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Abstract

Plane strain transient finite thermomechanical deformations of heat-conducting functionally gradient materials com-

prised of tungsten and nickel–iron matrix are analyzed to delineate brittle/ductile failures by the nodal release tech-

nique. Each material is modeled as strain-hardening, strain-rate-hardening and thermally-softening. Effective

properties are derived by the rule of mixtures. At nominal strain-rate of 2000 s�1 brittle crack speed approaches Ray-

leigh�s wave speed in the tungsten-plate, the nickel–iron-plate shatters at strain-rates above 1130 s�1, and the composite

plate does not shatter. The maximum speed of a ductile crack in tungsten and nickel–iron is about 1.5 km/s, and that in

the composite is about 0.14 km/s.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Modeling crack propagation during the solution of a transient problem by the finite element method

(FEM) is very challenging since the crack initiation point and its path are to be determined as a part of

the solution of the problem. Three strategies often used to analyze fracture are: (i) introducing cohesive

elements along inter-element boundaries that are weak in shear and tension but very strong in compression;
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(ii) representing a crack as two traction-free surfaces by placing two coincident but unconnected nodes at

the crack initiation point and relieving tractions on the newly created crack surfaces; and (iii) reducing elas-

tic constants and stresses developed in the failed region to zero and virtually eliminating these elements

from the analysis of the problem; it is usually referred to as the element deletion method. Each of these

techniques has its advantages and disadvantages. Technique (i) has often been used to simulate brittle fail-
ure wherein strains induced are small and very little plastic deformations occur. When used to study ductile

failure, it does not allow for the incorporation of frictional forces between two sliding surfaces formed dur-

ing the failure process. Whereas technique (iii) can accommodate large plastic deformations, it also does not

permit the consideration of sliding between adjacent surfaces surrounding the failed region. Wang and

Nakamura [1] have discussed four techniques for simulating material failure; however technique (ii) is

not one of them. They adopted technique (i) to analyze failure in TiB/Ti functionally graded (FG) cera-

mic/metal plate in which brittle failure ensues at rather small strains. They modeled the plate material as

elastic–plastic and considered inertia forces. An accurate modeling of the crack path and hence its speed
of propagation requires a very fine FE mesh.

Functionally graded materials (FGMs) are a class of materials in which material properties vary grad-

ually and continuously so as to optimize their performance under prescribed loads. For example, Hassel-

man and Youngblood [2] have shown that the thermal stress resistance of a structural ceramic can be

enhanced by properly grading its thermal conductivity. Qian and Batra [3] found the in-plane spatial var-

iation in the volume fractions of constituents to optimize the first or the second natural frequency of a FG

plate with one edge clamped. Batra and Jin [4] determined the continuous variation in the fiber orientation

angle for an anisotropic graphite/epoxy plate in order to optimize its first few natural frequencies.
Most studies (e.g., see [5–12]) on fracture of FGMs have considered their static linear elastic deforma-

tions. Following an earlier study of a propagating crack by Atkinson and List [12], there have been at least

three studies [13–15] on analyzing propagating cracks in FGMs. Recently, Lee [15] developed displacement

and stress fields ahead of a crack propagating at a uniform velocity in a FGM with shear modulus either

varying linearly ahead of the crack-tip and Poisson�s ratio and mass density kept constant or the shear mod-

ulus and mass density varying exponentially but Poisson�s ratio kept constant.

Works that have analyzed the elastic–plastic fracture of FGMs include that of Jin and Noda [6] who

showed that the HRR singularity exists near a stationary crack tip in a power-law hardening material pro-
vided the yield stress and the hardening exponent are continuous and piecewise continuously differentiable

functions of the effective plastic strain. Tvergaard [16] modeled the interface between two power-law mate-

rials with a graded elastic–plastic layer and investigated crack growth in the FG layer using a cohesive zone

model with constant peak cohesive traction and cohesive energy density. Jin and Dodds [17] have analyzed

the crack growth resistance behavior of a ceramic/metal FGM with the background material modeled by

the J2 flow theory and undergoing three-dimensional quasistatic plastic deformations. They simulated crack

propagation with a cohesive zone model having six material dependent parameters. Small plastic deforma-

tions are concentrated near the crack-tip and the crack growth resistance, calculated by the J-integral, was
found to increase significantly with the crack extension due to gradation in material properties. Wang and

Nakamura [1] used the cohesive zone model to analyze transient infinitesimal elastic–plastic deformations

of a dynamically loaded FG plate. They simulated brittle fracture and found that the energy of separation

constituted a small part of the total fracture energy. The former was computed from the cohesive law and

the latter equaled the sum of the separation energy and the energy dissipated due to plastic deformations.

Thus, a large plastic dissipation translates to higher crack growth resistance. However, no thermal effects,

such as heat conduction and material softening due to heating, were considered.

Here we analyze transient plane strain coupled thermomechanical finite deformations of a microporous
thermoelastoviscoplastic FG body comprised of tungsten (W) and nickel–iron (NiFe). We assume that a

crack due to brittle failure initiates at a point when the maximum principal tensile stress there reaches three

times the quasistatic yield stress, and a crack due to ductile failure ensues when the effective plastic strain
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equals 1.5. The body is either loaded axially in tension to induce brittle failure or in shear to simulate the duc-

tile failure. Thus only one mode of failure can initiate in the body. As soon as a fracture criterion is met at a

node N, two coincident but unconnected nodes are located there and joined to the node N*. The node N* is

selected so that the gradient of the failure variable is least along the line NN*. If a gap develops between the

newly created crack surfaces, then they are taken to be traction free and thermally insulated; otherwise they
are taken to be smooth and thermally insulated. In the former case all components of traction, and in the

latter case only tangential tractions are gradually reduced to zero. However, in each case the normal compo-

nent of heat flux is set equal to zero instantaneously. Thus elastic unloading waves emanate from the crack

surfaces and propagate into the body. By locating the crack tip at different times, we ascertain its speed.

The paper is organized as follows. Section 2 summarizes the governing equations, initial and boundary

conditions, non-dimensionalization of equations, homogeneziation of material properties, semi-discrete

formulation of the problem, failure criteria for brittle and ductile fractures, and the technique adopted

to simulate the crack propagation. In Section 3, we compare numerical solution of wave propagation in
a linear elastic FG bar with the analytical solution of the problem, and present results for brittle and ductile

failure propagation in W and NiFe plates as well as NiFe2W and W2NiFe FG plates; material properties

vary continuously from those of NiFe to those of W in a NiFe2W plate. We also remark on the effectiveness

of the present approach. Section 4 summarizes conclusions drawn from this study.
2. Formulation of the problem

2.1. Governing equations

We use rectangular Cartesian coordinates and the referential description of motion to describe finite

plane strain transient coupled thermomechanical deformations of an isotropic and microporous thermoe-

lastoviscoplastic FG body. Deformations of each constituent and the composite body are governed by fol-

lowing equations expressing, respectively, the balance of mass, the balance of linear momentum, the

balance of moment of momentum, and the balance of internal energy:
qð1� f ÞJ ¼ q0ð1� f0Þ; ð1Þ

q0ð1� f0Þ _vi ¼ T ia;a; i; j ¼ 1; 2; a ¼ 1; 2; ð2Þ

T iaF ja ¼ T jaF ia; ð3Þ

q0ð1� f0Þ _e ¼ �Qa;a þ T ia
_F ia: ð4Þ
Here q is the present mass density, f the porosity (i.e., the volume fraction of voids), J = detF, Fia =

xi,a = oxi/oXa the deformation gradient, x the present position at time t of a material particle located at
the place X in the reference configuration, T the first Piola–Kirchhoff stress tensor, e the specific internal

energy, Q the present heat flux measured per unit reference area, v the velocity of a material particle, a

superimposed dot indicates the material time derivative, and a repeated index implies summation over

the range of the index. Greek indices refer to coordinates in the reference configuration, and Latin indices

to coordinates in the present configuration.

