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Abstract. Four different thermoviscoplastic relations, namely, the Litonski–Batra, Johnson–Cook, Bodner–Partom
and the power law are used to model the thermoviscoplastic response of a material. Each one of these relations
accounts for strain hardening, strain-rate hardening and thermal softening of the material. The material parame-
ters in these relations are found by solving an initial-boundary-value problem corresponding to simple shearing
deformations so that the computed effective stress vs. the effective plastic strain curves match closely with the
experimental data of Marchand and Duffy who tested thin-walled HY-100 steel tubes in torsion. These four
viscoplastic relations are used to analyze dynamic thermomechanical deformations of a prenotched plate impacted
on the notched side by a cylindrical projectile made of the same material as the plate. The impact loading on the
contact surface is simulated by prescribing the time history of the normal component of velocity and null tangential
tractions. A plane strain state of deformation is assumed to prevail in the plate and its deformations are studied for
different values of the impact speed. The in-house developed finite element code employs constant strain triangular
elements, one point integration rule, and a lumped mass matrix. The Lagrangian description of motion is used to
describe deformations of the plate. The coupled nonlinear partial differential equations are first reduced to coupled
nonlinear ordinary differential equations (ODEs) by using the Galerkin approximation. The ODEs are integrated
by using the stiff solver, LSODE, which adaptively adjusts the time step size and computes the solution within the
prescribed accuracy. Results computed with the four constitutive relations are found to be qualitatively similar to
each other and the general trends agree with the experimental observations in the sense that at low speed of impact,
a brittle failure ensues at a point on the upper surface of the notch tip. However, at high impact speeds, a ductile
failure in the form of a shear band initiates first from a point on the lower surface of the notch tip. The predicted
speed at which the failure mode transitions from brittle to ductile is different for the four viscoplastic relations.
The effects of the notch tip radius and the yield strength of the material in a quasistatic simple tension/compression
test on the failure-mode transition speed have been ascertained.

Key words: Finite element solution, microporous thermoviscoplastic material, transient plane strain deformations,
brittle and ductile failures.

1. Introduction

During impact loading of pre-notched plates, Kalthoff (1987) and Kalthoff and Winkler (1987)
observed that with an increase in the impact speed, the failure mode changed from brittle
failure at a point on the upper surface of the notch tip to ductile failure in the form of a
shear band initiating from a point on the lower surface of the notch tip; the lower surface
of the notch is adjacent to the impacted edge of the plate. However, in the Charpy V-notch
test, ductile failure ensues at low loading rates or at high temperatures and brittle failure
at high loading rates or at low temperatures. Tvergaard and Needleman (1986, 1993) and
Needleman and Tvergaard (1995) have numerically analyzed thermomechanical deformations
of these two configurations by using Gurson’s (1977) flow potential and a power law type
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thermoviscoplastic relation. They showed that predictions from the same set of governing
equations are in qualitative agreement with the seemingly contradictory observations in the
two tests. Needleman and Tvergaard (1995), Zhou et al. (1996b), Batra and Nechitailo (1997),
Batra and Gummalla (2000) and Batra and Ravisankar (2000) have numerically studied the
Kalthoff problem. Whereas Needleman and Tvergaard and Zhou et al. employed a power law
type relation to model the strain hardening and strain-rate hardening of the material, Batra
et al. used the Johnson–Cook (1983) relation. None of these studies computed the impact
speed at which the failure mode transition occurs. Also, it will be interesting to compare the
thermomechanical response predicted by different thermoviscoplastic relations after they have
been calibrated with the same set of test data. Batra and Kim (1990) conducted such studies
for the initiation and development of an adiabatic shear band in a thermoviscoplastic body
deformed in simple shear, and Batra and Jayachandran (1992) and Batra and Adam (1991)
used different relations to analyze the steady state penetration of a thermoviscoplastic target
by a rigid hemispherical nosed penetrator.

We use four thermoviscoplastic relations, namely, the Litonski–Batra, the Johnson–Cook,
the Bodner–Partom and a power law to analyze the plane strain thermomechanical deforma-
tions of a prenotched plate used in Kalthoff’s experiments. We note that the only mechanical
property listed in Kalthoff’s paper is the quasistatic yield strength of the material of the plate.
We use values of material parameters, modified to the case of three-dimensional deformations,
that Batra and Kim (1990) found by calibrating the four thermoviscoplastic relations against
the experimental data of Marchand and Duffy (1988) who tested thin-walled HY100 steel
tubes in torsion. Batra and Kim (1990) assumed that deformation of the material near the
middle of the tube corresponded to that of simple shearing and determined the values of
material parameters by solving an initial-boundary-value problem till the computed stress-
strain curve at a nominal strain rate of 3300/s matched closely with that obtained from the test
data. It is found that the four viscoplastic relations predict different values of the impact speed
at which the failure mode in the Kalthoff problem changes from brittle to ductile. However,
the qualitative nature of results computed with the four thermoviscoplastic relations is the
same. We use the Bodner-Partom relation to ascertain the effect of the notch tip radius and the
power law to scrutinize the effect of the quasistatic yield stress of the material on the transition
speed.

