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Abstract—We use Noether’s theorem on variational principles invariant under a group of infinitesimal
transformations to obtain a class of conservation laws for linear piezoelectric materials and linear elastic
dielectrics.

1. INTRODUCTION

CONSERVATION laws and related path-independent integrals are important in studying forces
acting on a defect [1]. An important tool in deriving the conservation laws is Noether’s theorem [2]
on variational principles invariant under a group of infinitesimal transformations. Knowles and
Sternberg [3] and Fletcher [4] have used this theorem to derive conservation laws in elastostatics
and linear elastodynamics respectively. Li[S] used Noether’s theorem in conjunction with the
variational principle of complementary energy to obtain another set of conservation laws for linear
elastostatics which he called the dual conservation laws.

The previously derived conservation laws for piezoelectricity and the more general theory of
dielectrics [6—-9] are for static deformations of the body. Here we use Noether’s theorem in
conjunction with four variational formulations of quasistatic piezoelectricity [10] to obtain a class
of conservation laws. The quasistatic piezoelectricity theory is defined as one in which inertia forces
associated with mechanical deformation are considered but the time-derivative of the magnetic
induction in Faraday’s law of induction is neglected. These conservation laws represent extensions
of Fletcher’s and Li’s results to quasistatic piezoelectricity. We note that Knowles and Sternberg [3]
and Fletcher [4] prove the completeness of conservation laws, but we do not.

2. NOETHER’S THEOREM

We state a version of Noether’s theorem appropriate for our work. Consider the following
functional or action integral

ay
—| Z{x,y,—)dV 1
n(y) L (x y é’x) (M
where y,, « =1,2,..., N, are functions of x;, i =1,2,..., M, and the integration is over the
M -dimensional domain V. The Euler-Lagrange equations associated with the functional = are
X ¢ (0% oy,
=) =0 y=E @)
ayaz axi ay:x.i OX;

Here and below a repeated index implies summation over the range of the index. Also consider
an infinitesimal parametric transformation

xl/ =X, +ﬁK(x9 y)ﬂK + O(C)a

y; =yz+gal((xv )')CK"'O(C), (3)
where ¢, K =1,2,..., P are the infinitesimal parameters of the transformation, and
€ = (e, €,)", lim o(©) =0. 4)
=0 €
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If under the transformation (3) the functional (1) is invariant, or more specifically,

c YN oy _
L E<X,y,a7)dV —JVE(x, y,a>dV—0(c), (5)

and the Euler-Lagrange eq. (2) is satisfied, then Noether’s theorem [2] states that

¢ X ox
ox, [(Z 0ij = Va.;j @;—I)f;x + E}TJ&«} = 0. (6)

Equation (6) is in a zero divergence form and is called a conservation law in physical problems.
These can be transformed into path-independent integrals by using the divergence theorem.

3. GOVERNING EQUATIONS AND ENERGY DENSITY FUNCTIONS FOR
QUASISTATIC PIEZOELECTRICITY

Throughout this paper we use rectangular Cartesian coordinates. For a piezoelectric material,
the internal energy density U is a function of the infinitesimal strain tensor ¢, and the electric
displacement D;. The stress tensor o;, appropriate for small deformations and the electric field E,
are related to U by

ou oU

o, =, E=-—. 7
v o, oD, )
Whereas in linear elasticity we have two energy density functions, viz, the strain energy density

and the complementary energy density, in linear piezoelectricity, the following three additional

energy density functions can be introduced through Legendre transforms [10].

HE,Ey=U—ED, ®
M(6,D)=U —o0;¢;, C)]
G(a,E)=U —ED,—o,¢,;. (10)
The corresponding constitutive relations are given by

0H 0H
0;=%, Di=——, (11

Y g JF;

oM oM

Elj ad,j b 1 aD, ( )

oG oG
i= T, D[.:——‘ 13
“= ", JE, ()

Equations governing the infinitesimal deformations of a piezoelectric body are

O'j,-.j = pﬁi’ D“ = 0, (14)
Cij:%(ui.j—"uj.i)’ E = '“4),:‘: (15)

where u is the mechanical displacement and ¢ the electric potential. Equation (14), expresses
the balance of linear momentum and eq. (14), is the Gauss equation. A theory in which one
considers the inertia forces associated with mechanical deformations but neglects time-derivatives
of the magnetic induction in Faraday’s law of induction is usually referred to as quasistatic
piezoelectricity.
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4. VARIATIONAL PRINCIPLES FOR QUASISTATIC PIEZOELECTRICITY

Corresponding to each energy density function, there is a variational principle for quasistatic
piezoelectricity [10]. We list below the functional and the corresponding stationary conditions

n,(u,e,a,(ﬁ,E,D):f drj 2, dV, (16)

