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Abstract-We study plane strain deformations near a crack tip between two isotropic and homogeneous 
Hookean bodies and assume that deformations obey the constraint that the volume of a material element 
cannot become zero. The constraint is imposed by requiring that the dilatation everywhere in the body 
must be greater than or equal to a constant. The region where the dilatation equals the constant is called 
the locking region. It is shown that when the locking region occurs in only a part of one body, the index 
of the singularity near the interfacial crack tip is l/2, and the size of the locking region is determined by 
the values of the material parameters for the two bodies. 

1. INTRODUCTION 

SINCE the time Williams [1] obtained the characteristic oscillating stress singularity near the 
interface crack tip that implied interpenetration of the material, there have been numerous studies 
(e.g. see Cherapanov [2], England [3], Erdogan [4], Rice and Shih [5], Park and Earmme [6], Shih 
and Asaro [7], Hutchinson et al. [8] and Rice [9]) to understand the singular nature of deformation 
fields near an interface crack tip and interpret the elastic solution. Here we attempt to understand 
how the interfacial crack tip solution is modified by the constraint that the dilatation at every point 
in the body exceeds or equals a constant greater than - 1. We use the terminology introduced by 
Prager [lo] who called such materials locking materials. 

2. FORMULATION OF THE PROBLEM 

Our interest is to find the deformation and stress fields in the vicinity of an interfacial crack 
tip in a body made of two homogeneous, isotropic, and linear elastic materials. We assume that 
the body undergoes plane strain deformations in the xi -x2 plane, and that deformations of the body 
represent the constraint 

dv 
- > 0, 
dV 

where dv and dV equal, respectively, the volume of the same material element in the present and 
undeformed stress free reference configurations. In the linearized theory the constraint (1) becomes 

f& B 6 > - I ) (2) 

where tab is the infinitesimal strain tensor, a repeated index implies summation over the range 1,2 
of the index, and 6 is a material constant. We call the region where equality holds in (2) as the 
“locking region”. The region where inequality holds in (2) is unconstrained and deforms elastically. 

In the locking region, the stresses and strains are related by 

6 Dill = 6, (3) 

0@ = -p&, + 2/K,, + If,;, s,, , (4) 

and in the unconstrained region by 
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where I and p are the Lame constants, and p(x, , x2) > 0 is the hydrostatic pressure not determined 
by the deformation field. If desired, the last term on the right-hand side of eq. (4) could be absorbed 
in p. 

In terms of the Airy stress function F(x,, x2), 

011 =F.22,~22= ?,,,a,,= -F.,2 (6) 

and F satisfies the biharmonic equation 

V4F = 0. (7) 

In eq. (6), CUP = iY2F/iYx,~xP. Equations (6) and (7) hold in both regions, and imply that equilibrium 
equations and compatibility conditions are identically satisfied by every F. The derivation of eq. (7) 
for unconstrained materials is given in several textbooks (e.g. see Sokolnikoff [l 11). For locking 
materials, eq. (7) can be derived by essentially following the same steps; the details are omitted 
herein. The biharmonic eq. (7) can be solved by using the method of complex variables. In terms 
of analytical functions $e(~) and t+Ge(z) of the complex variable z = x, + ix,, we have in the elastic 
region 

011 + g22 = 2c4: + &h (8) 

oz2 - cl1 + 2io,, = 2(Z+c + $:), (9) 

2p(u, + in,) = rc+, - z& - *,, (10) 

where a superimposed bar indicates the complex conjugate of the variable, 4’ denotes derivative 
of 4 with respect to z, and K = 3 - 4v, v being the Poisson ratio. In the locking region, analogs 
of eqs @-(lo) are 

011 + (722 = 2(&l + 33. (11) 

c22 - oII + 2ia,, = 2(%$g + $A), (12) 

+(u, + in,) = & - z& - rJO + $z, (13) 

2(2 +p)S >Q,l +o,,, (14) 

where the inequality (14) holds because p > 0. 