2. Formulation of the problem

A schematic sketch of the problem studied is depicted in Figure 1. A cylindrical rod of diam-
eter equal to the distance between the two notches in a prenotched plate strikes the side of the
plate at normal incidence with speed v0. The cylindrical rod and the plate are made of the same
microporous material and the plate before being impacted rests on a smooth rigid surface. We
assume that a plane strain state of deformation prevails in the plate. The three-dimensional
numerical solution of the problem by Batra and Ravisankar (2000) reveals that this is a good
approximation of the deformations occurring in the central 75% of the thickness of the plate.
In rectangular Cartesian coordinates and in the absence of body forces and sources of internal
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Figure 1. A schematic sketch of the problem studied.

energy, equations governing the deformations of the plate are

(ρJ (1 − f ))˙ = 0, (1)

ρ0(1 − f0)v̇ = Div T, (2)

TFT = FTT , (3)

ρ0(1 − f0)ė = −Div Q + tr(TḞT ). (4)

Here ρ is the present mass density, f the porosity, v the velocity of a material point X presently
occupying the place x, F = ∂x/∂X, J = det F, T the first Piola–Kirchhoff stress tensor, e the
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specific internal energy, Q the heat flux per unit area in the reference configuration, Div the
divergence operator with respect to coordinates in the reference configuration, a superimposed
dot indicates the material time derivative, tr is the trace operator and FT equals the transpose
of F. A subscript 0 on a quantity indicates its value in the reference configuration.

We assume that the plate material is homogeneous and isotropic and use the following
constitutive relations to model its thermoviscoplastic response.

σ̇ − �σ + σ� = E(1 − f )

(1 + ν)
De + νE(1 − f )

(1 + ν)(1 − 2ν)
(tr De)1, (5)

De = D − Dp − αθ̇1, 2D = grad v + (grad v)T , 2� = grad v − (grad v)T , (6)

Dp = (1 − f )σeε̇
p

tr(σNT )
N, N = ∂�

∂σ
, (7)

� ≡ 3

2

tr(ssT )
σ 2
e

+ 2f ∗q1 cosh

(
q2trσ

2σe

)
− 1 − q2

1f
∗2 = 0, (8)

s = σ − 1

3
(tr σ )1, (9)

ε̇p = g(σe, ε
p, θ), (10)

f ∗ =



f if f ≤ fc,

fc +
(
fu − fc

ff − fc

)
(f − fc) otherwise,

(11)

ḟ = (1 − f )tr Dp + f2ε̇p

s2
√

2π
exp

(
−1

2

(
εp − eN

s2

)2
)
, (12)

q = −κ
(

1 − 3

2
f

)
grad θ, (13)

ė = cθ̇ + tr(σDe + αθ̇σ ), (14)

where

T = Jσ (F−1)T , Q = J (F−1)q. (15)

Here σ is the Cauchy stress tensor that is related to the first Piola-Kirchhoff stress tensor
by eqn. (15)1, � the spin tensor, E Young’s modulus, ν Poisson’s ratio, α the coefficient of
thermal expansion, D the strain-rate tensor, ε̇p the effective plastic strain-rate, q the heat flux
per unit area in the current configuration, κ the thermal conductivity, and c the specific heat.
Other parameters characterizing the material are q1, q2, f2, s2, eN, fc and fu. Equation (5) is
the constitutive relation for a hypoelastic material and its left-hand side represents the Jaumann
derivative of σ .

The frame-indifference of σ implies that N and Dp are frame-indifferent (cf., Equation (7))
and hence De is frame-indifferent. Therefore Equation (5) is frame-indifferent. The factor (1−
f ) on the right-hand side of Equation (5) accounts for the degradation of the material strength
due to the evolution of the porosity; this was also considered by Passman and Batra (1984) and
Kobayashi and Dodd (1989). Budiansky (1970), amongst others, has given the dependence
of the material properties upon f for a macroscopically isotropic composite consisting of a
random dispersion of approximately spherical voids in a matrix material. These relations are
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more involved than the simple reduction of Young’s modulus and the bulk modulus by (1−f ).
Equation (8) is the yield function proposed by Gurson (1977) and subsequently modified
by Tvergaard (1981). Equations (7)2 and (7)1 follow from the assumptions that Dp is along
the outward normal N to the yield surface � = 0, and the plastic working tr(σ Dp) equals
(1 − f )σeε̇

p. The thermoviscoplastic relations described by equation (10) will be discussed
below. The expression (11) for f ∗ was proposed by Tvergaard and Needleman (1984) so that
the computed results matched well with the test findings for the cup-cone fracture in a round
tensile bar. They suggested the values fc 	 0.15 and ff 	 0.25.

The first term on the right-hand side of Equation (12) gives the growth of voids due to plas-
tic dilatation, and the second term, proposed by Chu and Needleman (1980) equals the plastic
strain controlled nucleation of voids. In Equation (12), s2 is the standard deviation of the
normal distribution, f2 the volume fraction of voids that would be nucleated if the deformation
continued indefinitely, and eN the plastic strain at which the void nucleation rate is maximum.
Experimental studies of LeRoy (1978) and Fisher (1980) on spheroidized carbon steel reveal
that a void perfusion strain exists at which the nucleation rate of voids is maximum; this
strain can be taken as eN . Perzyna (1986) has employed a different evolution equation for
f . Equation (13) is the Fourier law of heat conduction. Budiansky (1970) proposed that the
thermal conductivity of a porous material equals (1 − (3/2)f ) of that for the matrix. Nearly
all of the thermophysical material parameters may depend upon the temperature. However,
such dependencies have been ignored for the sake of simplicity.

