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Abstract-Plane-strain deformations of an isotropic and homogeneous Hookean body containing a crack 
are studied and it is required that the dilatation everywhere in the body be. greater than or equal to a 
constant. Following Prager, the region where the dilatation always equals the constant is identified as the 
locking region. For the case when the deformations of the body are symmetrical about the plane 
containing the crack, equations are derived that delimit the size of the locking region. It is shown that 
for a series type r,8 separable solution of the problem, the order of the singularity is essentially unchanged 
by the consideration of the higher-order terms in the constraint equation. 

1. INTRODUCTION 

IN 1959 WILLIAMS [l] analyzed the deformation and stress fields near an interfacial crack tip in a 
linear-elastic body and showed that the oscillating stress singularity implied interpenetration of the 
material. Since then, several investigators (see e.g. Cherepanov [2], England [3], Erdogan [4], Rice 
and Shih [5], Park and Earmme [6], Shih and Asaro [7J, Hutchinson et al. [8], and Rice [9]) have 
studied the problem and provided interpretations of the elastic solution. Here we impose the 
constraint that the dilatation at every point must equal, or exceed, a constant. Regions where the 
dilatation equals the constant are called locking (see e.g. Prager [lo]). 

2. FORMULATION OF THE PROBLEM 

We study plane strain deformations of a homogeneous, isotropic and linear elastic body con- 
taining a crack along the plane 0 = 7~. Thus the origin of the cylindrical coordinate system is located 
at the crack tip (e.g. see Fig. 1). We presume that the deformations of the body satisfy the constraint 

dv 
TV > 0, (1) 

Fig. 1. A schematic sketch of the problem studied. 
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where dv and d V equal, respectively, the volume of the same material element in the deformed and 
undeformed stress-free reference configuration. For plane-strain deformations, as shown in the 
Appendix, the constraint (1) can be replaced by the more restrictive requirement 

&+Q@+(&L@-&?)>,C) > -1, (2) 

where cr,, cBe and e4 are components of the infinitesimal strain tensor, and 6 is a material constant. 
The region where strict inequality holds in (2) is unconstrained, and that where equality holds is 
the locking region. In a previous paper we [l l] imposed the condition 

err + Q@ >, 6 (3) 

on the deformation field. However, near a crack tip the quadratic terms in (2) dominate. Thus, 
herein we require that deformations satisfy 

(Err 688 - &as > -1. (4) 

For the crack-tip analysis, we may set 6 = 0 without any loss of generality. Then the set of strains 
that satisfies the constraint (4) is the union of two distinct convex sets characterized by 

~,++,a0 and c,,+cee<O (5) 

with the origin as the only common point between the two sets. 
In the unconstrained region, hereafter identified as region 1, we have the classical constitutive 

relations 

c,, = 1 (Err + Gm) + 2% 9 (6.1) 

gee = WV + Qw) + a.%, (6.2) 

oti = 2&e 9 (6.3) 

and in the locking region, henceforth called region 2, we have the pressure field p(r, 0) > 0 that 
is undetermined from the deformation field, and the following constitutive relations: 

o,, = A (Gr + %e) + 2% - PGle 9 (7.1) 

be8 = A(& + %) + 2&e -PC,, (7.2) 

or6 = 2&e + PGe - (7.3) 

Equations (7) are derived by using variational methods given in refs [2, lo]. In eqs (6) and (7), 
J and ~1 are Lame constants, and u,,, oee, Q,~ are the components of the Cauchy stress tensor. With 
the definitions 

(A + $1 
a(rVe)=(~+2j.+(I-p(r,8))2’ 

A - Pk, e) 

~(r)e)=(~+2~)2-(II-p(r,e))2y 

(8.1) 

(8.2) 

eqs (7) can be written as 

err = aa,, - ba,, , 

+ = aoB8 - bdrr 7 

c.,=(a+b)o,. 

The constraint condition (en+, - &) = 0 takes the form 

(a - b)2(a,, + a@)2 = (a + b)2[(0,r - a@@)’ + 4a;e]. 