The continuity of surface tractions and displacements across the boundary between the locking 
region and the unconstrained region gives 

@J + z& + $I= 0, (15) 

K$, - $0 - [z$’ + $1 = PLBZ, (16) 

where [fj denotes the difference in the values off on the two sides of the boundary between the 
two regions. Equations (15) and (16) yield the following Hilbert condition [12] 

(k + 1)4, - 240 = /Giz (17) 

which we assume replaces eq. (16). 

3. CRACK-TIP ANALYSIS 

We assume that a crack is located at x2 = 0, x, c 0; thus the origin of the x, - x2 coordinate 
axes is at the crack tip with the crack aligned along the negative x,-axis (e.g. see Fig. 1). In terms 
of the polar coordinates, the cracked body occupies the domain 0 < r < co, - TL < 8 < x. We assume 
that the material of the body in the upper half plane has elasticities (p, , K,) and that in the lower 
half (p2, rc2). Here p equals the shear modulus of the material and IC = 3 - 4v. We use William’s [I] 
eigenexpansion method combined with Muskhelishvili’s complex variable method [ 12) to get an 
asymptotic solution near the crack tip [5]. The solution is assumed to be expressible as the product 
of a function of r and a function of 6. We assume that each one of the upper and lower halves 
of the body can be divided into two parts, a locking region and an unconstmined region. Thus 
we may have four regions R,, , R,, , R,, and R,, defined by 0, < 8 $71, 0 < 8 < 8,, o2 < 0 < 0, and 
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Fig. I. A schematic sketch of the problem studied. Fig. 2. A possible division of the domain into four 
subdomains. 

- rt < 0 < 8, with material parameters (p, , K,, ), (p, , K,*), (p2, IC*,) and &, Keg), respectively. These 
are shown in Fig. 2. We note that K equals 1 in the locking region. 

Without loss of generality (e.g. see [l, 5]), we seek functions 4(z) and $(z) of the form 

zp and z”; 0 < Re(p) < 1, (18) 

in the locking and elastic regions, respectively. Here p is an eigenvalue to be determined. When 
p is a complex number, conditions cola > 6 and inequality (14) cannot be satisfied because of the 
oscillatory nature of the singularity in the limit r -0. Thus an asymptotic solution of r - ~9 

separable form is impossible when p is a complex number. Accordingly we confine ourselves to 
the case when p is a real number. We further assume that 

C#J =AzP, II/ = Bzp on a,,, (19) 

4 = Ez”, II/ = Fz” on a,,, (20) 

LOCKING REGION 

UNCONSTRAINED REGION 

Fig. 3. Locking region in one body only. 
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4 = Gzp, +b = Hz” on R,,, (21) 

I#I = A4zi’, $ = N.zP on R,,, (22) 

where A, B, E, F, G, H, M and N are eight undetermined complex constants. 
The requirement that surfaces 6’ = + rc of the crack are traction free, and continuity conditions 

across the bounding surfaces 8 = 0,, 0 and C12 give the following eight homogeneous equations for 
the determination of A, B, E, F, G, H, M and N. 

xee”y” + Ap + B = 0, (23) 

&?e21pn + Mp + N = 0, (24) 

A(K,, + I)-E(K,~+ l>=O, (25) 

Ae - 21ps, +  Ape-2’01 + B - (&2i@I + Epe-2iel +  F) = 0, 
(26) 

E+pi?+F-(G+pC+@=O, (27) 

~,(li~,G - pc - 17, - /L~(IC,~E - pi?-n = 0, (28) 

M(q2 + 1) - G(K,, + 1) = 0, (29) 

~e-2ipRz + Mp e 2% + ,$J _ (&*'Ph + Gp e=*ifh + H) = 0 (30) 

These equations have a nontrivial solution for A, B, E, F, G, H, M and N only for certain values 
of p. 

Values of 8, and 8, are determined by 

I$: + 5: > 0 in the elastic domain, 

4; + $6 < 0 in the locking domain. 