For the initial conditions we take

σ (x, 0) = 0, f (x, 0) = f0, ρ(x, 0) = ρ0, v(x, 0) = 0, θ(x, 0) = θ0. (16)

That is, the plate is initially stress free and is at a uniform temperature θ0. All bounding
surfaces of the plate including the surfaces of the two notches are assumed to be traction free
and thermally insulated. The surface of the plate impacted by the cylindrical rod is taken to be
smooth and the normal velocity, v1, on it is given by

v1 =




0.3v0t, 0 ≤ t ≤ 2µs,
v0(0.525 + 0.0375t), 2 ≤ t ≤ 10µs,
0.9v0, 10µs ≤ t < ts,

0, t ≥ ts ,

(17)

where v0 is the speed of the projectile, and ts equals the time when the projectile separates
from the plate. The expression (17) for v1 is obtained by fitting straight lines to the data
of Batra and Ravisankar (2000) who conducted three-dimensional numerical simulations of
the problem studied herein with DYNA3D that models the thermoviscoplastic response of the
material by the Johnson–Cook relation. Their simulations with a different constitutive relation
and also for a steel with a higher value of the yield stress in a quasistatic simple compression
test resulted in expression (17) for the normal velocity imparted to the plate particles.

We assume that the plate is made of a HY100 steel and that the material exhibits strain hard-
ening, strain-rate hardening and thermal softening and model these effects by the following
four thermoviscoplastic relations.
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2.1. LITONSKI–BATRA RELATION

Batra (1988) generalized the one-dimensional relation of Litonski (1977) to equation (18)
appropriate for three dimensional deformations.

ε̇p = max




0,
1

b




 σe

σ0

(
1 + εp

εy

)n
(1 − νsθ)




1/m

− 1.0





. (18)

Here σ0 is the yield stress of the material in a quasistatic simple tension or compression test,
parameters b and m characterize the strain-rate hardening of the material, εy and n its strain
hardening and νs its thermal softening. It is evident from Equation (18) that a material point
deforms plastically only when σe > σ0

(
1 + εp/εy

)n
(1 − νsθ) there.

2.2. POWER LAW

Klopp et al. (1985) and Hartley et al. (1987) described the experimental shear stress-shear
strain curve during torsional deformations of a steel tube at different strain rates by a power
law. Several investigators, e.g. see Needleman and Tvergaard (1995), have used its three-
dimensional version (19) obtained by replacing the shear stress and the shear strain by the
effective stress and the effective plastic strain respectively.

ε̇p =

 ε̇0

(
σe

σ0

)1/m (
εp

εy

)−n/m (
θ

θ0

)−γ /m
if σe ≥ σ0,

0 if σe < σ0.

(19)

Here ε̇0 is a reference strain-rate and the temperature is measured in Kelvin. The viscoplastic
response is characterized by material parameters m, n, γ, σ0, θ0, εy and ε̇0; θ0 is usu-
ally taken as the room temperature in Kelvin and εy the plastic strain at the onset of plastic
deformations in a simple tension or compression test.

2.3. BODNER–PARTOM RELATION

Plastic deformations are assumed to occur for all values of the effective stress, and the effective
plastic strain-rate is given by (e.g., see Bodner and Partom, 1975)

ε̇p = D0 exp

[
−1

2

(
K2

3σ 2
e

)n]
, (20)

where

K = K1 − (K1 −K0) exp(−mWp), n = a

θ
+ b, (21)

Wp =
∫ t

0
tr(σDp) dt. (22)

Parameters K1, K0, D0, m, a and b determine the thermoviscoplastic response of the
material, and the temperature θ in Equation (21)2 is measured in Kelvin.
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2.4. JOHNSON–COOK RELATION

Based on the test data at moderate values of the strain-rate and at different temperatures,
Johnson and Cook (1983) proposed that

ε̇p = ε̇0max


exp


 1

C


 σe

(A+ B(εp)n)

(
1 −

(
θ − θ0

θm − θ0

)m) − 1




 , 0


 . (23)

The reference strain-rate, ε̇0, is usually taken as 1/s and θm equals the melting temperature of
the material. When θ = θm, the material behaves as a perfect fluid.

3. Numerical solution of the governing equations

Because of the relation (15)1 between T and σ and the constitutive relation (5), the balance
of moment of momentum (3) is identically satisfied. The present mass density, ρ, can be
computed from Equation (1) if the deformation and current value of the porosity are known.
Thus the independent variables are X and t , and the dependent variables are x, f and θ .
Equations (2) and (4) are second-order nonlinear hyperbolic and parabolic partial differential
equations (PDEs) for x and θ ; the two are coupled through the source term in (4) and the
dependence of T upon θ through the thermoviscoplastic relation (10). There is no easy way to
write eqns. (2) and (4) in terms of x and θ since T is given by (15)1 and σ is a solution of the
ordinary differential equation (5) which involves Dp and θ through (6)1.

The problem formulated above is numerically solved by the finite element method. The
domain of study is divided into constant strain triangular (CST) elements. The Galerkin
approximation of equations (2) and that obtained by substituting from (13), (14) and (15)2

into (4) yields a coupled set of ordinary differential equations for nodal values of the two
components of the velocity and the temperature. Equations (1), (5), (10) and (12) are inte-
grated at the centroid of an element. The value of σe is computed from the yield function (8)
after σ and hence s have been determined. Thus, for the plane strain problem, the number
of unknowns and the number of coupled nonlinear ordinary differential equations (ODEs) to
be integrated equal 3 (nodes) + 7 (elements). These ODEs subject to the prescribed initial
conditions are integrated with respect to time t by using the subroutine LSODE (Livermore
Solver for Ordinary Differential Equations) included in the package ODEPACK. Because of
the storage limitations, we used the nonstiff option in LSODE with MF = 10, ATOL = RTOL
= 10−6. The ODEs are integrated by the Adams method; the order of the method and the
time step size are adaptively adjusted to solve the ODEs within the prescribed tolerance. In
LSODE, the value of the parameter MF selects the method, and the values of ATOL and RTOL
equal respectively the absolute and the relative tolerances on the solution variables.