We assume that the strain-rate tensor D defined by Dij = (vi,j + vj,i)/2, vi,j = ovi/oxj, has the additive

decomposition into an elastic part De, a plastic part Dp and a thermal part â _h1, viz., D ¼ De þDpþ â _h1.
Here â is the coefficient of thermal expansion, h the temperature rise and 1 the identity tensor. Eqs. (1)–

(4) are supplemented with the following constitutive relations:
_rij þ rikW kj þ rjkW ki ¼
Eð1� f Þ
1þ m

De
ij þ

Eð1� f Þm
ð1þ mÞð1� 2mÞD

e
kkdij; ð5Þ
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_e ¼ cs€h þ c _h þ 1

qð1� f Þ rijDe
ij; T ia ¼ JrijðF �1Þaj; ð6Þ

qi ¼ �j 1� 3

2
f

� �
h;i; Qa ¼ JqiðF �1Þai; ð7Þ

/ � r2
e

r2
y

� 1þ 2f �b1 cosh
3b2�p
2ry

� �
� b2

1ðf �Þ2 ¼ 0; r2
e ¼

3

2
r0
ijr

0
ij; i; j ¼ 1; 2; 3; ð8Þ

Dp
ij ¼ _k

o/
orij

¼ _k
3r0

ij

r2
y

� f �b1b2

ry

sinh
3b2�p
2ry

� �
dij

" #
; r0

ij ¼ rij þ pdij; ð9Þ

p ¼ �ðr11 þ r22 þ r33Þ=3; �p ¼ pHð�p � 0Þ; ð10Þ

_k ¼

ð1� f Þry _e
p
e

rij
o/
orij

; if / ¼ 0 and _/ P 0;

0 when either / < 0 or / ¼ 0 and _/ < 0;

8>>><>>>: ð11Þ

_f ¼ ð1� f ÞDp
ii þ

f2 _e
p
e

s2
ffiffiffiffiffiffi
2p

p exp � 1

2

epe � en
s2

� �2
( )

Hð�p � 0Þ; ð12Þ

f � ¼
f ; f 6 fc;

fc þ
fu � fc
ff � fc

ðf � fcÞ; f > fc;

8<: ð13Þ

ry ¼ ðAþ Bðepe Þ
nÞ 1þ eC ln

_epe
_ep0

� �� �
1� h � hr

hm � hr

� �m� �
: ð14Þ
The left-hand side of Eq. (5) equals the Jaumann derivative of the Cauchy stress tensor r, Wij = (vi,j �
vj,i)/2 is the spin tensor, E Young�s modulus, m Poisson�s ratio, c the specific heat, s the thermal relaxation

time, j the thermal conductivity of the solid material, and h the present temperature of a material particle.

/ = 0 describes the yield surface proposed by Gurson [18] for a porous material, p is the hydrostatic pres-

sure, and f* the modified value of porosity given by (13). Gurson�s yield surface is based on quasistatic ana-

lysis with the matrix material modeled as rigid perfectly plastic and obeying von Mises yield criterion.
Constants b1 and b2, introduced by Tvergaard [19], provide a better fit of results computed from a FE ana-

lysis of the formation of ASBs in a plate having an array of large cylindrical voids with test observations,

and _k is the factor of proportionality defined by (11); _k > 0 only when the material point is deforming plas-

tically. ry is the current yield stress of the material whose dependence upon the effective plastic strain epe , the
effective plastic strain rate _epe and the temperature h is described by the Johnson–Cook [20] relation (14) in

which A, B, n, eC , _ep0, and m are material parameters, hr the room temperature and hm the melting temper-

ature of the material. Parameters B and n characterize the strain hardening of the material, C and _ep0 the

strain-rate hardening and the last factor on the right-hand side of (14) its thermal softening. Eq. (12) gives
the evolution of porosity; the first term on its right-hand side is derived by assuming that the matrix is

incompressible and the elastic dilatation is negligible as compared to the plastic dilatation, and the second

term is the strain based nucleation of voids introduced by Chu and Needleman [21]. f2, s2 and en are mate-

rial parameters; the rate of nucleation of voids is highest when epe equals en and decays exponentially with
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the difference between epe and en. H is the Heaviside step function. Thus the second term contributes to the

evolution of porosity at a point only when the hydrostatic pressure there is tensile. To account for the coa-

lescence of neighboring voids, Tvergaard and Needleman [22] enhanced the porosity, as given by Eq. (13),

after it reaches its critical value fc. In Eq. (13), ff is the porosity at ductile fracture, and fu = 1/b1 is the poros-

ity when the yield surface has shrunk to a point. Eqs. (8) and (14) imply that the radius of the von Mises
yield surface increases due to strain- and strain-rate hardening of the material but decreases due to the soft-

ening induced by the temperature rise and the increase in porosity. The degradation of material properties

due to the damage, taken here synonymous with the porosity, is indicated by Eqs. (5)–(8). The affine var-

iation with the porosity of Young�s modulus, the bulk modulus, the stress-temperature coefficient, and the

heat capacity implies that the rule of mixture has been employed to find their effective values; the expression

for the thermal conductivity in Eq. (7)1 is due to Budiansky [23]. The interaction, if any, among neighboring

voids has been tacitly ignored. Jiang and Batra [24], among others, have considered this interaction. The

shrinkage of the yield surface due to an increase in porosity described by Eq. (8) can be seen by plotting
the yield surface for two different values of f while keeping other variables fixed.

For a FG body, all thermophysical parameters may vary with X.

Substitution from Eqs. (6)1 and (7) into (4) gives the following hyperbolic heat equation:
q0ð1� f0Þcðs€h þ _hÞ ¼ j 1� 3

2
f

� �
h;a

� �
;a

þ JrijD
p
ij: ð15Þ
The term JrijD
p
ij equals the heating due to plastic working per unit volume in the reference configuration;

thus the Taylor–Quinney parameter has been taken as 1. Except for a delay in the time of initiation of the

ductile failure other results remain unaffected by a lower value of the Taylor–Quinney factor. The form (15)

of the hyperbolic heat equation is due to Cattaneo [25] and Vernotte [26]. The thermal relaxation time s in it

represents the time required to establish a steady state of heat conduction in an element suddenly exposed

to heat flux. For a typical steel, s = 1 · 10�12 s, and s ’ 25 · 10�12 s for copper. Batra and coworkers
[27,28] found that the finiteness of the thermal wave speed affects the time of initiation of an adiabatic shear

band in a typical steel and the spacing between adjacent shear bands only when s P 10�6 s. Batra [29] con-

sidered higher-order spatial and temporal gradients of temperature and derived a heat equation that admits

finite speeds of thermal waves. However, in such a material either a thermal wave propagates with a finite

speed or the linearized problem has a unique solution. Ideally, one will like to have both.

We note that Batra and coworkers [30,31,28,32] have analyzed different aspects of shear banding with

four different thermoviscoplastic relations, namely, the Johnson–Cook [20], the Litonski–Batra (e.g. see

[33]), the Bodner–Partom [34] and a power law. These relations were calibrated to give nearly the same
effective stress vs. the effective strain curve during homogeneous deformations of the body. However, dur-

ing inhomogeneous deformations, each one of the relations gave qualitatively similar but quantitatively dif-

ferent results. The decision to use the Johnson–Cook relation here is based on the availability of values of

thermomechanical parameters for different materials.
2.2. Initial and boundary conditions

The body is initially at rest, stress free, at a uniform temperature, and has zero rate of change of tem-
perature and zero initial porosity. Thus
xðX; 0Þ ¼ X; vðX; 0Þ ¼ 0; hðX; 0Þ ¼ h0; _hðX; 0Þ ¼ 0; qðX; 0Þ ¼ q0; ðXÞ;
rðX; 0Þ ¼ 0; epe ðX; 0Þ ¼ 0; f ðX; 0Þ ¼ f0ðXÞ; X 2 X:

ð16Þ
Here X is the region occupied by the body in the reference configuration.
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We assume that the body is prismatic having a uniform cross-section (i.e. volume fractions of constitu-

ents are independent of the axial coordinate), and boundary conditions are independent of the axial coor-

dinate. We thus assume that a plane strain state of deformation prevails in the body. Furthermore, for the

body deformed in simple tension, the cross-section is a square of side 2H, and thermomechanical deforma-

tions are assumed to be symmetric about the two centroidal axes. Thus the compositional profile has been
tacitly assumed to be symmetric about the two centroidal axes. When analyzing crack propagation due to

brittle failure, tensile deformations of half of the cross-section, shown in Fig. 1a, are analyzed. Symmetry

about the horizontal centroidal axis is not exploited because of the way our crack propagation algorithm

works. Boundary conditions ((17)4–6), listed below, arising from the symmetry of deformations are imposed

at points on the centroidal axis X1 = 0. The other vertical surface X1 = H is taken to be traction free and

thermally insulated; see Eq. ((17)1–3). Normal velocity, null tangential tractions and zero heat flux are pre-

scribed on the top horizontal surface X2 = H; these are given by Eq. (17)7–9. The prescribed normal velocity,

given by Eq. (17)9, increases linearly with time to its steady state value v0 in 1 ls and is then held fixed:
Fig. 1.

region
T 21 ¼ T 11 ¼ 0; Q1 ¼ 0 on X 1 ¼ H ;

T 21 ¼ 0; v1 ¼ 0; Q1 ¼ 0 on X 1 ¼ 0;

T 12 ¼ 0; Q2 ¼ 0; v2 ¼
�v0t; 0 6 t 6 1 ls;

�v0; t P 1 ls;



on X 2 ¼ �H :

ð17Þ
v

H = 5mm

X 2

X 1

2H = 10mm

(a)

v

2L = 5mm

2H = 0.25mm

(b)

(a) FE mesh for plane strain tensile deformations of a precracked plate, the inset shows details of the mesh around the cracked

; (b) FE mesh for plane strain shear deformations of a plate.
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When studying plane strain shear deformations for analyzing ductile failure, the cross-section is of infi-

nite length along the X1-axis and of height 2H. However, deformations of the region [�L,L] · [�H,H] are

analyzed, and displacements and temperature of points on surfaces X1 = ±L are constrained to be same.

The top and bottom surfaces are taken to be thermally insulated and restrained from moving vertically.

Equal and opposite tangential velocity v1 that increases linearly with time from zero to its steady value
v0 in 1 ls is applied. Thus on x2 = X2 = ±H, we have
Q2 ¼ 0; v2 ¼ 0; v1 ¼
�v0t; 0 6 t 6 1 ls;

v0; t > 1 ls:



ð18Þ
For t > 1 ls, the average shear strain rate is v0/H. Note that only the top and the bottom surfaces are re-
strained from moving vertically and other material particles are free to move in the x1x2-plane.

2.3. Non-dimensionalization of variables

Let qR, _eR, H, r0 and hR be the reference mass density, the reference strain rate, the reference length, the

reference stress and the reference temperature used to non-dimensionalize quantities. Then in terms of non-

dimensional variables indicated by the same symbols as before, Eqs. (2) and (15) become
aIð1� f0Þ _vi ¼ T ia;a; i ¼ 1; 2; a ¼ 1; 2; ð19Þ

q0ð1� f0Þðs€h þ _hÞ ¼ �at 1� 3

2
f

� �
h;a

� �
;a

þ JrijD
p
ij; i; j ¼ 1; 2; 3: ð20Þ
Here
aI ¼
qR _e

2
RH

2

r0

; at ¼
j

qRcH
2 _eR

; hR ¼ r0

qRc
; ð21Þ
aI and at are non-dimensional measures of inertia and heat conduction effects respectively. For a given

material, inertia effects are directly proportional to the square of the reference strain rate and the square

of the reference length, and heat conduction effects are inversely proportional to the reference strain rate
and the square of the reference length. A possible choice for 2H is the length of a side of the square

cross-section for the plane strain problem, and the thickness of the block for the simple shearing problem,

and that for _eR is v0/H.

2.4. Composition of a FG plate

Transient thermomechanical deformations of a FG plate comprised of tungsten (W) and nickel–iron

(NiFe) are studied. Each constituent and the composite are modeled as isotropic, microporous, thermoe-
lastoviscoplastic with deformations governed by Eqs. (19), (20) and (5)–(14). For the plane strain problem,

the volume fractions of W in W2NiFe and NiFe2W plates are given by (1 � jX1j/H) and jX1j/H respectively.

Here 2H is the plate width. Thus in a NiFe2W plate, the composition profile varies linearly from 0% W at

X1 = 0 to 100% W at X1 = H.

2.5. Homogenization of material properties

We first analyzed transient deformations of a representative volume element (RVE) to evaluate effective
properties of the composite as a function of the volume fraction of constituents. Values of material para-

meters characterizing elastic deformations so determined were found to match well with those given by the

Mori–Tanaka [35] scheme. Values of material parameters characterizing the plastic deformation could not
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be satisfactorily determined from deformations of the RVE differ from those given by the rule of mixtures

by about 10% (see [53]). We thus use the rule of mixtures to evaluate values of all material parameters from

those of the constituents and their volume fractions. According to this rule, the value P of a material

parameter for a mixture comprised of two constituents with volume fractions V f
1 and V f

2 and values P1

and P2 of the material parameter is given by
P ¼ V f
1P 1 þ V f

2P 2 ¼ ð1� V f
2ÞP 1 þ V f

2P 2: ð22Þ

It gives exact values of the mass density and the heat capacity, and is simple to use. It ignores interactions

among adjacent particulates, their shapes and sizes, and their distribution in the matrix. We note that no
micromechanical models have been developed for evaluating all material parameters for a FGM comprised

of thermoviscoplastic constituents.

Suquet [36] has given a closed-form expression for the yield stress of an isotropic homogenized body

made of isotropic elastic perfectly plastic constituents. The estimate of the yield stress involves effective

shear modulus of the composite. For a W/NiFe FG body, the difference in the effective yield stress com-

puted from Suquet�s expression and that obtained by the rule of mixtures is less than 10%.

2.6. Semi-discrete formulation of the problem

Eqs. (5), (6)2 and (3) imply that the balance of moment of momentum (3) is identically satisfied. The

present mass density can be computed from Eq. (1) if the deformation gradient and the current value of

the porosity are known. Thus, the dependent variables to be solved for are x, f and h and the independent

variables are X and t. Eqs. (19) and (20) are second-order coupled nonlinear hyperbolic partial differential

equations for x and h. These cannot be written explicitly in terms of x and h since T is given by (6)2 and _r by

(5) which involves Dp and h. We solve the problem numerically by the FEM.

We first introduce an auxiliary variable n ¼ _h. Let w1,w2, . . .,wn be the FE basis functions defined on X.
We write
vi ¼
Xnodes
A¼1

wAðxÞevAiðtÞ; wi ¼
Xnodes
A¼1

wAðXÞcAi; h ¼
Xnodes
A¼1

wAðXÞehA; n ¼
Xnodes
A¼1

wAðXÞenA; i ¼ 1; 2:

ð23Þ

Here ~v is the vector of velocities of nodes, ~h the vector of nodal temperatures, ~n the vector of rate of change

of temperature at the nodes, and c�s are constants. Following the usual procedure, e.g. see [37], we get
M _~v ¼ �Fint; _h ¼ ~n; sH _~n þH~n ¼ Fh þ eQ; ð24Þ

where Z Z
MAB ¼
X
aIð1� f0ÞwAwB dX; F int

Ai ¼
X

wA;aT ia dX;

HAB ¼
Z

X
q0ð1� f0ÞwAwB dX; F h

A ¼
Z

X
at 1� 3

2
f

� �
h;awA;a dX;

QA ¼
Z

X
wAJ trðrDpÞdX:

ð25Þ
Note that the natural boundary condition of zero heat flux has been embedded in Eq. (24)3.
We solve Eq. (14) for _epe in terms of ry, epe and h and derive its weak form in the same way as before

except that the divergence theorem is not used. Recall that _epe > 0 only when a material point is deforming

plastically as signified by the satisfaction of Eq. (8)1; otherwise _epe ¼ 0. Weak forms of Eqs. (6), (14) and
_x ¼ vðX; tÞ are also derived. We thus get coupled nonlinear ordinary differential equations
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_d ¼ F; ð26Þ
where d is the vector of unknowns and F is the force vector that depends upon time t and d(t). The twelve

unknowns at a node are fx1; x2; v1; v2; r11; r22; r12; r33; f ; h; n; epeg, and the dimension of vector d equals 12

times the number of nodes.