For the special case when p, = p2, we have 

M(K~? + 1) = G(K*, + 1) = A(K,, + 1) = E(K,~ + 1), 

and eq. (31) takes the form 

(a,, + azz) N Re $‘_ Re(Ae”“~‘@) for --x < 13 < rr, 

which simplifies the analysis. Therefore, we first study this case. 

(31) 

(32) 

(33) 

3.1. The case wifh p, = pz 

3.1 .l. The locking region in one material only. Without any loss of generality we assume that 
only the upper-half of the domain with v = v, is divided into locking and unconstrained regions, 
and the former is given by 0 d 8, d 8 < z. We set 

/ll = /l2 = /l, Ji,? = K,, K2, = K22 = K2. (34) 

Recall that K,, = 1. Equations (29) and (30) yield 

M=G, N=H, (35) 

(K, + 1)E = (IQ + 1)M = 2A. (36) 

Substitution from eqs (35) and (36) into eqs (23)-(28) yields the following complex eigenequations 
for A # 0. 

4 
K, - 1 (I > Ic (e-*“I-l)+A m*lP@, + 2(“2 - KI) 

2e*‘Y” 
. _ 

(KI+~)(K~+I)+(K~+I) 

em21Pn 1 =o. (37) 

Let A = R + iZ. Then 

A = (R* + Z2)i;2 $“, tg 0 = Z/R (38) 
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and A changes its sign when w increases by +rc. The conditions (31) and (33) require that 

(a,,+a22)-Re4’-cos[(p-l)8+o]>0 when -nd8<0,, (39) 

=cos[(p - I)0 + w] < 0 when 8, < 0 < n. (40) 

Therefore. 

7t 
(p - 1)8,+w = --+2nx, 

2- 
n=1,2,..., 

and 

I COS(~ - i)e, 

Z = sin(p - i)e, ’ 

(41) 

(42) 

or 

1(~-i~(e-e,)1~71, -7~e0, (43) 

and 

A = _ A eNp - IPI. 
(44) 

Substituting from (44) into (37) and the requirement that A # 0 gives the following complex 
equation for the determination of p and 8,. 

y, [e2b4 + p( 1 - eziOl) - l] + y2(e21pn - 1)e2’P01 = 2i sin 2p7t eziPOl, (45) 

where the material parameter yol (TV = 1,2) is defined by 

K -1 1 - 2v, 01 Ya = _ 

K, + 1 2 - 2v, 
’ 0 < yn d l/2. 

(46) 

We note that 0, = 0 implies that y2 = 0, i.e. material 2 is incompressible; and 8, = rc gives that y, = y2 
and p = l/2, i.e. the body is homogeneous. We will study later the problem for the homogeneous 
body. 

We now examine solutions of eq. (45). For the special case of cos( p - 1)0, = 0 and thus I = 0, 
(1 - p)e, = 7r/2, eq. (45) reduces to 

y, [1 + e-2i01 + p(l _ e-2’“1)] + yz(e2’P” _ 1) = e2Vn _ emzIP, 
(47) 

and we get p = l/2 when 0, = rc. However, when sin( p - 1)0, = 0 and thus R = 0, 8, = 0, eq. (45) 
becomes 

y2 (e21Pn _ 1) = e210n _ e -2UJn, 
(48) 

and we obtain y2 = 0, p = l/2. We note that eq. (45) relates (p, 6,) to material parameters y, and 
y2. We rewrite it as 

y, X + y2 Y = (e-2’pn + l)Y = 2i sin 2~71 e21p01, (49) 

where 

X = e2iP0i + p (1 _ $01) _ 1; y = (e21Pa _ 1) $iPOf. (50) 

