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Abstract—The interface fracture of an elastic plate bonded to a rigid substrate is studied using Kane
and Mindlin’s kinematic assumptions for the quasi-three-dimensional (3-D) deformations of plates
deformed in stretching. The stresses and deformations are computed for a semi-infinite plate perfectly
bonded to a rigid substrate and subjected to uniform in-plane normal tractions at infinity. These agree
well with those obtained from the 3-D elasticity theory when the latter are averaged over the plate
thickness. The Kane-Mindlin theory predicts a boundary layer adherent to the interface between the
plate and the substrate and its thickness approximately equals the plate thickness. An interface crack
between the elastic plate and the rigid substrate is investigated. The crack front average stress fields
consist of a plane strain (not plane stress) oscillatory singular field and an antiplane shear inverse-
square-root singular field, and the three fracture modes are coupled. These agree with the existing 3-D
finite element results. The effect of the plate thickness on stress intensity factors and phase angles is stu-
died. The antiplane shear stress intensity factor approaches zero for a vanishingly thin plate, but cannot
be ignored otherwise. A path-independent integral including the thickness effects is deduced and is used
to establish a fracture criterion for thin plates. Finally, the interface fracture criterion is discussed
within the framework of the Kane-Mindlin theory. © 1997 Published by Elsevier Science Ltd
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1. INTRODUCTION

IT 1s well known that the plane stress assumptions, i.e. the out-of-plane stresses are negligible as
compared to the in-plane ones, can be used to study deformations of thin plates under in-plane
loads. Equations governing the two in-plane displacements or the Airy stress function are then
deduced, and the out-of-plane displacement is obtained from the in-plane stresses by using the
constitutive relations. Generally speaking, the plane stress theory is valid for a plate with thick-
ness of at least an order of magnitude smaller than a characteristic in-plane dimension. When
interfaces between dissimilar materials are involved, we are particularly interested in the inter-
face region as fracture often ensues there. The plane stress theory, however, usually predicts a
jump discontinuity in the out-of-plane displacement at the interface, which violates the continu-
ity requirements. It is expected that significant out-of-plane stresses exist at the interface region.
Hence, the plane stress theory is futile in studying such problems. When a plate is subjected to
dynamic loads, the plane stress theory will also fail even for homogeneous materials, when the
incident wavelength is of the order of the plate thickness. It seems that a full three-dimensional
(3-D) analysis is inevitable for the thin plate interface crack problems. However, a complete 3-D
analytical study is complex and a quasi-3-D analysis may accurately predict quantities of signifi-
cant interest. Kane and Mindlin[1] proposed a quasi-3-D theory to study vibrations of an elastic
plate. In this theory, the out-of-plane displacement is independent of the in-plane deformations
and the final governing equations are of order six instead of four, as in the classical elasticity.
This requires three conditions on the boundary, which are consistent with the 3-D plate theory.
The Kane-Mindlin (K-M) theory has been used to study static and dynamic crack problems
for thin plates[2-6]. It is also expected that the behavior of interface cracks in thin plates can be
addressed with the K—M theory in terms of quantities averaged over the plate thickness.

In this paper, a crack at the interface between a semi-infinite elastic plate and a rigid sub-
strate is investigated by using the K—-M theory [1]. First, the plate-substrate system without a
crack and subjected to in-plane tension at infinity is studied. The stresses and deformations
obtained from the K-M theory are compared with the full elasticity solution[7]. Then, an inter-
face crack problem is investigated. The interface crack front average stress fields and their oscil-
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latory behavior are determined and the effect of thickness on the stress intensity factors and the
phase angles is studied. A path-independent integral including the thickness effects is deduced,
which may be used to establish the fracture criterion of thin plates. Finally, the interface frac-
ture criterion is discussed in the framework of the K—~M theory.