2.7. Failure initiation criterion

2.7.1. Brittle failure

Ritchie et al. [38] proposed that the brittle failure initiates at a point when rp/r0 = 3.0 over a certain

length that depends upon the microstructure of the material and usually equals a grain diameter. Here

rp and r0 equal, respectively, the maximum principal tensile stress at a point and the yield stress in a quasi-

static simple tension/compression test at the same point. For the Johnson–Cook material, r0 can be taken

to equal A. Tensile experiments of Hendrickson et al. [39] on prenotched steel plates with a yield stress
of 705 MPa deformed at nominal stress rates of �1–104 MPa/s revealed that brittle failure occurred when

rp/r0 ’ 2.34. This value of rp/r0 was found to be independent of the temperature and the rate of loading.

Here we assume that brittle failure initiates at a point when rp/r0 = 3.0 there and propagates in the direc-

tion of the minimum gradient in rp. We add that, to our knowledge, the failure of particulate composites

under dynamic loading has not been studied experimentally. However, we have homogenized the material

properties and are analyzing the failure of an inhomogeneous body with material properties varying con-

tinuously. The local failure criterion appears reasonable since crack tip fields in such a body are similar to

those in a homogeneous body. Note that r0 = A for a thermoviscoplastic material and for a FG body r0 is a
continuous function of X.

2.7.2. Ductile failure

Ductile failure is generally believed to initiate due to the nucleation and coalescence of voids within an

adiabatic shear band (ASB). We recall that the effective plastic strain induced within an ASB exceeds 1.

Accordingly, a ductile failure is assumed to ensue at a point when the effective plastic strain equals 1.5

and propagate in the direction of the minimum gradient in the effective plastic strain. Scanning electron

micrographs of deformed tungsten heavy alloys reveal that the path of an ASB is unaffected by the presence
of stiff W particulates in the relatively soft NiFe matrix [50]. It of course does not imply that the effective

plastic strain in W particulates and the NiFe matrix is the same. However, under the premise that a par-

ticulate composite can be treated as a homogenized medium the presumed fracture criterion is reasonable.

2.8. Simulation of crack propagation

In order to simulate crack initiation and propagation, we assume that as soon as a failure criterion is met

at a node, say N, an additional node N*, coincident with N but not connected to it, is added to the FE mesh.
The node N* is connected to the node N** that has the next highest value of rp for the propagation of the

brittle failure and of epe for the propagation of the ductile failure; note that N** is a preexisting node. The

elements are adjusted such that all nodes originally connected to N on one side of the newly formed crack

are connected to N* instead. Thus lines NN** and N*N** virtually overlap at the instant of the initiation of

fracture and each line is the boundary of an element. Note that no new element is created; however, a node

is added, the element connectivity is modified and the number of unknowns is increased. Subsequent defor-

mations of the body will either move N and N* apart thereby creating a gap between them, or tend to push

them together which may be accompanied by relative sliding between them. In the former case, surface trac-
tions and the normal component of the heat flux are assumed to be null on the crack surfaces. In the latter

case, the contacting surfaces are designated as master and slave, and the distance of a node on the slave
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surface from the master surface is determined. If interpenetration occurs, then a Lagrange multiplier-based

conjugate gradient method is used to compute the minimum force to be applied to the slave node and the

master line segment in order to prevent interpenetration. One returns to the previous time step and applies

loads determined by the contact algorithm; this technique is usually called predictor–corrector and has been

described by Zywicz and Puso [40], and Carpenter et al. [41]. The algorithm is slow since it requires that the
analysis be performed twice for the timestep in which contact occurs. However, the contact detection

algorithm is fast, is independent of which master segment a node on the slave surface penetrates, gives

normal tractions between contacting surfaces, and permits their relative sliding. Batra and Lear [42] used

a penalty method to compute the normal force to be applied to contacting nodes in order to avoid

interpenetration.

This technique allows for a crack to propagate along inter-element boundaries. Thus a sufficiently fine

FE mesh is needed to get accurate crack path.
3. Computation and discussion of results

3.1. Wave propagation in a linear elastic FG bar

We validate our methodology of analyzing transient deformations of a FG body by studying wave

propagation in a linear elastic bar whose Young�s modulus, E, mass density q, and Poisson�s ratio m are

given by
E ¼ 200ð1þ 0:25X 1Þ GPa; q ¼ 104ð1þ 0:25X 1Þ�1
kg=m3; m ¼ 0:29: ð27Þ
In Eq. (27) X1 is in mm. Values of material parameters listed in (27) are not for a W/NiFe FGM. These

satisfy the condition in Chiu and Erdogan�s [44] paper for the existence of an analytical solution. Thus

the wave speed cw ¼ Eð1�mÞ
qð1þmÞð1�2mÞ

� �1=2

varies affinely from 5.12 km/s at X1 = 0 to 6.40 km/s at X1 = 20 mm.

However, the acoustic impedance (=
ffiffiffiffiffiffi
Eq

p
) is constant throughout the bar. In order to simulate one-dimen-

sional elastic deformations of the bar, all nodes were restrained from moving in the X2-direction, and the

material parameter A was assigned a very high value to suppress plastic deformations. Since the computer
code for plane strain deformations tacitly assumes that u3 = 0, therefore, the only non-vanishing compo-

nent of displacement is u1. The 20 mm · 0.5 mm bar was divided into 800 · 20 uniform 4-node quadrilateral

elements. Various integrals appearing in the weak formulation of the problem were computed by using the

2 · 2 quadrature rule with values of material parameters evaluated at the integration points. The same

strategy was employed by Batra [43] to analyze static finite plane strain deformations of a body made of

an inhomogeneous Mooney–Rivlin material. An analytical solution of the problem, using the Laplace

transform technique, has been given by Chiu and Erdogan [44]. It is inverted numerically by employing

Laguerre polynomials to find the axial stress and the axial velocity as a function of time t.
Fig. 2a depicts the axial velocity prescribed at the end X1 = 0 of the bar. The time histories of the axial

stress at X1 = 10 mm obtained from the numerical and the analytical solutions are compared in Fig. 2b, and

the spatial variations of the wave speed obtained from the numerical and the analytical solutions are com-

pared in Fig. 2c. Except for small oscillations, the two sets of results agree with each other. The amplitude

of oscillations can be diminished by introducing artificial viscosity but it was not tried.

Various subroutines in the computer code had previously been verified by using the method of ficticious

body forces illustrated in Batra and Liang [52]. That is, one assumes a closed form expression for the dis-

placement components and the temperature, finds body forces and sources of internal energy needed to sat-
isfy the balance of linear momentum and the balance of internal energy, and the initial and the boundary

conditions. These are input into the computer code. If the computed solution matches with the analytical
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Fig. 2. (a) Time history of the axial velocity prescribed at the left end of the FG bar; (b) comparison of the time histories of the axial

stress at x = 10 mm obtained from the numerical and the analytical solutions; (c) comparison of the spatial variation of the axial stress

at time t = 15 ls.
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solution of the problem, then the code is verified. Batra and Love [45] have used this code to analyze the

initiation and propagation of shear bands in a FG body.
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3.2. Simulation of brittle failure

3.2.1. Crack propagation speed

The 10 mm · 10 mm cross-section has an initial sharp crack of length 1 mm at the horizontal centroidal

axis with the center of the crack coincident with the centroid of the plate. The plate is deformed at an aver-
age axial strain rate of either 200 or 2000 s�1. Values of Young�s modulus, E, mass density, q, and Poisson�s
ratio, m, for W and NiFe, and the speeds of the longitudinal wave in a bar and the Rayleigh wave speed are

listed in Table 1; values of other material parameters are given in Table 2 and in Eqs. (28). We note that

NiFe exhibits considerably higher strain- and strain-rate hardening than W.