Thus, when Im(XY*) # 0, the unique solution of y, and y2 is 

y, = - 4 sin 2pn sin’ pn/Im(XY*), (51) 

y2 = (1 + cos 2p7r) + sin 2p7r Re(XY*)/Im(XY*), (52) 

where 

XY* = (e-2iPn _ I)[1 + (p _ 1) ,-2iPOi _ p $1 -P)O~], 

Re(XY*) = (cos 2p7r - 1) + (1 - p)[cos 2p0, - cos 2p(7c + 8, )] 

+P[cos~(~ -de, -COST, -pb +e,))i, 

(53) 

(54) 
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and 

Im(XY*) = -sin 2pn + (p - I)[sin 2~0, - sin 2p(71 + O,)] 

+p[sin2(1 -P)H, -sin2(8, --p(71 +0,))]. (55) 

On the other hand, if Im(XY*) = 0, the necessary and sufficient condition for the existence of a 
solution is that 

p = l/2. (56) 

For p = l/2, we have 

x = e@ _ i ezi*l _ i, y = -2 e&, (57) 

and the complex eq. (49) reduces to the following real relation 

2yz=(l -cosO,)y,, (58) 

or 

yz = y, sin2 8, /2 = YI cos’[(n - 0, WI, (59) 

which determines 8,. When y2 = y,, 7~ - 8, = 0, and when y2 = 0 but y, # 0, 0, = 0. 
In summary, when p, = p2, there always exists a solution with the singularity index p = l/2 

with the locking region located in the domain 1 with v = v, < v2, and the angle (n - 0,) subtended 
by the locking region is given by eqs (58) and (59). The value of 8, is determined by the values 
of Poisson’s ratio for the two materials. 

3.1.2. The domain is divided into four regions. On the interface between the unconstrained and 
locking regions orrX = 0 as r -0, and the sign of colcl is determined by 

Re4 m~~~[(p - i)e +w], --71 <e d7t. (60) 

Thus the angle A0 between two adjacent interboundaries must satisfy 

I(P-l)Ael=rL (61) 

which implies that for a r - 0 separable solution to exist, the domain can be divided into at most 
four regions. As before we assume that p, = p2. 

Equations (23)-(30) give the following eigenequation for A. 

Ap[c e-2% _ a e-*iSj + a _ c] 

+ Aft ,-*i& _ a e-*l~& + (b + a - 1) - (c + b) elipn + e-2’pn] = 0, (62) 

where 

a = h2 - 41)/(~12 + 11, b = (1 + +1)1(~21 + 11, c = t(1 + IC,,)/(K~~ + 1) - 61. (63) 

Substitution from eqs (32), (34) and (36) into eq. (62) yields the following complex eigenequation 
to determine p and 8,. 

p e2ill -P)~I[~ ,-*ifb _ a ,-*I@, + a _ c] 

= c e-*k% _ a e-2v~~ + (b + a - 1) -(c + b) e2’pn + e-2ifln. (64) 

The conditions (31) require that 

(a,, + 02*) N Re(4’) - cos[( p - l)e + 01 > 0 inside the elastic domain, and 

Thus, 

w cos[(p - l)e + 01 < 0 inside the locking domain. 

(1 -P)(e,-0,)=x 

and the admissible solution must satisfy 

-n~8,<tI,~x and p<l/2. 

(65) 

(66) 

(67) 
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Using eq. (66), eq. (64) becomes 

p eN, -PK+@ _ c) = (1 - p)c eezipe2 + (p - 1)~ e-2iPs, + (b + a - 1) - (c + b) eZipn + eezipn. 

(68) 

For the special case of cos( p - 1)0, = 0 (thus Z = 0, (1 - p)8, = 7r/2 and 8, = -0, ), eq. (68) reduces 
to 

C(P - 1)e 2’s, - a( p - 1) e-2is, + ~(a - c) + (b + a - 1) - (c + b) eZipn + emziPR = 0. (69) 

The other special case sin( p - 1)8, = 0 is excluded by eq. (66) and (67). We now distinguish between 
the following two cases. 

(I) K,,=K22= 1, K12=K,, K2, = K2. 

