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Homogenization of mechanical properties of a heterogeneous material using analytical/semi-analytical mi-
cromechanics approaches is computationally less expensive than that through numerical techniques. However,
analytical methods cannot be easily applied to a complex distribution of the microstructure in a unit cell
(or a representative volume element). Here, we alleviate this by accommodating cuboidal and wedge shaped
sub-volumes in the Fourier series approach (FSA). This is akin to using penta- and hexa-hedral elements to
discretize the geometry in 3-dimensional finite element analysis (FEA). The technique is applied to study the
elasto-plastic response of unidirectional fiber/yarn-reinforced composites with square, circular and star shaped
fibers to transverse loading. It is shown that (i) predicted transverse elastic modulus and the shear moduli are
sensitive to the fiber shape and the unit cell configuration, (ii) the stress—strain curves for the homogenized
composite agree with those reported in the literature found by using the FEA, and (iii) the presently computed
elastic constants for plain and 2/2 twill weave fabrics are close to those found by other methods and deduced
from the test data. A linear softening model based on plasticity approach is implemented within the FSA to
predict failure and progressive softening in the yarn and the resin. It captures the nonlinear response and
provides the ultimate strength under tensile loading.

1. Introduction The method, however, uses only cuboidal sub-volumes that do not eas-
ily accommodate inclusions of complex geometries. Fig. 1 depicts how

With advances made in manufacturing and materials sciences, mod-
ern composite materials with complex microstructures such as textile
fabrics, braids, and inclusions with tailored cross-sections have been
developed for applications in automotive, military and aerospace in-
dustries. Analytical/semi-analytical micro-mechanics schemes like the
Mori-Tanaka (M-T) [1,2], the method of cells (MoCs) [3,4], and the
Fourier series approach (FSA) [5,6] provide a general framework for
efficiently homogenizing mechanical properties of heterogeneous mate-
rials. Analytical approaches are computationally less expensive than the
numerical schemes, and hence are more amenable to analyzing large
heterogeneous structures using the finite element method (FEM). How-
ever, they cannot easily handle complex distributions and geometries

a circular cross-section is often divided into several square/rectangular
cells to fill the circular domain. Thus accurately capturing a curved
geometry may require numerous sub-cells; e.g., see [7,8] for inclusions
of circular and ellipsoidal cross sections. Bednarcyk and Arnold [9] as
well as Bednarcyk and Pindera [10] employed the MoCs to analyze
plain weave fabrics. Bednarcyk and Arnold [9] found that elastic con-
stants predicted for fabrics were significantly lower than those reported
in the literature. They considered a two-step homogenization process
to improve upon the estimates. The Fourier Series Analysis (FSA) has
generally been restricted to inclusions of simple cross-sections [11-14].

We note that the semi-analytical methods can readily accommodate

of the microstructure.

The M-T scheme provides explicit expressions for stiffness when
inclusions are ellipsoidal. However, the method generally fails when
either the volume fraction of inclusions is high or inclusions of different
shapes are included in an RVE. The MoCs approach is flexible as it in-
volves dividing an RVE into many sub-volumes thereby explicitly allow-
ing for interactions amongst inclusions and considering different RVEs.
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in-elastic response of its constituents; e.g see Tandon and Weng [15]
and Lagoudas et al. [16] for the M-T method; Paley and Aboudi [17]
and Ye et al. [7] for the MoCs; and Pruchnicki [18] and Walker
et al. [19] for the FSA.

Besides above-mentioned methods, other approaches have been
specifically developed to analyze woven fabrics. Ishikawa and Chou [20,
21], Naik and Ganesh [22] and Scida et al. [23] have used a laminate
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Fig. 1. A cell used in the MoCs approach to approximate plain weave and fiber-reinforced composite microstructures, and approximation of a circular fiber as a polygonal inclusion.

theory to predict elastic constants for fabrics. Barbero et al. [24],
Blackketter et al. [25], Whitcomb [26] and Sun-Pui et al. [27] have
used the FEM to construct unit cells to analyze fabrics. Wen and
Aliabdi [28], and Li et al. [29] have used a meshless approach to study
3D fabrics. Tabiei and Jiang [30] and Tanov and Tabiei [31] have
developed a micromechanics model for plain weave fabrics by dividing
the unit cell into sub-cells and by enforcing continuity requirements at
their interfaces. Though details of the microstructure can be accurately
captured using the FEM and meshless approaches, they become difficult
to use for large structures because of extensive computational resources
needed.

Here we extend the capability of the FSA by employing wedge
(penta-hedral) and cuboidal sub-volumes to analyze complex microstruc-
tures; this is similar to using penta- and hexa-hedral elements to
discretize a structural geometry in 3-dimensional FEA. To facilitate
analytical evaluation of quantities, we restrict sub-volumes to be right
angled with orthogonal sides parallel to the global rectangular Carte-
sian coordinate axes. The formulation readily accommodates elastic—
plastic behavior of its constituents and microstructure by using cuboidal
and wedge sub-volumes, thereby making it suitable for a wide variety
of applications.

