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Abstract

We study thermal crack shielding and thermal shock damage in a double-edge cracked metal-particle-
reinforced ceramic matrix composite subjected to sudden cooling at the cracked surfaces. Under severe
thermal shocks, the crack will grow but will be bridged by the plastically stretched metal particles. A
linear softening bridging law is used to describe the metal particle bridging behavior. An integral
equation of the thermal crack problem incorporating the bridging e�ect is derived and the thermal stress
intensity factor at the bridged crack tip is calculated numerically. It is found that the thermal stress
intensity factor is signi®cantly reduced by the metal particle bridging. While the crack growth in
thermally shocked monolithic ceramics is unstable, the composite can withstand su�ciently severe
thermal shocks without failure. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Metal-particle-reinforced ceramic matrix composites (MPCMCs) are promising candidates
for future high temperature applications. MPCMCs have superior crack growth resistance
when compared with monolithic ceramics and possess excellent high temperature strength
properties when compared with metal alloys. Signi®cant progress has been made in
understanding the crack growth resistance and strength behavior of MPCMCs and other
ductile phase reinforced brittle systems subjected to mechanical loads, for example, see Refs.
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[1±9]. However, little e�ort has been devoted to understanding thermal shock fracture behavior
of MPCMCs. The knowledge of thermal cracking and damage in MPCMCs is important for
the design of such components as engines and turbines which are frequently subjected to
thermal shocks. It is expected that thermal cracking and damage resistance of MPCMCs will
be enhanced over that of monolithic ceramics.
The basic toughening mechanism in MPCMCs is metal particle bridging [1±5,8,9]. When a

crack grows in the brittle matrix, the metal particles at the crack surface will deform plastically
and bridge the crack surfaces thereby reducing the stress intensity at the crack tip. The e�ective
fracture toughness and the residual strength are thus enhanced. The aim of the present study is
to investigate thermal cracking and damage behavior of MPCMCs. We consider a double-edge
cracked MPCMC strip subjected to sudden cooling at the cracked surfaces. Thermal stress
intensity factors are calculated for both monolithic ceramics and MPCMCs and the thermal
crack shielding e�ect of the metal particle bridging is discussed. Crack growth length in the
specimen due to a given thermal shock is also investigated.

2. Thermal crack shielding

2.1. Temperature ®eld

Consider an in®nite MPCMC strip of width 2b with double-edge cracks of length a as
shown in Fig. 1. The strip is initially at a constant temperature T0 and its surfaces x1=2b are

Fig. 1. A double-edge cracked strip subjected to a thermal shock.
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suddenly cooled to a temperature Ta(Ta<T0). This thermal shock problem may be used to
study the thermal stresses in a quenched specimen. Since the heat will ¯ow only in the x1-
direction, the initial and boundary conditions for the temperature ®eld are

T�x1,0� � T0 �1�

T�x1,t� � Ta, x1 �2b, t > 0 �2�
We regard the MPCMC as an isotropic material. The temperature ®eld in the strip can be

expressed as [10]

Tÿ T0

DT
� ÿ1� 2

X1
n�1

lÿ1n �ÿ1�nÿ1 cos�lnx��eÿl2nt �3�

in which x �=x1/b, DT=T0ÿTa, ln=p(nÿ1/2), t=tkc/b
2 is the nondimensional time, and kc is

the thermal di�usivity of the composite.

2.2. Thermal stress

The temperature ®eld given by Eq. (3) induces normal stresses in both x2 and x3 directions
in the strip. We assume that the strip undergoes plane strain deformations in the x1ÿx2 plane
and is free from constraints at the far ends. The stress in the x2-direction is

sT
22�x�,t� �

EcacDT
1ÿ nc

~sT
22�x�,t� �4a�

~sT
22�x�,t� � ÿ2

X1
n�1

lÿ1n �ÿ1�nÿ1 cos�lnx��eÿl2nt � 2
X1
n�1

lÿ2n eÿl
2
nt �4b�

where Ec is Young's modulus of the composite, nc Poisson's ratio and ac the coe�cient of
thermal expansion. For spherical metal particles, Ec, nc and ac can be calculated from a
micromechanics model [11]:

A�mc=mm�2 � B�mc=mm� � C � 0 �5�

Kc � Km � Vp�Kp ÿ Km�
1� �1ÿ Vp�

��Kp ÿ Km�=�Km � 4mm=3�
� �6�

Ec � 9Kcmc=�3Kc � mc� �7�

nc � Ec=�2mc� ÿ 1 �8�
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ac � ap � am ÿ ap