We modified the computer code developed by Batra and Jin (1994) for the analysis of
plane strain thermomechanical deformations of a viscoplastic body with the Litonski–Batra
relation. The modifications include the incorporation of the Bodner–Partom and the Johnson–
Cook relations and the power law. Batra and Jin (1994) also multiplied Equations (1), (5),
(10) and (12) by a test function, integrated the resulting equations over the domain of study
and obtained ODEs for nodal values of the mass density, porosity and four components of the
stress tensor. Here these equations are integrated at the centroids of elements thereby reducing
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the total number of unknowns. Recall that for a CST element, the deformation gradient and
the strain-rate etc. are constants over the element. For the Johnson–Cook thermoviscoplastic
relation results computed with the current code were found to be quite close to those obtained
with DYNA2D until the time the deformations localized into a narrow band in the prenotched
plate. Whereas our code accounts for heat conduction, thermal expansion and the evolution of
the porosity, these are ignored in DYNA2D. The DYNA2D employs the 4-node quadrilateral
element with one-point integration rule, an hour-glass control, a lumped mass matrix, and
the explicit central-difference method to integrate the ODEs and is computationally very
efficient. In our code, the lumped mass matrix for the CST elements is obtained by the row
sum technique.

Results computed with DYNA2D for the prenotched plate with the Jaumann and the Green-
Naghdi stress rates on the left-hand side of Equation (5) were found to be identical with each
other. It is primarily because the plastic strain-rates at points near the notch tip are significantly
larger than the elastic strain-rates and the latter appear in the right-hand side of Equation (5).

4. Values of material parameters

Batra and Kim (1990) used the aforestated four thermoviscoplastic relations to study the
initiation and development of shear bands in a viscoplastic block made of a HY-100 steel
and deformed in simple shear. They simulated the dynamic torsional tests of Marchand and
Duffy (1988) on thin-walled HY-100 steel tubes as a simple shearing problem, determined the
values of material parameters by solving an initial-boundary-value problem and adjusted the
values of material parameters till the computed shear stress-shear strain curve closely matched
with the experimental curve of Marchand and Duffy. During the iterative process of finding
the appropriate values of material parameters, the value of the quasistatic yield stress of the
material was kept the same as that provided by Marchand and Duffy’s tests and that of the
strain hardening exponent was kept close to the value Marchand and Duffy found by curve fit-
ting their test data. The values of other material parameters are not uniquely determined since
the underlying initial-boundary-value problem need not have a unique solution. Batra and
Kim’s values of material parameters were suitably modified to account for three-dimensional
deformations of the viscoplastic body.

Values assigned to material parameters in the four thermoviscoplastic relations are listed
below.
(a) Litonski–Batra

νs = 0.00185 ◦C, εy = 0.007, n = 0.107, m = 0.0117, b = 17320 s.
(b) Power law

ε̇o = 5.77 × 10−5 s−1, εy = 0.007, θ0 = 300 K, m = 0.0117, n = 0.107, γ = −0.27.
(c) Bodner–Partom

a = 1200 K, b = 0, K1 = 2950 MPa, K0 = 2937 MPa, m = 3510 MPa, D0 =
1.732 × 108 s−1.

(d) Johnson–Cook
A = 316 MPa, B = 1067 MPa, n = 0.107, θm = 1500 K, θ0 = 300 K, m = 0.7,
C = 0.0277, ε̇0 = 3300 s−1.
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Figure 2. Effective stress vs. effective plastic strain curves for homogeneous deformations of a block deformed at
an average strain-rate of 3300 s−1.

Values of other material parameters used to compute results are:

σ0 = 702 MPa, ρ0 = 7860 kg m−3, c = 473 J/kg ◦C, K = 49.73 W m−2 ◦C,
α = 11.5 × 10−6/ ◦C, E = 208 GPa, ν = 0.3, f2 = 0.04, eN = 0.3,
s2 = 0.1, q1 = 1.5, q2 = 1.0, fc = 0.15, ff = 0.25, fu = 0.667, f0 = 0.0.

(24)

Values of eN, s2, q1, q2, fc, ff , fu, etc., are for a typical steel. Figure 2 depicts the com-
puted effective stress versus the effective plastic strain curves for homogeneous deformations
of a block deformed at a nominal strain-rate of 3300 s−1. It is clear that the four curves are
quite close to each other. Note that the expanded scale along the vertical axis magnifies the
small differences among the four curves.

5. Computation and discussion of results

Due to the symmetry of the plate and the applied initial and boundary conditions about the
x1-x3 plane passing through the centroid of the plate, deformations of only the upper half of
the plate are analyzed. For a notch tip radius of 0.15 mm, Figure 3a exhibits the discretization
of the domain into three-noded triangular elements, and Figure 3b shows the details of the
mesh around the notch tip. There are 40 elements around the notch tip surface and the element
size increases gradually as one moves away from this surface. The qualitative and quantitative
nature of results computed with a finer mesh was essentially unchanged at points close to the
notch tip surface. Results presented below are with a fixed mesh. Computations were stopped
when one of the elements abutting the notch tip surface got severely distorted.