Other parameters were assigned the following values for both materials.
Table

Materi

Materi

NiFe

W

Table

Values

Materi

NiFe

W

_e0 ¼ 1 s�1; b1 ¼ 1:5; b2 ¼ 1:0; f 2 ¼ 0:04; s2 ¼ 0:1; hr ¼ 273 K;

s ¼ 10�12 s; en ¼ 0:5; f c ¼ 0:15; f u ¼ 2=3; f f ¼ 0:25:
ð28Þ
Even though deformations are symmetric about the two centroidal axes, symmetry about the vertical
centroidal axis only is exploited to reduce the problem size. The analysis of deformations of the half plate

facilitates using the node release technique for studying crack propagation. The FE mesh used to analyze

the problem is depicted in Fig. 1a, details of mesh around the crack-tip are given in the inset. The mesh

consists of 17,444 4-node isoparametric quadrilateral elements with 1080 elements along the axis of the

crack. There are 108 uniform elements behind the crack tip and 972 ahead of it; thus the length of an ele-

ment is 4.63 lm. The appropriateness of the mesh has been ascertained by ensuring that the computed

speed of an elastic wave is very close to the analytic value when E and q vary along the direction of prop-

agation of the wave. Once the brittle failure criterion at a node is met, that node is split into two essentially
overlapping but unconnected nodes as described in Section 2.7. Thus an elastic unloading wave emanates

from the newly created crack surfaces and propagates into the body. The position of the crack-tip at dif-

ferent times is determined and a polynomial is fit to the data. The first derivative of this polynomial fit gives

speed, C, of crack propagation as a function of time or the position of the crack-tip. It was found that C so

determined is very sensitive to the polynomial fit. Three curve fits with the coefficient of regression >0.999

gave noticeably different values of C. Thus C at a point is taken to equal the slope of the least squares line

through 21 points with 10 immediately preceding it and 10 immediately following it. The Rayleigh wave

speed and the crack propagation speed, C, versus the crack length for nominal strain rates of 200 and
2000 s�1 are depicted in Fig. 3a–d. Freund�s [46] analysis of crack propagation in an infinite homogeneous

elastic body shows that the maximum crack propagation speed equals the Rayleigh wave speed; Eischen [7]
1

al parameters and wave speeds for NiFe and W

al Young�s
modulus

(GPa)

Poisson�s
ratio

Mass

density

(kg/m3)

Bar wave

speed

(m/s)

Acoustic

impedance (Eq)0.5

(kg/m2s)

Rayleigh

wave speed

(m/s)

255 0.29 9200 5265 48.44 · 106 3035

400 0.29 19,300 4552 87.86 · 106 2624

2

of material parameters for NiFe and W

al A (MPa) B (MPa) eC hm (K) c (J/kgK) j (W/(mK)) â (10�6 K�1) m n

150.0 546.0 0.0838 1225 382 100 15 1.0 0.208

730.0 562.0 0.029 1723 138 160 5.3 1.0 0.0751



Fig. 3. Crack propagation speed versus crack length at nominal strain rates of 200 and 2000 s�1 in a (a) tungsten, (b) nickel–iron, (c)

W2NiFe, and (d) NiFe2W plate; (- - - Rayleigh wave speed; — crack speed at nominal strain-rate = 200 s�1; – � – crack speed at

nominal strain-rate = 2000 s�1). (e) Shattered region in the NiFe plate deformed at a nominal strain rate of 2000 s�1 is unshaded.
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has proved a similar result for inhomogeneous materials. For each one of the two homogeneous and the

two FG plates, C for the nominal strain rate of 2000 s�1 is higher than that for the nominal strain rate

of 200 s�1. For the W plate deformed at 200 s�1, C increases as the crack propagates to the right edge

of the plate but at the higher strain rate of 2000 s�1, it soon approaches a steady value that is a little less

than the Rayleigh wave speed. For a NiFe plate deformed at 2000 s�1, the crack propagates to the right for
a little while and then a large region of the plate ahead of the crack fails instantaneously as indicated by the

maximum principal tensile stress exceeding 3r0 simultaneously everywhere in this region. It is signified in

Fig. 3b by the sudden drop in the crack propagation speed C; the shattered region is depicted in Fig. 3e as

unshaded.

For the W2NiFe FG plate, C continues to increase with the crack extension, is always less than the Ray-

leigh wave speed when the plate is deformed at 200 s�1 but approaches the Rayleigh wave speed when the

nominal strain rate is 2000 s�1. Except for differences in magnitudes, the curves in Fig. 2a and c are similar.

Thus as far as crack propagation due to brittle failure is concerned, the W and the W2NiFe plates behave
alike. However, for the NiFe2W FG plate, even though the Rayleigh wave speed decreases monotonically

with the distance from the left edge because of the spatial variation in the material properties, the computed

crack speed C first increases and approaches essentially a steady value after the crack has propagated a cer-

tain distance. The crack speed is higher when the nominal strain rate equals 2000 s�1 than that when the

nominal strain rate is 200 s�1. No shattering of the NiFe2W plate at either one of the two nominal

strain-rates is observed.

3.2.2. Shattering phenomenon

Returning to the shattering of the NiFe plate, several numerical experiments were conducted by varying

the nominal axial strain rate. It was found that at a nominal axial strain rate of 3000 s�1 the plate shattered

as soon as the crack began to advance. The plate shattered at nominal axial strain rates exceeding 1130 s�1

but did not shatter at a nominal axial strain rate of 1120 s�1. The crack extension/elongation at the instant

of the plate shattering decreased with an increase in the nominal axial strain rate; it equaled �2.01, 1.47 and

0.741 mm for nominal axial strain rates of 1130, 2000 and 3000 s�1 respectively.

3.2.3. Axial force

We have plotted in Fig. 4 the variation of the computed axial load as the crack propagates to the right.

Small oscillations in the load due to the arrival of unloading waves emanating from the newly formed crack

surfaces have been diminished by using the smoothing option in TecPlot. At a strain rate of 200 s�1, the

crack propagation is stable in both pure W and W2NiFe FG plates as signified by either the load remaining

essentially steady or increasing except when the crack has propagated to a point near the right edge. At the

higher strain rate of 2000 s�1, the axial load for pure W plate remains nearly constant at �4.67 kN till the

crack-tip has advanced by 1.75 mm and then slowly increases except when the crack tip is close to the outer

edge of the plate. When the precracked W plate is pulled at a nominal axial strain rate of 200 s�1, the axial
load continues to increase slowly till the crack length equals 2.2 mm and then gradually decreases. Recall

that the surface area of the horizontal plane containing the crack decreases as the crack extends, and except

for the first 1 ls, the bar is being pulled with a uniform axial velocity. Thus the working of external forces is

proportional to the axial force. The variation of the axial load with the advance of the crack in NiFe and

NiFe2W FG plates is similar to that in the W plate except that a large chunk of material ahead of the crack

suddenly fails in the pure NiFe plate deformed at a nominal strain rate of 2000 s�1. For the NiFe2W plate,

the variation of the axial load with the crack length is similar to that for the W2NiFe plate.

3.2.4. J-integral

A detailed examination of stresses and strains induced within the specimen revealed that deformations

were virtually elastic everywhere except near the crack-tip where small plastic strains developed; the size of
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Fig. 4. Axial load versus crack length at axial nominal strain rates of 200 and 2000 s�1 for a precracked (a) tungsten, (b) nickel–iron,

(c) W2NiFe, and (d) NiFe2W plate.