2. PLATE EQUATIONS BASED ON THE KANE-MINDLIN ASSUMPTIONS

Consider a plate of thickness 2 4 and denote by (x1,x,,x3) the rectangular Cartesian coordi-
nate system, with x3 = + A describing the plate surfaces. The plate is subjected to symmetrical
loads about the plane x; = 0 (the antisymmetrical loads will cause bending, which is not con-
sidered in this study). Kane and Mindlin[1] proposed the following assumptions on the displace-
ment fields in the plate

up(xy, x2, x3) = vi(x1, x2),  walxy, x2,x3) = valx1, x2),  us(x1, x2, x3) = (x3/Mw(x1,x2). (1)

Here u denotes displacement of a point and w(x,x;) is the out-of-plane displacement of points
on the surface x; = A.
Introduce the following stress and strain resultants

1
{Nup(x1, x2), N33(x1, x2)} = EEJ h{Uaﬂ(xl, X2, X3), 033(X 1, X2, x3)}dx3

R[-

A
{Vap(x1, x2), y33(x1, X2)} = J {eap(x1, X2, X3), £33(x 1, X2, x3)}dx3
—h

1 h
(Rl 1, %2), Tuloer, ¥2)) = o j ea{omaCr, X2, 2, a1, 32 ) @)

where ¢; and ¢; are the components of the stress and infinitesimal strain tensors, respectively,
indices i and j take values 1, 2, 3 and Greek indices, « and f, have the range 1 and 2. The plate
equations in the framework of the K—M theory are

Naﬂ.ﬂ =0, Ra,a —Ny3=0

14+v v
(Vapr ¥33) = T(Naﬁv N33) — ENkk(‘Saﬁo 1)

w h

1
Yap = E(Va.ﬂ +Vga), Y33 = 7 Ty = W 3

where E is Young’s modulus, v is Poisson’s ratio, p is the shear modulus, a comma followed by
an index i implies partial differentiation with respect to x;, d,s is the Kronecker delta, and a
repeated index implies summation over the range of the index. The equations governing the
Airy stress function @ and the out-of-plane displacement w are[5]

2 =) _wil_
V[TVCD h]-(),

h WV
— Vi — ——Vd =0 4
61+v " h E @
where V? is the two-dimensional (2-D) Laplace operator. In terms of the non-dimensional vari-
able W[5]
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1-1% w
eqs (4) and (5) can be written as
V2w =0
LV oY _w=o
Ev h -
yW(%)~%—¥W=O (6)
where
1-—
b=y— %h. @)

The stress resultants and in-plane displacements are related to ®, ¥ and w as follows

Nog = V2 ®8yp — D 45

N33 = E(E + vZ‘I’)/(l —?)

h
Ra=%hw,a 8)
and

1+v
V1,|=—( 5 )¢,11+V‘l’

I+v
V2,2=—( + )<D.22+v\l‘

2(1+v

Vig+ v =— (E )¢,12- 9

Equations (6), (8) and (9) imply that the K-M theory includes some 3-D effects. It allows for
three conditions on the boundary to be specified, which is consistent with the 3-D elasticity the-
ory. These features make it possible to determine 3-D stresses and deformations, though some
results should be interpreted as average over the plate thickness. It can also be seen from eq. (6)
that the K-M theory exhibits a boundary layer for small values of the parameter 4. Since the
plane stress equations can be recovered by letting 6 — 0 in eqs (6)—(9), therefore, the plane stress
theory prevails outside the boundary layer.

3. AN APPLICATION OF THE KANE-MINDLIN THEORY

As an application of the K-M theory, we consider a semi-infinite plate perfectly bonded to
a rigid substrate along the x,-axis as shown in Fig. 1(a). The plate is simply-supported at
x; — oo and loaded uniformly by a tensile traction 6q = Ny at x, — oo. The solution of the
plane stress problem is

o2 = 09,011 = vog, 02 =0 (10)

1 -2 (1 +v)

opX2, Uz = — E 0pX3. (1 1)

u =0, u =
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Elastic plate

Rigid substrate
(a) (b)

Fig. 1. A semi-infinite plate on a rigid substrate subjected to remote tension.

It is clear from eq. (11); that the out-of-plane displacement does not vanish everywhere at the
interface x, = 0, between the plate and the rigid substrate, except at the point x3 = 0. This vio-
lates the requirement that u3 = 0 at x, = 0. Hence, the plane stress theory fails to give a correct
solution near the interface.