For each one of the four thermoviscoplastic relations and for the notch tip radius r0 =
0.15 mm, impact speed v0 = 20 m s−1 and time t = 25 µs, Figures 4a, 4b and 4c evince
respectively the fringe plots of the effective plastic strain, the normalized maximum principal
stress σp/σ0 and the normalized shear stress σ12 in a small region around the notch tip. The
results are qualitatively similar for the four thermoviscoplastic relations. In each case, the
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Figure 3. (a) Finite element discretization of the problem domain. (b) Details of the finite element mesh in the
region surrounding the notch tip.

maximum effective plastic strain occurs at a point on the lower surface of the notch tip and
its value equals at least 0.30. The intensely deformed region is nearly of the same size and is
likewise oriented. Small kinks in the lower part of the bounding surface of the notch tip are
due to the severe distortions of the elements in that region. These plots suggest that the ductile
failure will initiate from a point on the lower part of the notch tip surface. A comparison of the
bounding surface of the undeformed notch shown in Figure 3b with that of the deformed one
in Figure 4a reveals that the notch surface is not symmetrically deformed about its center-line.
This is to be expected since the applied load is asymmetric about the centerline of the notch.
Points on the lower traction free surface of the notch move to the right, i.e., in the direction of
the prescribed velocity while those on the upper surface remain essentially stationary; e.g., see
the velocity plots given in Figure 4 of Batra and Gummalla (2000). The velocity plots for the
results computed herein were similar to that shown in Figure 4 of Batra and Gummalla, and are
therefore omitted. This relative movement of material particles induces stretching and hence
tensile stresses in the region adjoining the upper part of the notch tip surface; this is depicted
in Figure 4b. For each one of the four thermoviscoplastic relations, the maximum principal
tensile stress occurs at a point situated approximately 0.09 mm above the upper surface of the
notch tip and equals almost 2.5σ0. The principal stress is compressive in the region near the
lower surface of the notch tip where the effective plastic strain is high. These observations are
consistent with the results of previous investigations of the problem by Needleman and Tver-
gaard (1995), Zhou et al. (1996b), Batra and Nechitailo (1997), Batra and Gummalla (2000)
and Batra and Ravisankar (2000), and suggest that a brittle failure will ensue from a point
on the upper surface of the notch tip. Needleman and Tvergaard used a power law type vis-
coplastic relation, Zhou et al. modeled thermal softening by an exponential function, and the
other three investigations employed the Johnson–Cook relation. Needleman and Tvergaard’s
results as well as those of the present study suggest that the consideration of the porosity does
not change the qualitative and the quantitative nature of results. The maximum value of the
porosity computed at any point in the plate before an element got severely distorted equalled
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Figure 4. For the four thermoviscoplastic relations, fringe plots in a small region surrounding the surface of the
notch tip, of (a) the effective plastic strain, (b) the normalized maximum principal stress, and (c) the normalized
shear stress σ12.

2.75%. One reason could be that as soon as the effective plastic strain at a point becomes large
enough for the voids to nucleate, the mesh gets severely distorted and computations need to
be ceased. Our attempts to adaptively refine the mesh resulted in noticeable oscillations in
the evolution of the effective stress at a point and thus were abondened. These oscillations
were due to the transfer of the data from the old mesh to the new one. In the plane strain
transient thermomechanical deformations of a viscoplastic block studied by Batra and Jin
(1994) and by Batra and Ko (1992), these oscillations were not large enough to significantly
affect subsequent computations. However, for the present problem, points on the notch surface
moved noticeably and attempts to smoothen the adaptively generated mesh did not improve
the situation. Results presented herein are, therefore, with a fixed mesh.

The fringe plots of the normalized shear stress σ12 depicted in Figure 4c indicate that
for each one of the four viscoplastic relations the maximum shear stress occurs in a region
directly ahead of the notch tip. Chen and Batra (1999) scrutinized the asymptotic deformation
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Figure 4. Continued.

fields around a shear band tip propagating at a uniform velocity in a thermoviscoplastic body
undergoing plane strain deformations. They modeled the shear band as a singular surface
and observed that the jump in the shear stress across the singular surface acted as a driving
force for the propagation of a shear band. Hence in the present problem, a shear band will
propagate predominantly along the axis of the notch and a secondary band may propagate in
a direction making an angle of about 130◦ clockwise from the axis of the notch. The existence
of a secondary shear band is evidenced by the two lobes of high effective plastic strain in
Figure 4a. Experimental observations of Kalthoff et al. (1987), Mason et al. (1994) and Zhou
et al. (1996a) indicate that a shear band propagates nearly along the axis of the notch. Thus the
direction of propagation of a shear band predicted by each one of the four thermoviscoplastic
relations is close to that observed experimentally.

In an attempt to quantitatively delineate the differences, if any, in the results predicted by
the four thermoviscoplastic relations we have plotted in Figures 5a and 5b the time histories of
the normalized effective stress, the effective plastic strain, the normalized maximum principal
stress and the temperature at points P and Q. Points P and Q, shown in Figure 3b, are at
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Figure 4. Continued.

the centroids of elements abutting the notch tip surface, and lines OP and OQ are inclined
respectively at 45◦ clockwise and 45◦ counterclockwise to the axis of the notch. Point O
coincides with the centroid of the notch tip. For the values of material parameters used herein,
the dilatational wave speed equals about 5.8 mm µs−1. The effective stress begins to grow
at points around the notch tip soon after the loading wave arrives there at t 	 8 µs, and the
200 mm long striker rod separates from the prenotched plate at ts 	 32 µs. Once the effective
stress at a point exceeds the dynamic yield stress of the material, the material point starts
deforming plastically. The initial effective plastic strain-rate at point P or Q computed with
each one of the four thermoviscoplastic relations is virtually the same even though the effective
stress is a little different. At t 	 14 µs, the effective plastic strain-rate computed at point Q
with the four constitutive relations begins to differ; the power law gives the lowest value and
the Bodner–Partom relation the highest value. Each one of the four constitutive relations gives
an effective plastic strain-rate at point P which is of the order of 104 s−1. Results computed at
point Q with the four thermoviscoplastic relations are closer to each other than those at point
P . During the time interval 0 ≤ t ≤ 30 µs, the maximum effective plastic strain induced
at point Q is less than one-half of that at point P . However, the magnitude of the maximum
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Figure 5. (a) For the four thermoviscoplastic relations, time histories at the point P on the notch surface that is
located at 45◦ clockwise from the axis of the notch of (i) the normalized effective stress, (ii) the effective plastic
strain, (iii) the normalized maximum principal stress, and (iv) the temperature. (b) For the four thermoviscoplastic
relations, time histories at the point Q on the notch surface that is located at 45◦ counterclockwise from the axis
of the notch of (i) the normalized effective stress, (ii) the effective plastic strain, (iii) the normalized maximum
principal stress, and (iv) the temperature.