�1=Km ÿ 1=Kp�
�

1

Kc

ÿ 1

Km

�
�9�

Here Vp is the volume fraction of metal particles, mc is the composite shear modulus, Kc is the
bulk modulus, A, B and C are constants depending on mm, mp, nm, np and Vp, and subscripts c,
m and p refer to the composite, matrix and particles, respectively. We consider only spherical
metal particles, which is a reasonable assumption for most cases. For other shapes of metal
particles, the e�ective properties of the composite and the bridging e�ect of particles need
further investigation. While some progress has been made for the ®rst problem, not much work
has been done on the second problem. The thermal stress in the specimen given by Eq. (4) is
most severe since a sudden cooling condition has been assumed.

2.3. Integral equation of the thermal crack problem

When the cracked strip is subjected to the thermal shock DT, narrow strip damage zones will
be developed at the crack tips if the shock DT is severe. The damage zones may also be
regarded as grown cracks with plastically stretched metal particles bridging the crack surfaces.
Because of the symmetry of the problem about the two centroidal axes, only deformations of
the material in the ®rst quadrant are analyzed. The boundary conditions for the thermal crack
problem are

s12 � u1 � 0, x1 � 0, x2r0 �10�

s11 � s12 � 0, x1 � b, x2r0 �11�

s12 � 0, 0Rx1Rb, x2 � 0 �12�

u2 � 0, 0Rx1Rc, x2 � 0 �13�

s22 � ÿsT
22 �H�bÿ a0 ÿ x1�Vps, c<x1Rb, x2 � 0 �14�

sabÿÿÿ40, 0Rx1Rb, x2ÿÿÿ41 �15�
where sab(a,b=1,2) are stress components, ua (a=1,2) are displacements, c=bÿa, a=a0+Da
is the total crack length, a0 is the initial crack length, Da is the crack growth length, H() is the
Heaviside step function, s T

22 is given by Eq. (4) and s is the bridging stress of metal particles.
It has been shown that metal particle bridging exhibits a softening behavior [2,4,5] and a

linear softening law

s � s0�1ÿ d=d0� �16�
may be used [8,9]. Here s0 is the maximum bridging stress, d the crack opening displacement
and d0 the maximum crack opening at which the bridging is lost.
The longitudinal stress s22 at the crack line (x2=0) can be evaluated as [12]
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s22jx 2�0
� Ec

2p�1ÿ n2c�
�b

c

�
1

x 0 ÿ x1
� k�x1,x

0�
�
f�x 0,t� dx 0 �17�

and the singular integral equation of the thermal crack-bridging problem can be deduced as�1
ÿ1

�
1

sÿ r
� K�r,s�

�
f�s,t� ds � 2p�1ÿ n2c�

Ec

�
ÿ sT

22�r,t� �H�rÿ r0�Vps0

�
1ÿ d

d0

��
,

jrjR1

�18�

where the unknown function f(r,t ) is given by

f�x1,t� � @u2�x1,0,t
@x1

�19�

and K(r,s ) is a known kernel singular only at (r,s )= (ÿ 1,ÿ1), r=2(bÿx1)/aÿ1 and r0=2a0/
aÿ1.
Noting the relationship

d � 2u2�x1,0,t� � ÿa
�1
r

f�s,t� ds �20�

Eq. (18) can be written as

L�f� � ÿ2p�1� nc�acDT ~sT
22�r,t� �

2p�1ÿ n2c�
Ec

H�rÿ r0�Vps0, jrjR1 �21�

where the linear integral operator L is

L�f� �
�1
ÿ1

�
1

sÿ r
� K�r,s�

�
f�s,t� dsÿ 2pVpH�rÿ r0�

�
a

b

�
b�
�1
r

f�s,t� ds �22�

and

b� � �1ÿ n2c�s0b
Ecd0

� �1ÿ n2c�b
2EcGf=s20

�23�

Here Gf is the fracture energy of the bridging zone:

Gf �
�d0
0

s dd � 1

2
s0d0 �24�

According to the singular integral equation methods [12,13], Eq. (21) has a solution of the
following form if the second integral in Eq. (22) is not considered:

f�r,t� � c�r,t�=
�����������
1ÿ r
p

�25�
where c(r,t ) is continuous and bounded on [ÿ 1,1]. It is shown in [14] that even when the
second integral is considered, Eq. (21) still has a solution of the form of Eq. (25).
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2.4. Thermal stress intensity factor