For this case, 

a = 1 - 2/(K, + I), b = 2/(K2 + I), c = 1 -b, (70) 

and eq. (68) reduces to 

u[p(e2,,, -P)& _ ,-2,&) + e-2,0& _ 1] 

+ c[p(e-%% _ e2,,, -0%) _ e-2,& + 1] = (,-2+ _ e2,pn) = _2i sin 2P7r. (71) 

Two conditions for the linear dependence of its real and imaginary parts are 

p[~~~ 2(1 - p)e, - cos 2pe,l + cog 2pe, - 1 = 0, 

P[COS 2(1 - p)e, - cos 2pe,l+ cos 2pe, - i = 0, (72) 

which imply that cos 2p0, = cos 2p0,. Since p < l/2, we must have 8, = -8, which gives the 
following contradiction 

Therefore, eq. (71) cannot 

(II) KlZ=K2,= 1, KI, 

We now have 

(1 - p)~~~ 2pe, = (1 + p). 

be reduced to a real equation. 

(73) 

=K I? Kz2 = K2. 

u=(l-~,)/2=1-6, b=(l+~,)/2, c=(l+~,)/(~~+l)-b, 

and eq. (68) becomes 

(74) 

u[p(e2i(, -P)@, _ ,-Zip&) + e-2i~B, _ e2,pn] + c[p(e-2i~& _ e2X, -PM,) 

_ ,-2be2 + e%] = (e-W _ $iPx) = _ 2i sin 2pn. (75) 

Two conditions for linear dependence of its real and imaginary parts are 

p [COS 2(1 - p )e, - cos 2pe, I+ cos 2pe, - cos 2p7r = 0, (76) 

P[COS 2(1 - p)e, - cos 2pe,l+ cos 2pe, - cos 2p7r = 0, (77) 

which imply that 8, = -e2; however, as discussed above this is impossible. 
We are unable to study thoroughly the four region case in its complete generality. However, 

some concrete results can be obtained for the special case of a homogeneous material, and the 
following two cases. 

(III) K,, = K22 = 1, K,2 = K2, = K. 

For these values of K,, , ~~~~ K,~ and K~, we have 

U = C = (K - l)/(K + 1) (78) 



14 C. Q. RU and R. C. BATRA 

and eq. (71) reduces to 

a(1 - p)(e- 21Pnl _ e m21Pa2) = _ 2i sin 2p* (79) 

which implies that cos 2~0, = cos 2~0,. However, due to p d li2 and 0 < 0, d rc, we must have 
8, = -02 and 2( 1 - p)fI, = n. Thus, 

a( 1 - p)sin 2~0, = sin 2~71 (80) 

and it turns out that the unique solution is p = l/2, 0, = n. 

(IV) ic,*=rC2, = 1, K,, = IcZ? = K. 

We have 

a = c = (1 - K)/2. (81) 

Thus, eq. (75) becomes 

~(1 _ P)(e-2i& _ e-%%) = -2i sin 2pn, (82) 

which implies that 8, = -&, 2(1 - p)8, = rc, and 

a( 1 - p)sin 2pe, = sin 2pn. (83) 

Again, the unique solution is p = l/2 and 8, = II. 
3.1.2.1. Homogeneous body. When p, = p2 and K, = K~, eq. (37) becomes 

f+(e-2i01 - 1) + Pi[e- 2ipel - cos 2pn - i sin 2pn/a] = 0, (84) 

and the complex equation for the determination of p and 8, is 

P(e X1 -P% _ ,-2ip&) + em2ip0, - cos 2pn - i sin 2prrja = 0, (85) 

where a = (1 - ~)/(3 + K). Thus, two real equations for p and 0, obtained from eq. (85) are 

(p - ijc0s 2pe, - p cos 2(1 - p)e, = --OS 2pz, (86) 

(p - 1)sin 2pe, + p sin 2(1 - p)e, = sin Zpx/a. (87) 

Squaring and adding eqs (86) and (87), we obtain 

4p(p - l)sin2 8, = (1 - a2)sin2 2pn./a2. (88) 

Since Ia] d l/3, therefore, we conclude that the unique solution of (88) is p = l/2 and 8, = 7~. 