Now we solve the problem in the framework of the K-M theory by assuming that the sol-
ution is independent of x,;. The governing eq. (4) reduces to

1_ Uz "1 w 4
B ¢ ‘(z) =0

h? wY, w v ,
m(z) ~n gt =0 (12
and the Airy stress function has the form
1
® = = Nox? + g(x2). (13)

2

In eq. (12), a prime denotes differentiation with respect to x..
The solution of eqs (12) and (13) satisfying the traction conditions at x; — oc and zero dis-
placements at x, = 0 is

v
Nit/(No) = 1+ 1—¢ /8 Np/No=1, N =0,

Vv
N33/No =1

UC_XZ/S, R =0

Ro/(hNo) = =~ ™2/%

V6(1 —v)

) 2
=0, vy = Nolxa 8 =) @ =1y
E 1—-v
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Fig. 2. Normalized (a) antiplane shear R: and (b) out-of-plane normal stress N :3 vs xp/h.

v(l 4+v)
W=——-="

3 Noh(—1 4+ e72/%), (14)

It can be seen from eqs (10), (11) and (14) and recalling eqs (1) and (2) that the plane stress
solution can be recovered by letting x,/h — oc. The out-of-plane stresses R, and Ni; decay ex-
ponentially with x,/h. The difference between the out-of-plane displacement and the correspond-
ing plane stress one also decays exponentially with x,/h. Though the in-plane stress N,, is not
influenced by the plate thickness, the other in-plane stress N, and the in-plane displacement v,
are different from their values in the plane stress case. It is apparent that the solution (14) exhi-
bits a boundary layer effect. The boundary layer adheres to the interface between the plate and
the rigid substrate and its thickness is of the order of the plate thickness. Significant out-of-
plane stresses exist within the boundary layer, while the plane stress solution prevails out of the
boundary layer. The plate thickness effect is most severe for an incompressible material
(v = 0.5) and is absent in a material with zero Poisson’s ratio.

Figure 2 shows variations, in the xj,-direction, of the normalized out-of-plane stresses
R: = R,/(hNp) and N :3 = N3/ Ny for two values of Poisson’s ratio. It is clear that the stresses
change dramatically near the interface. The stresses become essentially zero (the plane stress
assumptions) at a distance equal to 2 /4 from the interface. Figure 3 shows the variation of the
out-of-plane displacement, w, normalized by its value in the plane stress case. It is seen that the
displacement, w, converges to the plane stress one at a distance equal to the plate thickness
from the interface. Results from Figs 2 and 3 suggest that the boundary layer extends in the x,-
direction for a distance equal to the plate thickness, which agrees with the common understand-
ing of the plate thickness effects.

The semi-infinite plate problem discussed above can also be regarded as a plane strain pro-
blem in the x,~x3 plane, i.. a semi-infinite strip with width 2 / perfectly bonded to a rigid sub-
strate at x,» = 0 and subjected to a uniform tensile traction og = Ny at x; — 00, see Fig. 1(b).
As the solution of the plane strain strip problem is also the exact solution of the 3-D elasticity
problem, we can compare it with the solution obtained by using the K-M theory. Benthem [7]
has solved the plane strain strip problem. By using his numerical data, the average stresses N>
and R, at x, = 0, i.e. the interface between the plate and the rigid substrate, are evaluated as
1.002N, and —0.09Nyh for v = 0.24; the corresponding values obtained by using the K-M the-
ory are Ny and —0.11Nph, respectively. Thus, the K-M theory gives acceptable results for engin-
eering applications. Note that the plane stress theory assumes R, = 0.
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Fig. 3. Normalized out-of-plane displacement w* vs x,/A.

4. AN INTERFACE CRACK BETWEEN A SEMI-INFINITE PLATE AND A RIGID

SUBSTRATE

Consider a through crack of length 24 at the interface between a semi-infinite plate and a

rigid substrate as shown in Fig. 4. The crack surface is described by x, = 0, |x;/<a and
|x3| < 4. The plate is subjected to a uniform tensile traction N, at x, — co. By using the super-
position method, stresses and displacements in the plate may be computed by adding the sol-

ution obtained in the last section to the solution of the following crack problem

hN()v

Vo(l —v)

=0 v=0 w=0, |x{|>a, x=0

Nip=0, Npy=—-Ny, Ry =R} =

Nog—>0, N33—0, R,—>0, xox,—>00.