In terms of the Airy stress function F2(r, 6) for the locking domain 2, we have 

(9.1) 

(9.2) 

(9.3) 

(W 

a2F, 1 aF2 1 a2F2 a2(F21r) 

~.ge=23 
ar 

cr,~=--+--, 
r ar r2 a82 

ore= --w (11) 
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LOCKING REGION 2 

UNCONSTRAINED 

REGION 1 

Plane of metry 

Fig. 2. A schematic sketch of the locking and unconstrained regions for the case when the deformations 
of the body are assumed to be symmetric about the plane 0 = 0. 

and a similar relation with F, replaced by F, holds in the unconstrained region 1. We note that 
F, satisfies the biharmonic equation 

V4F, = 0, (12) 

and the functions p(r, 0) and F,(r, 0) are solutions of the equations obtained by substituting from 
eqs (9) and (11) into eq. (10) and the following compatibility condition. 

i a*(r~~) i a%,, i ac, 2 a acti 
--+-pae2-rar--- rx =o. 
r ar* r*ar ( > 

(13) 

3. CRACK-TIP ANALYSIS 

We consider the case when the deformations of the body are symmetric about the plane 8 = 0, 
and study deformations of the upper-half of the body shown in Fig. 2. We assume that the locking 
domain is defined by 0 < r < co, t$, < 8 < K and the remainder is the unconstrained domain. 
Furthermore, we seek a solution that is separable in r and 8. Thus in the locking region 2, we have 

F2(r, 0) = rp+ tf(0). (14) 

Equilibrium equations or equations expressing the balance of linear momentum require that the 
pressure field p(r, 0) and hence a(r, 0) and b(r, f3) be functions of 8 only. Equations (11) and (14) 
yield 

BP, = r ‘-‘KP + l)f+f”l, a,=(p + l)prP-% cd= -prp-tf’ (15) 

where f’ = df /de. Substituting from (15) and eqs (9.1) through (9.3) and integrating the result, we 
obtain 

t4 = rPbf” + (P + l)(a - blf I/p, 

%? = rP[2p2(a + 6)f’ + (uf n -I- (p + l)(a - bplf )‘]/p(l - p). 

The compatibility equation (13) and the locking condition (c,,+ - &,) = 0 reduce to 

-u[f”+2(p2+ l)f”+(l -p’)‘f] 

(16.1) 

(16.2) 

=2U’f”+u’lf”+2[u’+pa’+p*a’-b’p]f’+(l +p)(u”-b”p)f (17.1) 

(a -b)*[(p + l)Y+f”]‘=(a +!I)*[(f”+(l -p’)f)*+4p?f’*]. (17.2) 

For the elastic domain, we solve the biharmonic equation (12) by the method of complex 
variables (e.g. see Muskhelishvili [12]) and assume that the analytical functions 

cp = AzP, + = BP’, (18) 

EFM 17/c, 
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where A = R + iZ and B = A4 + iN are undetermined complex numbers. Following Muskhelishvili 
[12], we obtain the following expressions for the three components of the stress tensor and two 
components of the displacement field. 

cge = prp-‘[(l + p)(R cos(p - l)e - Zsin(p - 1)O) + M cos(p + 1)6 -N sin(p + 1)6] (19.1) 

trrr = @-I[(3 - p)(R cos(p - l)e -Z sin(p - l)(I) - M cos(p + l)e + N sin(p + l)e] (19.2) 

0ti=pr p- ‘[(p - l)(R sin( p - l)e + Z COS(P - l)(I) + A4 sin(p + l)e + N COS(P + l)e] (19.3) 

2pu, = PJ(K - p)(R cos(1 - p)e + Z sin(1 - p)O) - A4 COS(P + 1)0 + N sin( p + l)e] (19.4) 

2~1.4~ = e’[(~ + p)(R sin(p - l)e + Z cos(p - l)(9) + A4 sin( p + l)e + N COS(P + l)e]. (19.5) 

Here, K = 3 - 4v, v being the Poisson’s ratio for the material of the body. 
We now examine the boundary conditions. On the plane 8 = 0, the assumed symmetry of 

deformations requires that 

(rti= 0, lie = 0, on 8 = 0. (20.1) 

The surface 8 = A should be ,traction free. Thus, 

Equations 

and (20.2) 

a,=0 and c&=0 on 8=x. 