tensile principal stress at point Q is nearly three times that of the maximum compressive
principal stress at point P . The temperature rise at point P is approximately three times as
large as that at point Q. Note that the maximum principal tensile stress occurs in an element
away from the notch surface. The computed temperature is highest for the Bodner-Partom
relation and least for the power law.

Figure 6 exhibits at t = 25 µs the angular variation of the normalized maximum principal
stress, the effective plastic strain, the temperature and the porosity at the centroids of elements
abutting the notch tip surface; positive angles are measured counterclockwise from the axis of
the notch. Only a small portion of the material adjacent to the notch tip surface and lying in the
reference configuration within the angular region −70◦ ≤ φ ≤ −40◦ is intensely deformed.
The location and the size of the intensely deformed region is the same for each one of the
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Figure 5. Continued.

four constitutive relations but the maximum effective plastic strain induced and the porosity
evolved are different.

We note that the deformations of material points close to the surface of the notch tip do
not correspond to that of simple shearing. The analytical work of Lee and Freund (1990)
based on the assumptions of plane strain deformations and linear elasticity shows that the
mode mixity equals −0.25 till waves reflected from the unloaded edge of the plate arrive at
the notch tip. This suggests that both mode-I and mode-II deformations occur at points near
the notch tip. Batra and Ravisankar’s (2000) numerical simulation of the three-dimensional
problem reveals that there is also a noticeable KIII component of deformation at points on
the front or back surface of the plate that are close to the notch tip surface. Our computed
results for the prenotched plate indicate that the four thermoviscoplastic relations studied
herein predict different results for mixed mode deformations even though they were calibrated
to give very close effective stress vs. effective strain curves in simple shearing. Batra and Chen
(2001) found that even in simple shearing deformations of a thermoviscoplastic block, these
four thermoviscoplastic relations predicted different values of the instability strain, shear band
initiation strain, shear band width, and the spacing between adjacent shear bands.
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Figure 6. At t = 25 µs, the angular variation of the normalized maximum principal stress, the effective plastic
strain, the temperature and the porosity at the centroids of elements abutting the notch tip surface.

6. Failure mode transition speed

In order to determine the speed at which the failure mode changes from brittle to ductile or
vice-versa, one needs to define a criterion for the initation of a failure mode. It is generally
believed that a brittle failure ensues at a point when the maximum principal tensile stress,
σp, there attains a critical value. Ritchie et al. (1973) have proposed that the brittle failure
occurs when σp/σ0 = 3.0 over a certain length which is characteristic of the microstructure
of the material and typically equals the grain diameter. Since the stresses are constant over
the CST element, the size of the smallest element exceeds 23 µm, and the grain diameter is
generally less than 23 µm, therefore the condition of the principal stress exceeding a critical
value over a certain length is easily met. However, tensile experiments of Hendrickson et al.
(1958) on prenotched steel specimens at nominal stress rates of about 1 to 104 MPa s−1 show
that the transition from brittle to ductile failure occurs at σp/σ0 	 2.34; the steel had a yield
strength of 705 MPa. This value of σp/σ0 was found to be essentially independent of the
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temperature and the rate of loading. In their numerical simulation of the Kalthoff experiment,
Zhou et al. (1996b), Batra and Gummalla (2000) and Batra and Ravisankar (2000) presumed
that the brittle failure initiates when σp/σ0 = 3.0, 2.0 and 2.0, respectively. For the config-
urations and impact speeds numerically simulated by Batra and Ravisankar and Zhou et al.,
no brittle failure initiated at any point in the prenotched plate. Here, based on the test data of
Hendrickson et al. (1958) we assume that the brittle failure initiates at a material point when
σp/σ0 = 2.34 there.

Batra and Kim (1992) have numerically studied the initiation and development of shear
bands in twelve materials deformed in simple shear. A material defect was modeled by assum-
ing that the thickness of the block varied sinusoidally with the smallest thickness occurring
at the block’s center. Based on their numerical experiments, Batra and Kim (1992) proposed
that a shear band initiates at a point when the shear stress there has dropped to 90% of its
maximum value and the material point is deforming plastically; this and other works have been
summarized by Batra (1998). We recall that in their torsional tests on thin-walled HY-100 steel
tubes, Marchand and Duffy (1988) regarded the initiation of a shear band as synonymous with
the sudden drop in the torque required to twist the tube. They reported the maximum shear
strain of 20 within a shear band. Mason et al. (1994) measured an effective plastic strain of 1.0
in a shear band formed in a C-300 maraging steel, and Zhou et al. (1996a) measured the time
histories of the temperature at a point on the front surface of a prenotched C-300 maraging
steel plate and located about 6-mm ahead of the notch tip. In their numerical simulations of the
Kalthoff experiment, Zhou et al. (1996b) and Batra and Gummalla (2000) assumed that a shear
band initiates when the effective plastic strain at a point equals a prespecified value. However,
Batra and Ravisankar (2000) regarded the shear band to initiate at a point when the effective
stress there has dropped to 90% of its maximum value at that point and the material point is
deforming plastically. As shown by Batra and Rattazzi (1997) the time of initiation of a shear
band and the computed shear band speed depend upon the criterion used to characterize the
initiation of a shear band. Thus the values of the impact speed given below at which the failure
mode transitions from the brittle failure to the ductile failure as signified by the initiation of a
shear band depend upon the criteria employed for the initiation of the two failure modes. Our
simulations did not include the opening of a crack. Once a crack forms, the domain of study
of the problem changes.