Elastic plate

Rigid substrate

Fig. 4. A crack at the interface between an elastic plate and a rigid substrate.

s Ix1l <a, x2=0

(15)

(16)

(17)
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4.1. Integral equations

By using the Fourier transform method, the crack problem is reduced to the following sys-
tem of singular integral equations

—phen+1 | AL ars [ ke fode=0. xil<a

prico+1[ LOare [ ke ofou= -2k i <a

6U(1 + 1)) No

lj_ tj:B-(gl df+— J eyt Df(0dr = AT E X1l < a (18)
where
J1x1) = vil,=0. f2(x1) = v21lx,=00 S5(x1) = Woilx,=0 (19)
B=Q2v—-1)/2(1 —v) (20)
is the Dundurs’ parameter for plane strain deformations,
Ko=({1+v)(3—4v)/4(1 —v) 1)

and the Fredholm kernels k;{(x,f) (i, j = 1,2,3) are given in Appendix A. We note that the three
dislocation density functions fi(x;) on the crack face are coupled. The boundary conditions (16)
require that f(x) satisfy

J finde=0,i=1,2,3. (22)
By introducing a complex displacement dislocation density f{x1),
N, .
f0e) = 2 LA + )] 23)
the system of integral eqs (18) may be simplified as follows

B+~ j lf“d +J (Ku(r )A1S) + Kualr, sG)

+K3(r, 8)f3(s)}ds = —=2Ko, [r| < 1
j B0 4 +j (Ka(r, $)5) + Kna(r, S5G)
T)ar

L 24)

NGO

where f(r) = —Q[ fi(r) — ifs(r)] is the complex conjugate of Ar), f3(r) is normalized by No/E,

+K33(r, 5)f3(s)}d

xy=ar,t=as (25)

and the Fredholm kernels K;{r,s) i = 1,3, = 1,2,3) are given in Appendix A.
According to the singular integral equation method[8,9], eq. (24) has solutions of the form

(l — r)—lE(l + r)‘s

R AR LEL
A =29 < (26)

ien =
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where F(r) = F\(r) + iFy(r) and F3(r) are continuous bounded functions on the interval [-1,1],
and

1, 1-8

is the so-called oscillatory index in the plane strain case.

4.2. Crack front fields

It can be shown that the crack front average stress fields consist of a plane strain (not
plane stress) oscillatory singular field and an antiplane shear square-root singular field. The
stresses at the crack extended line (x; >a, x, = 0) are given by

Ny +iNp2 = K(x1 — a)®//27(x1 — a) (28a)
Ry = hKin/+/2n(x\ — a) (28b)

where the stress intensity factors K = K; + iK, and Ky are

No/malF>(1) + iFi(1)]

K=K +iK; =— :
: 2 2Ko(2a)*cosh(me)

(29a)

Noy/maF3(1)
6(1+v)

Equations (24), (26), (28) and (29) reveal that all three fracture modes are coupled together and
the oscillatory behavior of the crack tip fields is determined by the Dundurs’ parameter for
plane strain deformations. Nakamura[10], by using the finite element method, arrived at similar
conclusions.

For incompressible materials (v = 0.5), the oscillatory index ¢ = 0 and eqs (28a) and (29a)
reduce to

Ky = - (29b)

Ny +iNp = K//2n(x) — a) (30)

K = K| +iK; = Kj + iK1y = —No/ma[F>(1) + iFi(1)]/2K,. (31)
The crack front average energy release rate is evaluated as

_ (1-v)KK 3K}
" 2Ecoshi(me)  4u

(32)

and two normalized phase angles are introduced to represent the relative strengths of the mode
mixity

_ 2 ] Im(Kf"") _ 2 -1 KH]
l//—n_ tan {Re(Kf"E)]’ p=—5 3 (33)
3HG

in which 7 is a reference length. Rice[11] has discussed how to choose 7 for plane strain interface
fracture.