(20.1) are satisfied if 

Z=N=O 

require that 

f’(7c) = 0, j-(K) = 0. 

(20.2) 

(21) 

(22) 

On the intersurface (3 = 8, between the locking and unconstrained regions, the continuity of surface 
tractions and displacements gives the following four conditions. 

(p + l)f(&,) = (1 + p)R COS( p - l)&, + hf COS( p -t l)&, (23.1) 

-f’(O,) = ( p - l)R sin( p - 1)0, + M sin( p + lp,, (23.2) 

2p{uf”+a’f”+[(l +p +2p% +p(p - l)b]f’+(p + l)(a’-b’p)f} 

= p(1 - P)[(K + p)R sin(p - l)f$ + A4 sin(p + 1)&J at 8 = t?,, (23.3) 

2p[uf” + (p + l)(u - bp)f] = P[(K - p)R cos(1 - p)e, - A4 cos(p + 1)&J at 8 = 8,. (23.4) 

Equations (22) and (23) determine R, A4 and the four constants of integration in the fourth-order 
ordinary differential equation (17.1) for f(0). The value of 0, is determined from 

G&ee - 6; > 0 in region 1, (24.1) 

p(e) > 0 in region 2, (24.2) 

and it can be shown to be a solution of 

Q%e - Em - 2 -0 ate=&. (25.1) 

Equation (25.1) is equivalent to 

4(1 - 2v)‘R2 COS’( p - i)o, + 2hfR(i - p)COS 28, = i&f2 + (p - i)2R2. (25.2) 

3.1. Power-series solution 

We solve equations (17.1) and (17.2) by the power-series method. We recall that the classical 
solution gives 

(%Ae - 6;) N [~v(v - 1) + c0s2(e/2)lc0s2(e/2), (26) 
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and it satisfies the constraint (25.1) with p = l/2 and 0, = a if and only if v = 0. For small v, the 
angle (II - 0,) of the locking region 2 should be expected to be small. We thus expand the unknown 
functionsf(8) and P(8) as power series in terms of 8 s (0 - II) over region 2, i.e. for 0, Q 0 i a. 
That is, 

f(e)=f,+fis +_w+.w+- (27.1) 

p(e)=po+p,8 +~,8*+~~93+~-, (27.2) 

whereA, Pi(i = 0, I,2 - - *) are yet-to-be-determined real constants. Equations (8.1), (8.2) and (27.2) 
give 

a+b= 
1 -PI @ 

(PC? + 2co + (PO + 2co* + 

[Pi -Pz(2P +Po)l@* +. . . 

(PO + 2d 
(28.1) 

1 PI@ 
a-b=(21+2p-p,)+(21+2p-po)*+ 

~P:+P2(2~+2c(-Po)l@*+..** 

(2A + 2/J -Po)’ 
(28.2) 

Substituting from equation (27.1) into equations (23) and (17.2), and equating coefficients of O”, 
8 I, and 8* on both sides, we get 

f,=O, A=O, (29.1) 

p. = 1 > 0, p, = 0, P2 = P(P - l)G + 2P)/2 < 09 (29.2) 

thus 

a(0) = l/Q + 2~) + o(e3), (30.1) 

-P*@* 
W) = cl + 2y)2 + WB3). (30.2) 

By comparing coefficients of 8” in equation (17. l), we obtain 

f4= -:<1 + P’).A!. (31) 

The consideration of higher-order terms in equations (17.1) and (17.2) determines higher-order 
coefficients (f,,p,), (f6,p4), etc. For example, we found that 

P3=PU-2P)A(~ +2fl)/!h, (32.1) 

p4 = [(A + 2P)/41[~(1 - P)(P* + 3~ - 2)/3 +s:(33P* - 12P)/f;i, (32.2) 

fs = -(1 + P2)_M10, (32.3) 

fs = (3 + 9P2 + 8P3 - 4p4)f,/360, (32.4) 

and thus 

1 P:e4 
a=(L+(l +2p)3+.** 

-P*@* P3Q3 P4e4 

b=(i+2~)*-(1+211)*-(rl+2/1)*.... 