The thermal stress intensity factor (TSIF) at the crack tip, KI, is given by

KI � Ec

1ÿ n2c

������
pa
p �

ÿ 1

2
c�1,t�

�
�26�

The solution of Eq. (21) may be expressed as

f�r,t� � �1� nc�acDTf1�r,t� �
1ÿ n2c
Ec

s0f2�r,t�

� 1�����������
1ÿ r
p

�
�1� nc�acDTc1�r,t� �

1ÿ n2c
Ec

s0c2�r,t�
�
, �27�

where fi(i=1,2) satisfy

L�f1� � ÿ2p ~sT
22�r,t�, jrjR1 �28�

L�f2� � 2pVpH�rÿ r0�, jrjR1 �29�
The normalized TSIF, K �, is then given by

K � � �1ÿ nc�KI

EcacDT
������
pb
p � ÿ1

2

����
a

b

r �
c1�1,t� � pc2�1,t�

� �30�

where

p � s0=�EcacDT=�1ÿ n�� �31�
is a dimensionless parameter representing the relative strength of the bridging stress to the
thermal shock induced stress.
We have not considered the e�ect of residual stresses on the stress intensity factor. When the

composite is cooled down from the processing temperature to room temperature,
microstructural thermal stresses developed in the ceramic matrix may toughen the composite
(e.g. see [15,16]). However, in the problem studied here the initial temperature of the composite
is much higher than room temperature. Accordingly, the microstructural residual stresses will
play a less noticeable role.

2.5. Numerical results and discussion

In the numerical calculations of the TSIF, we consider only the full bridging case, i.e. the
crack is fully bridged; the TSIFs for a partially bridged crack in a particular problem may be
calculated using the present method. We have neglected the e�ect of inertia forces in the
mechanical problem and have also considered one-dimensional temperature distribution. These
assumptions make the problem mathematically tractable without sacri®cing too much on the
accuracy of the computed stress intensity factor. We note that the thermal stress intensity
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factor for the dynamically impacted crack is usually 30% higher than that for a static one. The

use of one-dimensional temperature distribution is reasonable since the maximum stress

intensity factor occurs very shortly after the thermal shock is applied. During the initial stage

of the thermal shock, heat mainly ¯ows along the crack with very little, if any, temperature

gradient in the direction perpendicular to the crack face.

Fig. 2 shows the normalized TSIF K � versus the nondimensional time t for normalized

crack length a/b=0.01, 0.17 and 0.30. The TSIFs for monolithic ceramics (without bridging) as

well as for MPCMCs with p=0.1, 0.2 and 0.3 are depicted. Here we have neglected the

possible bridging of ceramic grains as it is insigni®cant when compared with the metal particle

Fig. 2. Normalized thermal stress intensity factor K � versus nondimensional time t with and without particle
bridging: (a) a/b=0.01; (b) a/b=0.17; and (c) a/b=0.30.
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bridging. It is observed from Fig. 2 that for a given normalized crack length a/b, the TSIF
increases with time, reaches a peak value at a particular time which increases with the crack
length, and then decreases with further increase in time. There exists a critical crack length
lc(=ac/b ) at which the peak TSIF reaches a maximum. The critical value lc is approximately
0.17 for unbridged cracks and is slightly less than 0.17 when crack bridging is considered. It is
clear that thermal crack shielding e�ect of metal particle bridging is noticeable, i.e. the TSIFs
are signi®cantly reduced. For example, the normalized peak TSIF for a/b=0.17 is about 0.20
when no bridging is considered. When the particle bridging is considered, the peak TSIF is
reduced to about 0.196, 0.147 and 0.098 for p=0.1, 0.2 and 0.3, respectively. The bridging
e�ect is more signi®cant for longer cracks. Fig. 3a depicts the normalized peak TSIF versus the
nondimensional crack length a/b for monolithic ceramics and Fig. 3b exhibits the results for
both monolithic ceramics and MPCMCs for p=0.1, 0.2 and 0.3. Note that the TSIFs for
ceramics in Figs. 2 and 3b are normalized with respect to the composite properties but in Fig.
3a they are normalized with respect to the matrix material properties. It is interesting to note
from Fig. 3 that the TSIFs for longer cracks may be reduced to zero due to metal particle
bridging. For example, when p=0.2, the TSIF equals zero for cracks with normalized length a/
b>0.5. This suggests that thermal crack propagation in MPCMCs may be arrested by strong
metal particle bridging.