I v

X, =H(¢,E)— 0‘,,-((,, - %(ui.j + uj.i)) + D/(E; + (b,i) - % pu;u;, (17)
i = Pl D;;=0,

6i/:%(ui./‘%_uj,i)a Ei: _¢,i9

N (18)
m,(u, 0, P, D)=fdrf T, dV, (19)
P
X, =M(s,D)— G — D — %pd,u,, (20)
0= pii, D=0,
e @1
or
n,(u, 0, ¢, E, D):J'dzj T, dV, (22)
P %
Ly=G(6,E)— 0, ,u;+ D(E + ¢ ;) — 5 piui;, (23)
o, =pii, D=0, E=—¢_, (24)
)= —5 . D= =
n,(u, ¢,06, ¢, D)= j.’ dt L z,dv, (25)
W ,
Z,=U(e,D) -0, — %(u,‘j+ u,;)) — D¢ — 3% pusii;, (26)
0, =pi;, D=0,
€ =5(u; +u,), %=Z_€Q, ¢,i= —2—;. 27N

ij i

These mixed variational principles are generalizations of the Hellinger—Reissner and the
Hu-Washizu principles in linear elasticity. Each principle gives a different but equivalent set of
equations as stationary conditions. The details of deriving the stationary conditions have been
omitted and can be found in the cited references, e.g. see [3, 4]. Functions X, X,, Z,, and X, depend
implicity upon time ¢ through the dependence of their arguments on .
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5. INVARIANCE UNDER TRANSLATIONS

For a homogeneous piezoelectric body, energy density functions U, H, M, and G do not
depend explicitly upon the Cartesian coordinates x, and the functionals =,, =,, n;, and =, are
invariant under the translational transformation

X/ =x,+¢ ' =1, (28)
since
ui=u;, €,=¢;, 0;=0,,
¢’:¢3 E;th D:{:Di’ (29)

under the transformation (28). The application of Noether’s theorem (6)—(17), (20), (23) and (26)
with X =(x,, x5, x3,1), y=(u,¢,6,¢,E, D) for (17), y={(u,a, ¢, D) for (20), y=(u, s, ¢, E, D)
for (23) and y = (u, ¢, 0, ¢, D) for (26) gives the following set of conservation laws

('Jf ogl?
=0 =1,2,3,4, 30
o ox, Y (39)
where
ﬁzpuju/.iﬂ

Ek) =20y — U Oy — ¢,V'Dkv
gy =2%,0, 4 0, 4,4+ D, 0,
gP =Z:0; + oy - ¢.:Dy,
gW =20y —u;,0,+ Dy 0, (31
and ¢;; is the Kronecker delta. These conservation laws can be verified by direct differentiation,

and reduce to Fletcher’s [4] results when quantities associated with the electric field are neglected,
and the Li’s [5] results when dynamic terms are also ignored.

6. INVARIANCE UNDER ROTATIONS

For a homogeneous and isotropic material, the energy density functions are isotropic
functions. For example, the energy density function H satisfies

H(QeQ', QE) = H(¢, E) (32)

for any orthogonal tensor Q(¢) satisfying Q(0) = 1. The functions X,, £,, X;, and X, are invariant
under the transformations

«Y,’ = Qlj‘xl’ = t,
H; = i/'uj> 6;} = Qim anérmﬂ J;j = Q[m an O s
¢/ = d’» E; = Q:’_;‘Ejs D; = Qiij' (33)

Noether’s theorem (6) when applied to (17), (20), (23), and (26), with x and y in (6) identified as
in the previous section, gives the following set of conservation laws.

Ohy aq _

- Ohy ~1.2.3.4 34
kg T om0 2= b (34)
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where
hjk = peijk (xjdm um,k + ujuk)a
(1

) —
Gic = Cimj (xmzl 6jk = Xy Uy Oy — xna¢,jDk + Ok um)s

(2)

G’ = Comi( X X204 + X, 04 ;1 + X, Dy ;@ + 04140, + Oy, — 34 4 D,,),

o) —
G = (X X3 0y + X, 04y jthy — X, & 1Dy + 0140y + O;14,),

qu) = elmj(xmz45jk = X u/‘ja[k + Xm Dk‘j(p + O.jk Uy, — 5jkDm¢)’ (35)

and e is the permutation symbol. These conservation laws also reduce to Fletcher’s [4] results for
linear elastodynamics and to Li’s [5] results for linear elastostatics.