(33.1) 

(33.2) 

In particular, p4 term must be considered when checking the condition p(8) > 0 for sufficiently small 
v, even though it does not influence the calculation of the lowest-order eigenvalue problem. 

Substitution from (27.1), (28.1), (28.2), (29) and (31) into eqs (23.1) through (23.4) gives an 
eigenvalue problem for the determination of f2, f3, R, and M; and the value of 0, is determined 
from eq. (25.2). 
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3.1.1. ~we~t-~r~r solution of the eigenmdue problem. In order to illustrate that the 
aforestated nonlinear problem does have a nontrivial solution, we seek a series type solution for 
sapiently small v. Accordingly, we adopt the following lowest-order solution. 

“WV =_W2 +f303 - (1 +iWQ4/6, (34.1) 

P(Q = A + p(p - l)(J + 2PP2/2, (34.2) 

0) = ll@ + 2c0, (34.3) 

W) = P(1 - pP2/f2G + 2P)l. (34.4) 

Solving eqs (21 .l), (21.2), and (34) for R and M, and substituting the result in eqs (21.3) and 
(21.4), we obtain the following eigenvalue problem for f2 and f3. 

hHII(P, %, VI +_w,,h% 6, v) = 09 (35.1) 

szff*,(Pt &J, VI +_m*,tf7, &J, VI = 0, (35.2) 

where 

H,, =4ap(sin2pOo+p sin2&)[(1 -p)(@,--x)+(1 +p +2p2)(l i-p2)(e,-ltY/3] 

+ p(1 - p2)(K f l)[(e, - n)’ - (1 + p2)(S, - lr)4/6]sin(p + l)& sin(p - 1)0, 

-t-~(1 -p)p2(sin2p8,+p sin2e,)[12(8,-n)3+(p -3p2+p3-3)(Oo-7c)5]/3(1 4-2~) 

+2p(l-p)[(8,-n)-(l+p2)(8,-n)3/3][rccos(p$l)~,sin(p-l)e, 

- cos( p - l)f?, sin( 1 -t p)B, - p sin 28, J, (36.1) 

H,2=3p(l-p)(8,-n)2[~cos(p+l)B,sin(p-1)8,-cos(p-l)8,sin(l+p)8,-psin2~,] 

- 2up(sin 2~0, f p sin 28,)(6 + 3(1 4 p + 2p2)(8, - n)2) 

+ (1 - p2)& + i)p(e, - n)3 sin(p + 1)6, sin(p - l)fJ, 

+ ~(1 - p)p*(sin 2~0, + p sin 28,)(5 - p)(6, - z)~/(A + 2p), (36.2) 

ff2, =2ap(sin2pe,+p sin20,)[(1 -p +2p2)(8,-n)2+(l +p)(l +p2)f@,-x)*/6-2] 

+Pu +P>f@o-~)2 - (1 + p2)(O0 - n)4/6][~ cos(p - l)f3, sin(p + l)e, 

+cos(p + l)e,sin(l -p)&--p sin28,] 

+ 2p[(e, - n)- (1 + ~*)(k - n)3/3](K -t l)COS(p + 1)8,COS(p - l)& 

+ ~(1 - p*)p’(sin 2p&,+ p sin 20,>(0, - IT)~(~ - (1 + p2)(0, - n)*}/W + 2~1, (36.3) 

H,, = 3p(K + I)(~,+*cos(~ + I)~,COS(P - l)e, 

+p(l +P)(@,-E)~[K cos(p - 1)8,sin(p + l)e,+cos(p + l)@,sin(l -pP,--p sin%,] 

- 2+(sin 2~0, + p sin 28,) (6(e, - n) + (1 + p)(eo - x)3) 

-t- ~(1 - p2)p2(sin ape, + p sin 2e,j(e, - n)5@ + 2~1, (36.4) 

and 

U,!f = (K - l)/(K -t I). (36.5) 

For eqs (35.1) and (35.2) to have a nontrivial solution, 

H,, J&2 = Ht2H2.1, (37) 

which determines p. The value of 6, is then determined by eq. (25.2). 