For the four thermoviscoplastic relations studied, Figure 7 shows the variation of the time
of initiation of the two failure modes with the impact speed. The depicted curves were obtained
by the least squares fit of quadratic polynomials to the computed data points. The brittle failure
usually initiated at a point situated nearly 0.09 mm from the surface of the notch tip and the
line joining it with the center of the notch tip made an angle, in the reference configuration, of
about 60◦ counterclockwise with the axis of the notch. The ductile failure generally originated
from a point on the notch surface; the line joining it with the center of the notch tip made an
angle, in the reference configuration, of approximately 45◦ clockwise with the axis of the
notch. For a notch tip radius of 0.15 mm, the impact speed, v0, at which the failure mode
transitions from brittle to ductile equals 13.5, 18.5, 19.3 and 22.9 m s−1, respectively, for the
Litonski–Batra, the power law, the Bodner–Partom and the Johnson–Cook relations. Thus the
four thermoviscoplastic relations predict different values of the transition speed.
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Figure 7. For the four thermoviscoplastic relations, the dependence of the times of initiation of the brittle and
ductile failures upon the impact speed v0.

7. Effect of notch tip radius

Having established above that all four thermoviscoplastic relations give qualitatively similar
results, we use only the Bodner–Partom relation to investigate the effect of the notch tip radius
on the speed of transition from the brittle failure to the ductile failure. Figure 8a evinces
the straight line obtained by the least squares fit to the computed values of lnvcr and lnr0
for r0 = 0.15, 0.20 and 0.25 mm; vcr and r0 have been normalized by 1 m s−1 and 1 m,
respectively. From the values of the slope and the y-intercept, we conclude that for the mild
steel being studied

vcr = 1179 r0.4655
0 m s−1, (25)

where r0 is in meters. This compares well with the relation

vcr = 1350 r0.5
0 m s−1, (26)
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Figure 8. (a) Dependence of the transition speed, vcr, upon the notch tip radius, r0, for a mild steel prenotched
plate. (b) Effect of the notch tip radius on the times of initiation of the brittle and the ductile failure.

obtained by Kalthoff (2000) based on his test findings. We note that Kalthoff tested prenotched
plates made of a high strength steel with r0 ≥ 0.15 mm. For the mild steel plate studied herein
and 10 ≤ v0 ≤ 35 m s−1, no brittle failure was observed for r0 = 0.05 mm. Also the computed
values of vcr for r0 = 0.3 mm did not satisfy the relation (25).

For an impact speed of 25 m s−1, Figure 8b exhibits the least-square fit straight lines to
the computed times of initiation of the two failure modes for different values of the notch
tip radius, r0. Results should not be extrapolated outside the range of values of r0 considered
since these curves suggest that for r0 = 0.05 mm, brittle failure will ensue but, as stated above,
this failure mode did not ensue in our computations. For 0.1 ≤ r0 ≤ 0.25 mm, the time of
initiation of the two failure modes increases affinely with an increase in the value of r0, and
the ductile failure ensues first. We recall that the opening and consequently propagation of a
crack has not been simulated. Once a crack opens due to the initiation of either one of the two
failure modes, subsequent deformations of the plate will most likely differ noticeably from
those computed here, and the difference in the times of initiation of the two failure modes will
not necessarily equal that shown in Figure 8b.

For an impact speed of 20 m s−1, Figures 9a and 9b show the time histories of the effective
stress and the effective plastic strain at a material point located on the notch tip surface and, in
the reference configuration, at an angular position of 45◦ clockwise from the axis of the notch.
As expected, the rate of increase of the effective plastic strain is quite high for r0 = 0.05 mm
and it decreases with an increase in the value of r0. For r0 = 0.05 mm the effective stress
drops rather precipitously soon after it has reached its peak value; the rate of drop of the
effective stress becomes more gradual with an increase in the value of r0. We assume that
ε̇p α r

β

0 where ε̇p is the effective plastic strain rate at the point on the notch tip surface that
makes in the reference configuration an angle of 45◦ clockwise with the axis of the notch.
The least squares fit straight lines to the computed values of ln(ε̇p /s−1) at t = 10 µs and
ln(r0/1 mm) provided β = −0.93 for v0 = 20 m s−1 and β = −0.812 for v0 = 35 m s−1.
The order of singularity depends not only upon the impact speed but also on the time when
ε̇p is measured. For the Johnson–Cook relation, a different steel, and v0 	 28 m s−1, Batra
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Figure 9. For the Bodner–Partom relation, v0 = 20 m s−1, and for the six values of the notch tip radius, r0, time
histories at the point P of (a) the normalized effective stress, (b) the effective plastic strain, (c) and (d) the angular
variation of the normalized maximum principal stress and the effective plastic strain at t = 15 µs.