1968 R.C. Batra, B.M. Love / Engineering Fracture Mechanics 72 (2005) 1954–1979
this ‘‘process zone’’ is negligible as compared to the crack length. In order to see if concepts of the strain

energy release rate or the J-integral can be used, we computed the J-integral defined by
J ¼ lim
C!0

Z
C

ðwþ T Þdx2 � rijnj
oui
ox1

ds
� �

;

w ¼
Z t

0

rijDij dt; T ¼ 1

2
qvivi; ui ¼ xi � X adia:

ð29Þ
Here C is a closed contour enclosing the crack tip, and ds is an element of arc length on C. Fig. 5a exhibits

the value of the J-integral as a function of the crack tip location for the pure W specimen deformed at nom-

inal strain rates of 200 and 2000 s�1. The contour C used to evaluate the J-integral appeared stationary to

an observer always situated at the crack tip and hence moving with it. The contour C spanned 5 elements

behind the crack tip, 5 elements ahead of it and 10 elements perpendicular to the crack-axis, each element is
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of length 4.63 lm, and the length of the starter half-crack is 500 lm. For an average axial strain-rate of

200 s�1, the J-integral increases monotonically signifying an increasing resistance to crack propagation.

However, at the average axial strain-rate of 2000 s�1, the J-integral first increases with an advance in the

crack tip but then oscillates wildly. These oscillations cannot be attributed to the contour C used to evaluate
J since a similar contour with respect to the crack tip gave reasonable values of the J-integral for all loca-

tions of the crack tip at the lower strain rate of 200 s�1 and for earlier stages of the crack propagation in the



1970 R.C. Batra, B.M. Love / Engineering Fracture Mechanics 72 (2005) 1954–1979
plate deformed at an axial strain rate of 2000 s�1. The time history of the evolution of the J-integral is

exhibited in Fig. 5b where its values at the instants of crack initiation are also shown. Values of the J-inte-

gral at the instant of crack initiation in the W-plate are the same and equal �0.22 kJ/m2 at axial nominal

strain rates of 200 and 2000 s�1.

3.3. Simulation of ductile failure

In order to simulate crack propagation due to ductile failure we analyze plane strain thermomechanical

deformations of a block of material with equal and opposite tangential velocities prescribed on its top and

bottom surfaces as described in Section 2. Thus the steady-state nominal strain-rate is v0/H, and equals

5000 s�1 for simulations discussed herein. The FE mesh used to analyze the problem is depicted in Fig.

1b. The elements are of size 4.6 lm · 4.6 lm in the central and end portions but are larger in other regions.

For the FG bodies, the composition varies from either 0% W at the centroid to 100% W at the edges or vice-
a-versa. The yield stress of the material of elements in the 4.6 lm thick 0.2 mm long layers located symmet-

rically about the centroidal axis was reduced by 30% so as to nucleate an adiabatic shear band (ASB) there.

Recall that a crack is assumed to open at a point when the effective plastic strain there equals 1.5. It was

found that the ASB and the crack propagate horizontally with equal and opposite velocities; thus their

propagation to the right is described below.

3.3.1. Crack speed

Figs. 6 and 7 depict the variation in the crack length, the ASB length, the crack tip speed and the ASB
speed as they advance in the two homogeneous materials, namely W and NiFe, and the FGM W2NiFe. For

the NiFe2W FG plate, in spite of the rather strong defect at the centroid, the crack originated from points

(�L, 0) and (L, 0) and propagated inwards. Thus it propagated from W rich region to NiFe rich region, and

the situation is similar to that for crack propagation in the W2NiFe FG plate. An ASB initiates at a point

when the effective plastic strain there equals 1.5; thus the difference between an ASB and a crack is that new

thermally insulated traction free surfaces are created when a crack opens but the material is intact during

the initiation and propagation of an ASB. Because of the compressive normal stress acting on the crack

surfaces, they always contact each other. In W, the time histories of the crack length and the ASB length
and hence their speeds of propagation are virtually identical. However, in NiFe the crack length is larger

than the ASB length. Hence the crack propagation speed is higher than the ASB speed. Except when the

ASB/crack arrives at x1 = ±L, its speed increases from �0.1 km/s at origination to �1.8 km/s at the end.

The crack accelerates slowly in the beginning but quite rapidly towards the end. Note that an ASB/crack

initiates in NiFe at 165 ls but in W at 35 ls. Interestingly, the time histories of the crack propagation

speeds in W and NiFe are nearly coincident. Whether it is so in all homogeneous materials remains to

be seen. Had we assumed that an ASB forms at the effective plastic strain of 1.0 and a crack opens at

the effective plastic strain of 1.5, the ASB length would have been larger than the crack length. However,
their speeds of propagation would be essentially the same.

Batra and Zhang [51] analyzed three-dimensional deformations of a thin-wall steel tube by using the

computer code DYNA3D. A weak element was introduced to trigger the initiation of an ASB and the tube

was deformed by applying equal and opposite tangential velocities to the end faces. Contours of the effec-

tive plastic strain of 1.0 or higher were found to propagate at nearly the same speed. It was found that the

ASB speed depended upon the nominal strain rate, and it gradually increased as the ASB propagated cir-

cumferentially outwards from the point of initiation. These results agree qualitatively with those reported

herein. Batra and Lear [27] used an in-house developed code based on the same equations as those in this
paper and 3-node triangular elements. They found that in plane strain tensile deformations of a W plate the

ASB speed varied from 165 m/s at the instant of initiation to 357 m/s after it had traversed �3 mm. It differs

from that found here partly because in plane strain shear deformations an ASB propagates in the direction
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Fig. 6. Time histories of the evolution of the ASB and the crack in (a) W, (b) NiFe and (c) W2NiFe plates deformed in plane strain

shear.
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of the applied velocity but in plane strain tensile deformations the ASB propagation direction makes an

angle of �45� to the loading direction.

In W2NiFe FGM plate, the ASB/crack initiation time is between those for the pure W and the pure NiFe

plates; a similar situation occurs in the brittle failure of these materials. The ASB/crack propagation speed

in the FGM plate is significantly less (approximately by an order of magnitude) than that in either one of its
two constituents.

For ductile fracture, there are significant plastic deformations induced, so the J-integral is not evaluated.

3.3.2. Applied tangential force

We have plotted in Fig. 8 time-histories of the tangential force required to deform the specimen. Since

the top and the bottom surfaces are constrained from moving in the vertical direction, the working of exter-

nal forces is due to tangential tractions. Furthermore, this working is proportional to the tangential surface

traction as the tangential velocity, except for the first 1 ls, is constant. As expected the tangential force de-
creases with the opening of a crack and it continues to decrease as the crack elongates. With the crack

extension, smaller surface area supports the external load. Also, with continued plastic deformations, the

material softens and its capacity to support external load diminishes. The rate of decrease of the applied

tangential force is higher for W than that for NiFe since the strain and strain-rate hardening effects are

higher in NiFe than in W. With the extension of the crack, the driving force drops more rapidly for the

FGM plate than that for the two homogeneous plates.

3.4. Effect of crack opening on deformation fields

In order to delineate the differences, if any, between the deformation fields ahead of the ASB tip and the

crack tip, we have plotted in Fig. 9 the spatial variation of the effective plastic strain rate in a W plate de-

formed at a nominal strain rate of 200 s�1. Because of the unloading elastic waves emanating from newly

formed crack surfaces, the strain rates ahead of the crack-tip are oscillatory; cf. Fig. 9a. The effective plastic

strain rate at the crack tip is finite. However, it varies rapidly at points with 10�2.3
6 r/a 6 10�1 where r is

the distance of a point from the crack tip and a equals the crack length. The slope of the line obtained by

least squares fit to the computed values equals approximately �0.4. Results plotted in Fig. 9b indicate that,
once an ASB has developed, then the spatial variation of the effective plastic strain-rate ahead of the ASB

tip varies very slowly and its value at the ASB tip equals �1.31 · 105 s�1. It does not exhibit the singularity

prevalent in the effective plastic strain-rate ahead of the crack tip.

We have plotted in Fig. 10a–c the distribution of the temperature rise in W, NiFe and W2NiFe plates at

t = 40, 170 and 70 ls respectively. These times correspond to instants when the ASB/crack has propagated

�1 mm from the point of initiation. Temperatures at the ASB/crack tips at these times are listed in Table 3.