Let 

@,-II=& p =:+p+ -i-p&+*.., (38) 
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where 

Noting that 

(39) 

(sin 2~0, + p sin 28,) N -27tp, C (40) 

and substituting from (38) into (36) and the result into (37), and letting c--*0, we find that 

H,,mc2, H,2~~, H2,*c, Hpc2. 

Thus, p, = 0 (as L +O) implying thereby that the expression (38), should be replaced 

p =;+p2c2+-*. 

An exercise similar to that used to find pI gives p2 = 0. Thus, we assume that 

p =f+p3c3, 

where 6~3 = d3p/d0zl,=, . The dominant terms in eqs (36) are 

H,, = -3(rc + 1)~‘/8, 

H - -6(rc + 1)~‘/8 + 12u~(2mn +;)c’, 12 - 

H2, = -3(x + 1)1~‘/8 + 4ap(2mn + 3c3, 

H u = -6(~ + 1)c4/8 + 12ap(2mn + i)c4, 

by 

(41) 

(42) 

(43) 

(44.1) 

(44.2) 

(44.3) 

(44.4) 

where K = 3 (defined at c = 0, that is, at v = 0). Equation (37) has two possible roots. However, 
one of these, m = - 1/(4n), is unacceptable since it leads to (c,,L~ - &,) < 0 at t3 = 0,. Thus, we 
consider the other root corresponding to 

-6(rc + 1)/S + 12up(2mn + f) = 0, 

that is 

m= 0 (45) 

and obtain 

(P -f)=o[(k-x)4i (46) 

at the neighborhood of 8, = K (that is, v = 0). We can now find the value of 0, from (25.2). 
Noting that 

f2 hl o[(e, - d21.h 

we obtain 

(M/R) = f + age, - A)3). . . . 

Substitution from (46) and (47) into (25.2) yields, up to the ,z4 terms 

(0, - w)’ = 16~ + o(V). 

(47) 

(48) 

Thus c2=0 when v = 0 as expected. It may be proved that the condition (24.2) is satisfied. Since 
p3(B - z)~ is a small term of higher-order, we set 

p(e) x 1 +p2(e - 7~12 +p4(e - a)4 

whose minimum value is 

1 -P34P4. 

Noting that 

P4 x 9p2(,1 + 2p)f:/4f; w o[(e, - A)-41; (e, - 7ty N v 
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we obtain 
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for a sufficiently small value of v. Therefore p(8) > 0 over domain 2. 

4. CONCLUSIONS 

We have studied plane-strain deformations near a crack tip in a linear-elastic isotropic and 
homogeneous body under the constraint that the dilatation must be non-negative. When dominant 
terms are kept in the constraint equation, we obtain a nonlinear equation. The region wherein the 
nonlinear constraint equation holds has been identified as the locking region, a term borrowed from 
Prager [lo]; the remaining region is unconstrained. Equations that delimit the sixes of these regions 
have been derived. It is shown that the nonlinear problem so formulated has a series-type nontrivial 
solution in the neighborhood of the classical solution. The order of singularity of the present 
problem is nearly the same as that of the classical solution for sufficiently small values of Poisson’s 
ratio. It is possible that the nonlinear problem has other solutions that are not r, 0 separable. Such 
solutions may exhibit different types of singularity. 
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APPENDIX 
In rectangular Cartesian coordinates and for plane-strain deformations in the x-y plane, 

dv~dV=l+u,+v,+u,v,-u,v, (Al) 

where u, = au/%x etc. and u, v denote the components of the displacement along x and y axes, respectively. Therefore, 
dv/dV > 0 is equivalent to 

u,+v,+u,v,-z$v,> -1. (A2) 

Since 

uv v, = Lb - (I$ - 0,)2/4, (A3) 

it follows that 

(r&r+ - uyr,) 2 (&C,, - c&), (A4) 

where c,,, cyy and .+ are components of the infinitesimal strain tensor. Hence condition 

Kr.r + tyy + (&$ - c $ ) ’ - 1 (AS) 

is sufficient for the inequality (A2) to hold. 

(Received 26 February 1993) 