4.3. A path-independent integral and a fracture criterion

Path-independent integrals play an important role in fracture mechanics[12]. Rice[12] pro-
posed a path-independent integral, or the well-known J-integral and related it to the energy
release rate associated with the quasi-static crack growth. Rice’s J-integral is a special case of
the Eshelby’s energy-momentum tensor[13]. We now extend the J-integral to include the plate
thickness effects in the framework of the K-M theory. Like the J-integral, the proposed path-
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independent integral is also a special case of one of the conservation laws in general three-
dimensional elastostatics[14].
Consider the line integral

1
Jta = J [dez — Nopngve,1d! — ZRanawvl dl] (34)
c

where C is a simple closed curve, n, is the unit outward normal vector of C, d/ is an infinitesimal
length on C, W (44, 733, 7,) is given by

1 h?
W(yotﬂa V33, Va) = .u'(yaﬁ%zﬂ + }’_%3) + —2‘)‘()’01& + V33)2 + Eﬂyaya (35)
1 3
Yo = ;W,a = 7 Ce (36)

and / is the Lamé constant.
The stress resultants N,g, N33 and R, are related to W by
oW _ AW oW

Nyp=—, N3=—, Ry =—
ap 3 o aya

37
0Yap } dy33 37)

which are equivalent to the stress—strain relations in eq. (3). In fact, W is the integral of the
strain energy density over the plate thickness divided by 2 4 provided that the displacements are
given by eq. (1).

By using the Gauss—Green theorem and eqs (3) and (35)—(37), it can be proved that

Ju =0 (38)

for any closed curve C enclosing no field singularities. If we assume that the displacements in
the plate are given by eq. (1) and note that the plate surfaces are traction-free, it can be shown
that eq. (38) is a special case of one of the generalized three-dimensional conservation laws[14].

If Jry is evaluated along a curve I' beginning on the interface and ending on the crack face
as shown in Fig. 4, Jyy will be independent of the selection of I' due to its conservative property
(38) and the perfect bonding interface conditions. It can be shown that J1y on I is the average
energy release rate associated with the quasi-static interface crack growth, i.e.

_ (1-V)KK | 3K}
Y cosh?(re)  4n

(39

Hence, a fracture criterion may be established for the interface crack growth in terms of Jry-
integral

Jn =¥, ¢) = Ge(¥, ) (40)

where J5; (¥, ¢) or G(Y, @) represents the interface fracture resistance which depends on the
phase angles ¥ and ¢ and the length scale F. Detailed properties of interface fracture resistance
have been discussed by Cao and Evans[15] in two-dimensional cases and by Wang et al.[16] for
combined plane strain and antiplane strain conditions. It is noted that for plane stress interface
fracture, @ equals zero in eq. (40). Hence, G, is a curve in the K-plane. In the K-M theory, ¢ is
not zero and G, has to be considered to be a surface in the K—Kj; space as in 3-D fracture[16).
Since the interface fracture resistance is strongly affected by the phase angles[15], the interface
fracture resistance of thin plates cannot be thoroughly studied under the plane stress assump-
tions.

4.4. Numerical results

In computations of stress intensity factors (SIFs), we only consider the case of incompressi-
ble materials because the effect of the plate thickness is most predominant for this case, and the
oscillatory index equals zero which facilitates numerical computations. Figure 5 shows the nor-
malized SIFs vs the non-dimensional plate-thickness #/a. The SIFs are normalized by Ny/(7a).
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Fig. 5. Effect of plate thickness on the stress intensity factors.