7. INVARIANCE UNDER CHANGES OF SCALE

For homogeneous linear piezoelectric body, the energy density functions are quadratic
functions of their arguments. The functions Z,, £,, X;, and Z, are invariant under the scale change

xXi=¢ex;, t'=¢t u =e‘uy, ¢ =e ¢, (36)
¢, =e %, E/ =¢*E,
o,=¢%0,, D/=e¢*D,. 37
By using Noether’s theorem (6) we obtain

dNa) 0 &%)
{( n 8 i _
ot 0x;

0, x=1,23,4, (38)
where
/@

g;cl) = xkzl - ij(u/+ xmu/.m + lu;) - DA((}S +‘xm¢,m + td;)

pu/(uj + xmu/.m + “’2]) + IZ,,

g =x2, + (20 + X, 04+ 164) + 2Dy + x,, Dy, + tD,),

g~;(3) = XkZB + uj(zo'jk + xmo-jk‘m + [O";'j() - Dk(¢ + xm(b,m + t(ﬁ)a

g~;\4) xkz4_ Ujk (uj+xmuj.m+!aj)+¢(2Dk+mek.m+ IDk)‘ (39)

These conservation laws can be verified by carrying out the indicated differentiations, and they

also reduce to Fletcher’s [4] results when quantities associated with the electric field are neglected.

However, these cannot be reduced to Li’s [5] results for linear elastostatics because the scale change

for the static case [9] is different from that given in (32).

For static problems the functionals are invariant under the following scale change

xi=ex;, ul=cu, ¢’ =c¢ (40)

which results in

e;=e%,;, E/=¢"E, o ,=¢"c

y» Di=¢"D,. (41)

The application of Noether’s theorem (6) with x =(x,, x5, x3), Y=(u,¢,0,¢,E,D) for (17),
y = (u, 0, ¢, D) for (20), y=(u, 0, ¢, E,D) for (23) and y = (u, ¢, o, ¢, D) for (26) results in the

EFM S1/6—L
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following conservation laws

5}
a—x_i(xizl“xj”k.jgk: XD¢ 0' u'_%Di(ﬁ):O,

7

0

a (xz2+xo-lk1uk+xDl]¢+2 jlu+2D¢)_

a

E(xi&-{-xju,-k_ju,, x;D;¢ ; +2<7,,u D,¢))=0,

J 1 3

a(xiznt — XUy 0t ijx:;"?s —30;u+3 Di$)=0 (42)

which reduce to Li’s [5] results when quantities associated with the electric field are neglected.

8. ELASTIC DIELECTRICS WITH POLARIZATION GRADIENT

We now study deformations of a homogeneous linear elastic dielectric material for which the
energy density W of deformation and polarization depends upon the infinitesimal strain tensor ¢,
the polarization vector P, and its gradients P;;. Mindlin [11] generalized Toupin’s [12] theory of
piezoelectricity by incorporating the dependence of the energy density of deformation and
polarization upon the gradients P, of the polarization vector P, and studied linear elastic dielectrics.
Governing equations for such a matenal in the absence of external body forces are [11]

I] i p
E+E;—¢,=0,
“eo¢, it Pi=0, (43)
where
ow — ow ow
= =0, E',=———’ Ei'E—’ 44
T e, ap,” """ P, )
and e, is the permittivity of a vacuum. For W, Mindlin [11] proposed the following expression,
W=>b)P, +3 a; PP+ bukl P+ %Cykr€f;€k1+ Aipa P i€y + fiw € P+ 8 Pi Py (45)
We note that eqs (43) are Euler—-Lagrange equations for the functional
i3
(e, P,qb):J‘ dt fZSdV, (46)
0
where
Zi(6, P, o) = W(e, P, §) — ey ¢, + ¢, P — 3 piih;. (47)

The invariance under translations (28), rotations (33) and the application of Noether’s theorem (6)
with x = (x|, x,, x;,2) and y = (u, P, ¢) give

0
EY: (pwu;;) + (25 e — Uik — ¢,;(Pk - eo¢,k) — P, E;)=0, (48)

e!jkp(xjum Up, i + ajuk) + 5 elmj(x Z5 6]1( xmui.jaik - xn1¢,J(Pk — € d),k)

0 0
ot 0x
*meI,jEkI*-O-jkum*'Eijm)=0- (49)
These conservation laws can be verified by performing the indicated differentiation and they reduce
to conservation laws for static problems once the time dependent terms are omitted. For static

problems, there is no need to perform the integration with respect to time in eq. (46).
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9. CONCLUSIONS

We have derived a class of conservation laws for linear piezoelectric materials by using
Noether’s theorem in conjunction with the invariance of various functionals under translations,
rotations, and changes of scale. Our results generalize conservation laws for linear elastodynamics
derived by Fletcher to linear piezoelectricity and Mindlin’s elastic dielectrics.
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