3. Thermal shock damage

When subjected to a thermal shock, an MPCMC with an initial crack of length a0 will su�er
damage, i.e. the crack will grow but will be bridged by the plastically stretched metal particles.

Fig. 3. Normalized peak thermal stress intensity factor versus nondimensional crack length a/b: (a) for monolithic
ceramics; and (b) for monolithic ceramics and MPCMCs.
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This bridged part of the crack may be considered as a kind of thermal shock damage. Consider
the double edge cracked MPCMC specimen subjected to a thermal shock studied in the last
section. The thermal shock damage or the crack growth length Da(=aÿa0) may be determined
from Eq. (30) by equating TSIF KI to a critical SIF, Kcr

�1ÿ nc�Kcr

EcacDT
������
pb
p � ÿ1

2

�����������������
a0 � Da

b

r �
c1�1,tm� � pc2�1,tm�

� �32�

Fig. 4. Normalized crack length a/b versus thermal shock severity DT for a Ni/Al2O3 composite and monolithic
Al2O3: (a) a0/b=0.01; (b) a0/b=0.1; and (c) a0/b=0.2.
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where tm is the time at which ÿ[c1(1,tm)+pc2(1,tm)] is maximum and Kcr is given by

Kcr �
����������������������������������������
Ec�1ÿ n2m�
Em�1ÿ n2c�

�1ÿ Vp�
s

Kmc �33�

with Kmc being the matrix fracture toughness.
Fig. 4 shows the normalized total crack length after thermal shock versus the thermal shock

severity DT for a nickel alloy (Ni) particle reinforced alumina (Al2O3) matrix composite for
di�erent initial crack lengths. Also shown in the ®gure is the crack length for the monolithic
alumina. The volume fraction of particles is taken as Vp=0.3, the half specimen width b as
10 mm, and three initial crack lengths, i.e. a0/b=0.01, 0.1 and 0.2 are considered. Table 1 gives
material properties of Ni and Al2O3. The bridging parameters s0 and d0 for an average metal
particle size of 20 mm are calculated as 1290 MPa and 33 mm, respectively [17]. The calculation
is based on the micromechanics model of Mataga [5] and the argument of Bao and Zok [9] to
linearize the model. It can be seen from the ®gure that, although the composite su�ers damage,

Table 1
Properties of the component materials of an MPCMC

Young's
modulus

(GPA)

Poisson'
ratio

Thermal expansion
(10ÿ6Kÿ1)

Fracture
toughness

(MPaZm)

Yield strength
(MPa)

Strain hardening
index

Al2O3 360 0.20 8 2

Ni alloy 200 0.33 15 100 800 0.11

Fig. 5. Normalized crack length a/b versus thermal shock severity DT for a Ni/Al2O3 composite for various initial
crack lengths a0/b.
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the damage behavior is signi®cantly di�erent from that of alumina. For an initial crack length
less than about 0.17b, the crack in alumina will grow unstably under the minimum thermal
shock to initiate the crack (for a0/b=0.01, this shock is about 32 K) and under a slightly more
severe thermal shock, the crack can easily grow to a normalized length a/b of 0.8. In contrast
with alumina, the composite can withstand signi®cantly more severe thermal shocks. For the
initial crack lengths considered, a thermal shock of DT=1000 K is needed to increase the crack
to a length of 0.8. Fig. 5 shows total crack length for the composite after thermal shocks for
various initial crack lengths. It is seen that for the initial normalized crack length less than
about 0.6, the cracked specimen can always withstand a thermal shock of DT=1000 K, i.e. the
normalized total crack length a/b of the grown crack is less than 0.8. Even for an initial
nondimensional crack length of 0.7, a thermal shock of about DT=780 K is needed to increase
the crack to a length of 0.8.

4. Conclusions

We have studied thermal crack shielding and thermal shock damage in a double-edge
cracked metal-particle-reinforced ceramic matrix composite subjected to sudden cooling at the
cracked surfaces. Under severe thermal shocks, the crack will grow but is bridged by the
plastically stretched metal particles. It is found that the thermal stress intensity factor is
signi®cantly reduced by the metal particle bridging. While the crack growth in thermally
shocked monolithic ceramics is unstable, the composite can withstand su�ciently severe
thermal shocks without failure. Compared with monolithic ceramics, the composite su�ers
signi®cantly less thermal shock damage.
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