It can be seen that K decreases with an increase in s/a. K is slightly higher than unity for
hja < 0.7. The absolute value of Kj; decreases with an increase in 4/a for 2/a < 0.5 and becomes
less than 0.1 for #/a>0.25. Ky changes sign from negative to positive at about h/a = 0.5. It is
also seen from Fig. 5 that Kjy is negative for #/a> 0.1, becomes positive when A/a < 0.1 and
approaches zero for a very thin plate (h/a — 0). The absolute value of Ky is very small when
hja < 0.1 and increases monotonically with increasing 4/a for hfa>0.1. It seems peculiar that
Ky and Ky change signs at about #/a = 0.5 and 0.1, respectively. This may be due to the inter-
action between in-plane and antiplane shearing. If the antiplane shear traction R in the bound-
ary condition (15) is neglected, we will have a negative Ky and positive Ky regardless of the
plate thickness. When Rg is applied, a negative Ky will be generated. This negative Ky, in
turn, affects the final pattern of Ky and Ky as depicted in Fig. 5. It is clear from Fig. 5 that all
three stress intensity factors are not zero. Figure 6 depicts the average energy release rate Jry
normalized by [(1 —v?)/E] Nona and the normalized phase angles ¥ and ¢. Their values in the
plane stress case are 0.64, —0.14 and zero, respectively, if we choose 7 in eq. (33) as a/50. Note
that the plane stress field is oscillatory as the oscillatory index is not zero. It is clear from Fig. 6
that the plate thickness has a significant effect on the phase angles. The energy release rate is
lower than its value in the plane stress case except for a vanishingly thin plate for which the two
values are nearly equal. As the phase angles strongly affect the interface fracture resistance[15],
an interface fracture toughness based on the plane stress theory is not appropriate for thin
plates. It should be noted that, in general, the plate solution obtained here neither approaches
the plane stress one as 4/a — 0 nor the plane strain one as h/a — oo. The crack tip field struc-
ture is now different from that for the plane stress case and this is not influenced by the plate
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Fig. 6. Energy release rate and phase angles.
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thickness, except that Kj;; — 0 when #/a — 0. The K-M theory was developed for a thin or a
moderately thick plate and is not appropriate for a plate with a large thickness. Hence, we
should not expect the plate theory solution to approach the plane strain one for large values
of h/a. Finally, the present results agree qualitatively with the 3-D finite element calculations for
a thin plate interface crack problem[10].

5. CONCLUDING REMARKS

Interface cracking between a semi-infinite elastic plate and a rigid substrate is studied by
using the Kane and Mindlin’s kinematic assumptions. A simple solution for the plate-substrate
system without cracks under uniform remote tension is first obtained and results are compared
with the full 3-D solution showing that the K-M theory predicts acceptable values of stresses
averaged over the plate thickness. An interface crack between an elastic plate and a rigid sub-
strate is investigated. The crack front average stress fields consist of a plane strain (not plane
stress) oscillatory singular field and an antiplane shear inverse square-root singular field and the
three fracture modes are always coupled. The plate thickness influences strongly stress intensity
factors and phase angles. For a very thin plate, the energy release rate and the out-of-plane
stress intensity factor approach their values for the plane stress case, but the in-plane stress
intensity factors and the associated phase angles are different from those for the plane stress the-
ory. The interface fracture resistance is specified by a surface in the K-Kjy; space instead of a
curve in the K-plane as for the plane stress fracture. As the phase angles strongly influence the
interface fracture resistance, the interface fracture toughness of thin plates cannot be studied by
using the plane stress theory. However, the K—M theory offers a reasonable basis for studying
interface crack problems in thin plates.
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APPENDIX A

The Fredholm kernels k;(x, ¢) (i, j = 1,2,3) in the integral eqgs (18) are given by

kijlx, £) = L fi®sinl(x — Nglds, (.j) =(1,1),(2,2),(3,3),(2,3),3.2)

and
ki(x, 1) = Ef.;@)m[(x — DEldE, (i,7) =(1,2).(2,1),(1,3). 3. 1),
where
Fi®) = f12(8) = —£1(®) = fua(§) = 1 + (3 — )/[(1 ~ VARG,
fi3(§) = f3(6) = ~4Ko(w® /h)e — &)/ AE),
1) = fa(®) = Qu/h)a — £/AE).
) = =201 + Vw(a — £/ AE) — (- &)/t
with

AG) =v—3+2u1 — Va8
a(f) = VE + 672

2_ ¥

Y TIoe

The Fredholm kernels Kj(x,r) (i = 1,3, j = 1,2,3) in eq. (24) are given by
Ky (x,8) = —alkiz + ik2),
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Ki3(x, 1) = alkzs — iki3),
K31(x, 1) = alksy — ik32)/2,
K3 (x, 1) = alks) + ik3)/2,

K33(x, ) = aks3.
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