Thus the temperature rise at the crack tip is nearly 14 K higher than that at the ASB tip. For the case of

no crack opening, the maximum temperature occurs at the specimen centroid and not at the ASB tip. This
is because, with the passage of time, the difference between the effective plastic strain at the specimen cen-

troid from where an ASB first originated and that at the ASB tip continues to increase; e.g. see Fig. 9b.

However, when a crack is formed, then the maximum temperature occurs at the crack tip. Values listed

in Table 3 depend upon the ASB/crack initiation criterion.

3.4.1. Relative sliding between surfaces

The relative sliding between the upper and the lower parts of the body is exhibited in Fig. 11 that shows

the deformed shape of a small region. It is clear that the part of the body occupying the region X2 > 0 in the
reference configuration has moved to the right relative to that in the domain X1 < 0. For example points A

and B shown in Fig. 11 coincided with each other in the reference configuration. Recalling that the FE mesh

in the reference configuration has rectangular elements with sides parallel to the horizontal and the vertical
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Fig. 8. Time histories of the applied tangential force in (a) W, (b) NiFe and (c) W2NiFe plates deformed in plane strain shear.
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axes, the two elements in the vertical direction next to the sliding/crack surface have been sheared consid-

erably more than those further away from the crack surface. The slight asymmetry in the results about the

horizontal centroidal axis is attributed to numerical oscillations in the computed results. The smoothing of

oscillations located the crack surface at X2 = 0.001 rather than at X2 = 0.0.
3.4.2. Porosity evolution

The hydrostatic pressure in the material within the ASB, ahead of it and directly in front of the crack

tip was found to be compressive. Thus no new voids nucleated in the material even though it had

enormous plastic deformations. The total porosity evolved in the intensely deformed region is rather

minuscule.



Fig. 10. Temperature distribution in (a) W, (b) NiFe and (c) W2NiFe FGM plates at t = 40, 170 and 70 ls respectively. Plots on the

left (right) are without (with) crack opening.

Table 3

Temperature rise at ASB/crack tip

Material ASB tip (K) Crack tip (K)

W 512 526

NiFe 547 561

W2NiFe 546 561

Fig. 11. A section of the W plate deformed in plane strain shear showing relative sliding between the cracked surfaces; point A initially

coincided with point B.
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3.5. Dependence of results upon the FE mesh

In Section 3.1 we showed that an element size of 25 lm · 25 lm for a FG linear elastic bar gives numer-

ical results close to the analytical solution of the wave propagation problem. In a previous study [45] on
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adiabatic shear banding in plane strain tensile deformations of a thermoviscoplastic body, numerical exper-

iments with uniform FE meshes of element size 42 lm · 42 lm and 125 lm · 125 lm gave ASB initiation

times differing by 2.1%. These tests suggest that FE meshes used herein should give reasonably accurate

results. The CPU time needed to compute speeds of propagation of an ASB and a crack due to ductile fail-

ure in a FG body is close to 200 h. Thus, results could not be computed with a FE mesh much finer than the
one used here, and for several loading rates.

One way to eliminate the effect of the FE mesh on computed results is to use a strain-rate gradient depen-

dent viscoplasticity theory such as that employed in [47–49]. It introduces material characteristic lengths

that cannot be easily estimated.

3.6. Remarks

For all problems studied herein the porosity evolution is negligible. In the plane strain tensile deforma-
tions of a precracked plate, the effective plastic strains induced are miniscule and thus way below the thresh-

old value for the nucleation of new voids. In the plane strain shear deformations, the hydrostatic pressure is

compressive and again no new voids nucleate. Thus for all practical purposes, results have been computed

by using the von Mises yield surface with the flow stress depending upon the effective plastic strain, the

effective plastic strain rate and the temperature. These hardening and softening effects play a negligible role

during the analysis of brittle failure but are dominant in the analysis of ASBs and the resulting ductile

failure.

Because of the homogenization of material properties we have glossed over sharp gradients in deforma-
tion likely to occur near interfaces between the matrix and the particulates; e.g. see [54]. Furthermore,

extensive plastic deformations during the ductile failure may debond particulates from the matrix. It is pos-

sible that effective material properties also depend upon the sizes, shapes and distributions of particulates

even though Young�s modulus and Poisson�s ratio computed from the Mori–Tanaka [35] scheme agree

reasonably well with the experimental values. In the absence of test data on the fracture of heterogeneous

solids comprised of thermoelastoviscoplastic constituents, the validity of the presently computed results

cannot be ascertained.
4. Conclusions

We have analyzed the initiation and propagation of brittle and ductile fractures in homogeneous and

functionally graded plates deformed either in plane strain tension at nominal strain rates of 200 and

2000 s�1 or in plane strain shear at a nominal strain rate of 5000 s�1. It is found that for the crack prop-

agating due to brittle failure at the axial nominal strain rate of 200 s�1, the axial force is a non-decreasing

function of the crack extension. At the higher strain rate of 2000 s�1 the axial force increases as the crack
extends till the crack length equals approximately one-half the plate width, and it subsequently decreases.

When the crack length in a NiFe plate deformed at an average axial strain-rate of 2000 s�1 equals about

one-half the plate width, a large region of the material ahead of the crack tip fails instantaneously signifying

shattering of the plate. It is found that the NiFe plate shatters only if the nominal axial strain rate exceeds

1130 s�1, and the crack elongation prior to shattering varies with the nominal axial strain rate. For the fi-

nite size plate studied here, the maximum computed crack speed in a FG plate pulled at a nominal axial

strain rate of 2000 s�1 is almost equal to the Rayleigh wave speed. For a FG plate, the Rayleigh wave speed

varies with the position.
We have also analyzed ductile failure in a plate deformed in plane strain simple shear. It is found that in

a W plate, an adiabatic shear band (ASB) and a crack propagate at virtually identical speeds. However, in a

NiFe plate the crack speed is higher than the ASB speed in the beginning but the two are nearly equal after
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they have propagated for 15 ls. In W and NiFe plates, the crack speed increases from �0.05 km/s at the

instant of initiation to �1.8 km/s when the crack tip has approached the edge of the plate. However, in

a FG plate with the crack propagating from W rich to W poor regions, the crack propagation speed is

nearly steady for a certain interval, and its maximum value is about 1/10th of that in a homogeneous W

or NiFe plate. The tangential force applied at the top and the bottom surfaces decreases as the ASB/crack
extends, and is lower when a crack is allowed to open than that without the opening of a crack. The effective

plastic strain-rate is finite at the crack tip but is singular at points slightly ahead of the propagating crack-

tip; the order of singularity is �0.4. However, the effective plastic strain-rate ahead of a propagating ASB

varies rather gradually and equals �1.3 · 105 s�1 in a W plate deformed at a nominal strain-rate of

5000 s�1. The temperature at a crack tip is �14 K higher than that at an ASB tip, and equals 526 K and

561 K in W and NiFe plates respectively.
Acknowledgement

This work was partially supported by the NSF grant CMS0002849, the ONR grants N00014-98-1-0300

and N00014-03-MP-2-0131, the ARO grant DAAD19-01-1-0657 and the AFOSR MURI to Georgia Insti-

tute of Technology with a subcontract to Virginia Polytechnic Institute and State University. Views ex-

pressed in the paper are those of authors and not of funding agencies.
References

[1] Wang Z, Nakamura T. Simulations of crack propagation in elastic–plastic graded materials. Mech Mater 2004;36:601–22.

[2] Hasselman DPH, Youngblood GE. Enhanced thermal stress resistance of structural ceramics with thermal conductivity gradient.

J Am Ceram Soc 1978;61:49–52.

[3] Qian LF, Batra RC. Design of bidirectional functionally graded plate for optimal natural frequencies. J Sound Vib

2005;280:415–24.

[4] Batra RC, Jin J. Natural frequencies of a functionally graded rectangular plate. J Sound Vib [available online].

