp on R,, (12.1) 

I$ = EzP, t,b = FzP on R,, (12.2) 

C/I = Mzp, J/ = Nzp on Cl,, (12.3) 

where zp is the principal value (- 71 < 8 < K) and A, B, E, F, M, and N are six undetermined 
complex constants. 

The requirements that normal surface tractions and surface displacements at the contacting 
crack surfaces 8 = fn are equal, the tangential tractions on 8 = f K are null, and the continuity 
conditions across the bounding surface 8 = 8, and the interface 8 = 0 give the following 
homogeneous equations for the determination of A, B, E, F, M, and N. 

A+Ape2iP”+Be2iP”_N-Mp _j$$iPn=() (13.1) 

(l-p)[Ae”P”-~-(Be2’P”-@=0 (13.2) 

p, [rc,(M - i@ ezipn) - pm e2’pn + Mp - w ezpn + N] 

-p2[rc,,(A e2ipn -a-pA+Ap eZipn- B+ B e2ipn] = 0 (13.3) 

E+pB+F-(M+&+fl)=O (13.4) 

p,[~~M-p~-ii+p~[~,~E-p~-~=O (13.5) 

A@,, + 1) - E(K,, + 1) = 0 (13.6) 

A e2iPel +  pA $ih + B _ (E @@I + p,@‘% + F) = 0. (13.7) 

Note that conditions (13.2) and (13.3) are real and the remaining equations in the set of equations 
(13) are complex. Using eqs (13.1) and (13.2) eq. (13.3) can be rewritten as 

~1(1+~2)(M-i@e2iP”)-~2(l+~,,)(Ae2iP”-A)=0. (13.8) 

Equations (13. l), (13.2), and (13.4) through (13.8) constitute an eigenvalue problem for the 
determination of constants A, B, E, F, M, and N, and p is the eigenvalue. 

We note that when 0, = 0, four equations (13.4) through (13.7) reduce to the following two 
equations: 

A+pA+B-(M+p&f+m=O (14.1) 

PI(~zM-P~-&--PC~~(~,,A -PA--a==, (14.2) 

and constants E and F are not involved. 
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We add that the normal stress at the contact surfaces 0 = f IC must be compressive. The value 
of 8, is determined by 

4: + & > 0 in the elastic domain (15.1) 

46 + & < 0 in the locking domain. (15.2) 

For the classical solution 8, = A, p = l/2 was obtained [8] for any set of material parameters b,, Q) 

and (~12 9 ~2). 

4. THE SIMPLE CASE WITH 1, = ~(2 

Recalling that in the locking region rcl, = 1, we set rc,r = K,. Equations (13.4), (13.5), and (13.6) 
yield 

In view of 

2A = M(rcr + 1) = E(l + K,). 

aaa m Re(4’) w Re[Ae’@-“8] for --x < 6 <n, 

A = R + iI, tgo = I/R 

conditions (15.1) and (15.2) reduce to 

cos[(p - i)e+0]>0 for -7t Ge <e, 

COS[(P - l)e + 01 c 0 for 8, < 8 G 71, 

which imply that 

)(p-i)(e-e,)1sn for --~ge<k. 

From eqs (17), (18.1) and (18.2) we obtain 

A= _ A e%-‘% 

Equations (13.8) and (16) give 

(A + a(1 _ e&x) = 0, 

which is satisfied only if 

A = -1, 

or A is pure imaginary. From eqs (19) and (21) we conclude that 

sin@ - 118, = 0. 

From eqs (13.1), (13.4), and (13.7) we obtain 

B = 2A/(l + x2) - pA, 

which when substituted into eq. (13.2) yields the eigenvalue problem 

A(2/(1 +rcZ)+e2ipn)-A(1 +2ez’P”/(l +K~))=O 

for the determination of p. Recalling eq. (21) we conclude from eq. (24) that 

P + 

and then from eq. (22) that 

8, = 0. 

Thus the entire half of the body above the crack surface must be in the locking state. 