3.2. The solution for the single locking domain (p, # pLz) 

We now consider the general case of p, # pz. Motivated by the results of previous sections, 
we confine ourselves to the solution of a single locking domain located near the crack-surface, see 
Fig. 3. 

Thus, we assume that 0 < 0, d 7c and set 

KII = 1, KIZ = KI, K22 = K2, = K2. 

Then, from eqs (23) and (24) we obtain 

G=M, H=N 

and the following six conditions to determine six complex constants A, B, E, F, M, N. 

Ae-2ip”+Ap + B =O, 

R ezipn + Mp + N = 0, 

2.4 = E(K, + l), 

Jem21pB, + Ap e-2iB I + B = Ee-2iPa! + ,I+ e-2if)I + F, 

E+pE+F=M+pii;i+R, 

~,[K~M-~~---_=/J~[K,E-~E-I?]. 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 
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These equations give 

M[p2( 1 - e-Zipn) + p, (K* + e-Zip”)] = p2(rc, + 1)E. (97) 

Thus, if p # l/2, M is proportional to E with a non-real factor and eq. (33) no longer holds. This 
complicates the analysis of the problem. On the other hand, the solution with p = l/2 is of some 
importance; therefore, we seek the solution with p = l/2. 

Substitution of p = l/2 into eq. (97) gives 

Mb2 + P,(K2 - 111 = Pz(KI + 1)E = 2P2A. (98) 

Since [2~, + p, (K~ - l)] > 0, ~~(rc, + 1) > 0, we still have 

(G,, + az2) - Re[4’] N Re[A eicpm ““1 for -X < 0 < rc, (99) 

and thus 

pf= _A e2”P-l’“l. (100) 

Substituting from eq. (98) into eqs (91)-(96), we obtain the following eigenequation for A. 

A(K, - l)(e-2iBI - 1)/[2(1 + 7cl)] + A[([(K, - 1) e-“l/(1 + K, ) 

+ (J‘, + 3)/(K1 + 1) - 4M2p2 + Pl(K2 - 1)ll = 0, (101) 

which gives the simple real relationship 

(‘Cl - l)sin2(& /2)/@, + 1) = PI (K2 - 1>/[‘+2 + PI (x2 - I>]. 

Thus there exists a solution with the domain divided into three regions provided that 

(102) 

h(J‘2 - 1) < P2(K, - 11, (103) 

and the corresponding locking region is located in region 1 and its angle (n - 0,) is determined 
by eq. (102). 

When K = p2, eq. (102) reduces to eqs (58) and (59). On the other hand, if K, = ICY = K, 

condition (103) becomes p, G p2, and eq. (102) reduces to 

ctg2(o, /2) = 2(P, - PI )/[h (K + I)]. (104) 

Thus for K, = ~~ = K, p, < p2, there always exists a solution with the singularity index p = l/2, and 
the corresponding locking region is located in the domain 1 with p = p, and its angle (n - 0,) is 
determined by values of material constants p, and p2. 

4. CONCLUSIONS 

We have studied plane strain deformations near a crack tip with the crack in the interface 
between two isotropic and homogeneous linear elastic bodies under the constraint that the 
dilatation must be greater than or equal to a certain constant. The region in which the dilatation 
equals the constant is identified as the locking zone, and in the remaining region the deformation 
is unconstrained. After having formulated the problem for the general case, we first examined the 
case when the shear moduli of the two materials are equal to each other but their Poisson’s ratios 
are not. It is shown that there can be at most four regions of which two are locking. For several 
special combinations of the values of material parameters, including the case of a homogeneous 
body, it is found that the singularity index equals l/2. For the case of dissimilar materials and the 
locking region in one material only, the singularity index is found to equal l/2 and the size of the 
locking zone is determined by the values of material parameters, 
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