and Gummalla (2000) found from their computed data that β = −0.31 and −0.43 at t = 9
and 9.5 µs respectively. Batra and Gummalla used a significantly finer mesh consisting of 4-
node/rectangular elements than that employed herein; thus their values of ε̇p were determined
at a point closer to the surface of the notch tip than those found herein. The fringe plots of the
effective plastic strain at t = 25 µs in the region around the notch tip for different values of
r0 are qualitatively similar to each other and are omitted. They reveal that for each value of
the notch tip radius, two shear bands emanate from a point on the notch surface – one band is
essentially along the axis of the notch and the other is inclined at about 135◦ clockwise from
the notch axis. Figures 9c and 9d exhibit at t = 15 µs the angular variation of the normalized
principal stress and the effective plastic strain for the six values of r0. It is evident that in each
case the angular width of the intensely deformed region is approximately the same. Whereas
for r0 = 0.05 mm, a shear band initiates at t = 12.5 µs, the time of initiation of a shear band
is greater than 15 µs for the other values of r0. The value of the maximum principal tensile
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Figure 10. For the power law relation, the dependence of the time of initiation of the ductile failure upon the
quasistatic yield stress of the material.

stress at t = 15µs is about the same for all values of r0. Note that the maximum value of the
tensile principal stress occurs at a point slightly away from the notch tip surface.

8. Effect of the material strength

Shear stress vs. shear strain curves for simple shearing deformations of a homogeneous block
plotted in Figure 3 of Batra and Gummalla’s (2000) paper clearly indicate that as the quasi-
static yield stress, σ0, of a steel increases the peak in the shear stress occurs at a lower value
of the shear strain. This is because in a steel with a higher value of σ0 more heat is produced
for the same value of the effective plastic strain, and the material softens quicker. It suggests
that a shear band will form at a lower value of the effective plastic strain as the quasistatic
yield stress of the material is increased. This is confirmed by the plot of the time of initiation
of a shear band or the ductile failure vs. σ0 exhibited in Figure 10 for different values of
the impact speed; these results are computed with the power law. The reason for switching
from the Bonder–Partom relation to the power law is that in the Bodner-Partom relation the
dependence of K1 and K0 upon σ0 is not known. We note that for impact speeds in the range
of 10 to 20 m s−1, the time of initiation of a shear band is essentially unaffected by the value
of σ0, but for a higher impact speed, the time of initiation of a shear band decreases noticeably
as σ0 increases. However, the time of initiation of the brittle failure increases with an increase
in the value of σ0, but the relationship between the two is not monotonic. A similar trend
was computed by Batra and Gummalla (2000) with the Johnson–Cook relation. Figures 11a
and 11b depict for v0 = 20 m s−1 and for different values of σ0, the time histories of the
evolution of the normalized effective stress and the effective plastic strain at the point P . It
is evident from these plots that the initial effective plastic strain rate at the point P decreases
with an increase in the value of σ0; results for the material with σ0 = 0.3 GPa do not follow
the pattern of results for other values of σ0. Batra and Gummalla (2000) noticed this too. We
have plotted in Figures 11c and 11d the angular variation of the normalized principal stress
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Figure 11. For v0 = 20 m s−1, r0 = 0.15 mm and different values of σ0, the time histories of the evolution of (a)
the normalized effective stress, and (b) the effective plastic strain at the point P ; at t = 25 µs, angular variation
of (c) the normalized principal stress, and (d) the effective plastic strain at points abutting the surface of the notch
tip.

and the effective plastic strain at t = 25µs computed at the centroids of the elements abutting
the surface of the notch tip. Whereas the peak values of the normalized principal stress vary
between 1.6 and 1.8, those of the maximum effective plastic strain decrease from 0.29 to 0.14
as σ0 is increased from 0.5 to 2.1 GPa. The angular position of the point where these peak
values occur is essentially unaffected by the value of σ0.

9. Conclusions

We have used four thermoviscoplastic relations to analyze the thermomechanical deforma-
tions of a pre-notched plate impacted on the notched side by a cylindrical projectile. The action
of the projectile on the plate is simulated by prescribing on the contact surface null tangential
tractions and the time history of the normal component of the velocity. The thermoviscoplastic
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relations are calibrated to give the same stress-strain curve during homogeneous simple shear-
ing deformations of a block deformed at a nominal strain-rate of 3300 s−1. The deformations
of the pre-notched plate are nonhomogeneous and the time-dependent effective plastic strain
rates at points near the notch tip attain values in the range of 104 s−1. Results computed near
the notch tip with the four thermoviscoplastic relations agree qualitatively but the magnitudes
of the maximum effective plastic strain, the maximum principal tensile stress, the times when
the effective stress at a point has dropped to 90% of its peak value there, and the time of
initiation of the brittle failure as signified by the maximum principal tensile stress attaining
a prespecified critical value are different. In a pre-notched plate made of a mild steel with a
notch tip radius of 0.15 mm, the impact speed at which the failure mode transitions from brittle
to ductile is found to be 13.5, 18.5, 19.3 and 22.9 m s−1, respectively, for the Litonski–Batra,
the power law, the Bodner–Partom and the Johnson–Cook relations. We should add that these
values depend upon the criteria assumed for the initiation of the brittle and the ductile failure
modes. For the Bodner-Partom relation, the transition speed is given by 1179 r0.465

0 m s−1

when r0 is in meters. From his test data on plates made of a high strength steel, Kalthoff found
the transition speed to be 1350

√
r0 m/s which equals 16.53 m s−1 for r0 = 0.15 mm. For

a fixed value of the impact speed, the time of initiation of a shear band decreases with an
increase in the value of the quasistatic yield stress of the material, and a decrease in the radius
of the notch tip.
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