(16) 

(17.1) 

(17.2) 

(18.1) 

(18.2) 

(18.3) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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S. THE GENERAL CASE WITH cl # yc, 

From eqs (13,1), (13.4)-(13.7), (13.2) and (13.3) we find that 

A (~1 - l)(ewi - I)/@, + 1) + (1 - e-+)(B- M) 

+@if[(~, - l)e2”1/(~, + 1) + 2/(rc2 + 1) - e-“q = 0 (27) 

(A @i’= - z)[l - p + 2&p* (K2 + l)]] = (B - x.Q+= - (B - M). (28) 

Henceforth we restrict ourselves to the ease when p = l/2. Then eqs (27) and (28) yield 

1 - e% + 0: eiet - a eW = 0 , (29) 

where 

a = {g~1~+~~(7 -XI + 20/0LI(~, - 1)) > 0. (30) 

Thus, 

eiel = I and 8, = 0 , 

and the entire region above the crack surface is in the locking state. 

6. DISPLACEMENTS AND STRESSES NEAR IIIE CRACK TIP 

Because of eq. (21), we set 

A = il, (31) 

where I is a real number. Also with p = l/2, 8, = 0, we obtain from eqs (13.1), (13.2), and (13.4) 
through (13.8) the following. 

B= - i(j3 + l/2)1, M = i/U, N = - i( 1 + p/2)1, (32) 

where 

B =I1 +wPtM~2-+f2/Prl~ orbs 1 (33) 

and 

%a m Re[A e-*‘q N - sin(~/2~ for -x < 8 Q rr. (34) 

One can verify that conditions (15.1) and (15.2) are satisfied. Recall that for 0, = 0 the solution 
of the problem is independent of constants E and F, and the remaining constants are expressible 
in terms of I through eqs (31) and (32). Using eqs (4), (6), (12), (31), and (32) we obtain the 
following expressions for the displacements and stresses. 

(a) In the upper-half plane: 

sin~el2~ + (B + ~)sin(3~12)] (35.1) 

urr = 24 ( > I [f sin(ej2) - (B + $sin(38/2)] (35.2) 

-1 cos(e/2) - (/3 + f)cos(38/2)] 

[f sin(0/2) - (/I + i)sin(36/2)] 

&OS(O 12) - (8 + f)c0s(3e /2n. 

(35.3) 

(35.4) 

(35.5) 
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(b) In the lower-half plane: 

I ( >[ - 
gg8 = 2Jr; 

$ sin(d/2)+(1 +$inosin(8/2)] 
Z - 

Orr = 2J; ( >[ s/3 sin(8/2) - (1 +$sin(3sj2)] 

Z 

cre= 2J ( )[ 
- -93 cos(W24 +900s(3e,2)] 

2P2u, = L 
( >[ J; 

(rcz -$)/I sin(8/2) - 1 + !! sin(38/2) 
(2) 1 

(Kz + 416 COS(o/z) - 1 + ? ( 8),0q3e,2)]. 

Thus, on the crack surface 

a(@( - x) = a,(a) = I(l-) 
2Jr 

(36.1) 

(36.2) 

(36.3) 

(36.4) 

(36.5) 

(37) 

and in order that the normal tractions on the crack surface be compressive, we must have 

z < 0. (38) 

The pressure field in the locking region computed from eq. (2.2) is found to be 

CT 

P z_.E=_ 
Z sin(B/2) 

2 J; 
, oGe87t. 

7. CONCLUSIONS 

We have studied plane strain deformations near the tip of a crack in the interface between 
two isotropic and homogeneous linear elastic bodies under the assumptions that the crack surfaces 
are in contact with each other and the dilatation everywhere must be greater than or equal to a 
constant. The region wherein the dilatation equals the constant is identified as the locking region, 
and the remaining region as the elastic region. After having formulated the problem for the general 
case of two different materials and on the assumption that the locking region occurs in the upper 
half of the body, it is shown that when their shear moduli are equal, the entire half of the upper 
domain must be in the locking state and the singularity index p = l/2. For the general case of 
unequal shear moduli, the same result is derived with the assumption that p = l/2. Explicit 
expressions for displacements and stress components near the crack tip have been obtained. 
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