[5] Erdogan F. Fracture mechanics of functionally graded materials. Compos Engng 1995;5:753–70.

[6] Jin ZH, Noda N. Crack-tip singular fields in nonhomogeneous materials. ASME J Appl Mech 1994;61:738–40.

[7] Eischen JW. Fracture of nonhomogeneous materials. Int J Fract 1987;34:3–22.

[8] Honein T, Herrmann G. Conservation laws in nonhomogeneous plane elastostatics. J Mech Phys Solids 1997;45:789–805.

[9] Gu P, Asaro RJ. Crack deflection in functionally graded materials. Int J Solids Struct 1997;34:3085–98.

[10] Becker Jr TL, Cannon RM, Ritchie RO. Finite crack kinking and T-stresses in functionally graded materials. Int J Solids Struct

2001;38:5545–63.

[11] Jin ZH, Batra RC. Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 1996;44:1221–35.

[12] Jin Z-H, Batra RC. R-Curve and strength behavior of a functionally graded material. Mater Sci Engng A 1998;242:70–6.

[13] Atkinson C, List RD. Steady state crack propagation into media with spatially varying elastic properties. Int J Engng Sci

1978;16:717–30.

[14] Ma L, Wu L-Z, Zhou Z-G, Zeng T. Crack propagating in a functionally graded strip under the plane loading. Int J Fract

2004;126:39–55.

[15] Lee KH. Characteristics of a crack propagating along the gradient in functionally gradient materials. Int J Solids Struct

2004;41:2879–98.

[16] Tvergaard V. Theoretical investigation of the effect of plasticity on crack growth along a functionally graded region between

dissimilar elastic–plastic solids. Engng Fract Mech 2002;69:1635–45.

[17] Jin ZH, Dodds RH. Crack growth resistance behavior of a functionally graded material: computational studies. Engng Fract

Mech 2004;71:1651–72.

[18] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I. J Engr Mater Tech 1977;99:2–15.

[19] Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 1981;17:389–407.

[20] Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain-rates, and high

temperatures. In Proc 7th Int Symp on Ballistics, 1983. p. 541–7.

[21] Chu C, Needleman A. Void nucleation effects in biaxially stretched sheets. J Engng Mater Tech 1980;102:249–56.



R.C. Batra, B.M. Love / Engineering Fracture Mechanics 72 (2005) 1954–1979 1979
[22] Tvergaard V, Needleman A. Analysis of the cup–cone fracture in a round tensile bar. Acta Metall 1984;32:157–69.

[23] Budiansky B. Thermal and thermoelastic properties of isotropic composites. J Compos Mater 1990;4:701–44.

[24] Jiang B, Batra RC. Effective properties of a piezocomposite containing shape memory alloy and inert inclusions. Continuum

Mech Thermodyn 2002;14:87–111.

[25] Cattaneo C. A form of heat equation which eliminates the paradox of instantaneous propagation. CR Acad Sci 1958;247:431–3.

[26] Vernotte P. The true heat equation. CR Acad Sci 1958;247:2103.

[27] Batra RC, Lear MH. Adiabatic shear banding in plane strain tensile deformations of eleven thermoelastoviscoplastic materials

with finite thermal wave speed. Int J Plast [in press].

[28] Batra RC, Chen L. Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to

the minimum shear band spacing, and the band width in a thermoviscoplastic material. Int J Plast 2001;17:1465–89.

[29] Batra RC. On heat conduction and wave propagation in non-simple rigid solids. Lett Appl Engng Sci 1975;3:97–107.

[30] Batra RC, Kim KH. Effect of viscoplastic flow rules on the initiation and growth of shear bands at high strain rates. J Mech Phys

Solids 1990;38:859–74.

[31] Batra RC, Jaber NA. Failure mode transition speeds in an impact loaded prenotched plate with four thermoviscoplastic relations.

Int J Fract 2001;110:47–71.

[32] Batra RC, Chen L. Shear band spacing in gradient-dependent thermoviscoplastic materials. Comput Mech 1999;23:8–19.

[33] Batra RC. Steady state penetration of thermoviscoplastic targets. Comput Mech 1988;3:1–12.

[34] Bodner SR, Partom Y. Constitutive equations for elastic–viscoplastic strain-hardening materials. J Appl Mech 1975;56:385–9.

[35] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall

1973;21:571–4.

[36] Suquet P. Overall potentials and extremal surfaces of power law or ideally plastic composites. J Mech Phys Solids 1993;41.

[37] Hughes TJR. The finite element method. New Jersey: Prentice Hall; 1987.

[38] Ritchie RO, Knott JF, Rice JR. On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech

Phys Solids 1973;21:395–410.

[39] Hendrickson JA, Wood DS, Clark DC. The initiation of brittle fracture in mild steel. J Mech Phys Solids 1958;50:656–81.

[40] Zywicz E, Puso M. A general conjugate-gradient-based predictor–corrector solver for explicit finite element contact. Int J Numer

Meth Engng 1999;44:439–59.

[41] Carpenter N, Taylor R, Katona M. Lagrange constraints for transient finite element surface contact. Int J Numer Meth Engng

1991;32:103–28.

[42] Batra RC, Lear MH. Simulation of brittle and ductile fracture in an impact loaded prenotched plate. Int J Fract 2004;126:

179–203.

[43] Batra RC. Finite plane strain deformations of rubberlike materials. Int J Numer Meth Engng 1980;15:145–60.

[44] Chiu TC, Erdogan F. One-dimensional wave propagation in a functionally graded medium. J Sound Vib 1999;222:453–87.

[45] Batra RC, Love BM. Adiabatic shear bands in functionally graded materials. J Therm Stresses [in press].

[46] Freund LB. Crack propagation in an elastic solid subjected to general loading—III. Stress wave loading. J Mech Phys Solids

1973;21:47–61.

[47] Batra RC. The initiation and growth of, and the interaction among adiabatic shear bands in simple and dipolar materials. Int J

Plast 1987;3:75–89.

[48] Batra RC, Kim CH. Adiabatic shear banding in elastic–viscoplastic nonpolar and dipolar materials. Int J Plast 1990;6:127–41.

[49] Batra RC, Hwang J. Dynamic shear band development in dipolar thermoviscoplastic materials. Comput Mech 1994;12:354–69.

[50] Dick RD, Ramachandran V, Williams JD, Armstrong RW, Holt WH, Mack W. Dynamic deformation of W7Ni3Fe alloy via

reverse-ballistic impact. In: Crowson A, Chen ES, editors. Tungsten and tungsten alloys—recent advances. The Minerals, Metals

& Materials Society; 1991. p. 269–76.

[51] Batra RC, Zhang X. On the propagation of a shear band in a steel tube. J Engng Mater Technol 1994;116:155–61.

[52] Batra RC, Liang XQ. Finite dynamic deformations of smart structures. Comput Mech 1997;20:427–38.

[53] Love BM, Batra RC. Determination of effective thermomechanical parameters of a mixture of two elastothermoviscoplastic

constituents, submitted for publication.

[54] Batra RC, Love BM. Mesoscale analysis of shear bands in high strain rate deformations of tungsten/nickel–iron composites.

J Therm Stresses [in press].


	Crack propagation due to brittle and ductile failures in microporous thermoelastoviscoplastic functionally graded materials
	Introduction
	Formulation of the problem
	Governing equations
	Initial and boundary conditions
	Non-dimensionalization of variables
	Composition of a FG plate
	Homogenization of material properties
	Semi-discrete formulation of the problem
	Failure initiation criterion
	Brittle failure
	Ductile failure

	Simulation of crack propagation

	Computation and discussion of results
	Wave propagation in a linear elastic FG bar
	Simulation of brittle failure
	Crack propagation speed
	Shattering phenomenon
	Axial force
	J-integral

	Simulation of ductile failure
	Crack speed
	Applied tangential force

	Effect of crack opening on deformation fields
	Relative sliding between surfaces
	Porosity evolution

	Dependence of results upon the FE mesh
	Remarks

	Conclusions
	Acknowledgement
	References