The rest of the paper is organized as follows. The FSA formulation
and derivation of expressions for strain concentration and transfor-
mation tensors are provided in Section 2 along with expressions for
the stress and the stiffness matrix for the homogenized composite.
In Section 3 we demonstrate the applicability and usefulness of the
approach by analyzing inelastic deformations of unidirectional and
woven fabric composites and comparing results to the corresponding
ones in the literature. For unidirectional fiber reinforced composites,
we study effects of the fiber geometry and the unit cell configuration
(square edge, square diagonal and hexagonal close packing) on the
predicted elastic constants and on its elastic—plastic deformations under
transverse loading. The FSA is also used to predict elastic constants
of plain and 2/2 twill weave composites. The strength predictions of
weaves are made by using the Tsai-Wu failure criteria for the yarn and
the von Mises criteria for the elastic—plastic resin pockets. Conclusions
of the work are summarized in Section 4.

2. Micromechanics theory using the Fourier series analysis

2.1. Strain concentration and transformation matrices

Let the total infinitesimal strain (or strain increment) in a phase
(fiber or matrix) be given by

i

.0
Ej =& + &5 (1)

where .s:J‘ and ¢; are, respectively, the homogenized strain (or the
average strain in an RVE) and the perturbation strain due to the
presence of inclusions. Note that the volume averaged perturbed strain
equals zero, i.e.,

1
V[/Eng:() (2)

Following Walker et al. [12], we express constitutive equation for
either the inclusion or the matrix as

_fem 3
%ij = {Cijm 25 5Cijkf} {eh— el @

where 6Cjy = 8 {CF —M }, 9 = 1(0) for the fiber (matrix), EEI is the

ijkl ikl
plastic strain, and Cgkl, Cig‘;{d are 4'" order stiffness matrix for the fiber

and the matrix, respectively. We rewrite Eq. (3) as

—_ M 0 *
i = Cijg {en +en—eq} (42)
where the eigen-strain ¢, is given by
M _x _~M P _ i ] O g
Cgklfkl - Cijk]EkI 0Ciji (Ekl + Ek]) ; (4b)

Substituting for stresses in equilibrium equations, and noting that

€, is a constant, we get

*
M %€ m dgy, (5)
ikl gy, ikl gy,
| i
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Fig. 2. Cross-section of a wedge and of a cuboidal sub-volume used in the FSA to capture inclusion’s geometry.

Due to periodicity in the composite, we expand the displacement
field u and the eigen-strain £* in Fourier series as

u = ZZ‘, 3 6, @ exp & 1.

where 0, (&) = % / uy exp (—ié - r)dv,
%

+oo/
® A
fa = 2 Z me
(1]

where £, (§) =

(6)
(©expg-r),

1 * ;
V/VE“ exp(—i& - r)dV,

+o0’ indicates that n = 0 is excluded from the summation since
0, (¢ = 0) represents a rigid body displacement, and
E={&.&.6). &= Zfi"i, r={x;,x3,x3} V=L, xL, xLs, L, L, and
L, equal sides of a cuboidal RVE.

Using Egs. (5), (6) and the strain—displacement relations, we express

Gy in terms of £*in the Fourier space as

Véi& (7)

G @)=1a ZEMICY 25, (€5, where [£] =

with M;, = ule'g Using Egs. (4) and (7), we express strains in the
physical space as
EE} =gt
23 T {d [ (Chet () = a0y (e () -8 ()
= gkh] v i ijrs s rs s s
Xexp(i§'[r—r'] dV r')} (8)
where g;; = (Mlk Go+ My cjjgk) and ¢ = E

The average strain £'# in the f sub-cell is given by

W= e av () ©

Using Egs. (8) and (9), we get the following expression for the
average strain in the ath sub-cell:

el = e 2 ZZZ(gk.uCi}io O -5)

+ (200§0C;,Q" (B)QF (=8)) e, (10

- Z fﬁ Z 2 Z gkh_]acgnoﬂ (f) Qﬂ (—f) ET

where Q% (&) = VL Jeexp(i& -r)dV(r), and f/ = ¥, the volume
fraction of sub-cell #, which can either be the fiber or the matrix. We

rewrite Eq. (10) as

N N
Ta _ Bl af
1‘1 - EE] + Z lt Tk]r\.] s Z [fﬁskln f“' (11)
p=1 p=1

where skm = ¥ Z gMUrSCu“Q“ (&)QF (=&), and Tk]“ = ZZ(‘—;‘”'
¥ aiC Q" (6 QF (&) + 87 .

ijrs

Writing Eq. (11) for all N sub-cells of the RVE, we have

£T1 M1 M2 ... MmN £°
£12 o M2 M2 ... M £
E-'TN MNI M‘NZ .:_ Mi“N ’E-_-n
(vt M2 ... MY
M2l M2 ... M
+] . ; ; 3 12)
M.Nl M-NZ Mi\m

FNIN £pl
fNTZN Epz

[¢tpit 2712
fl Tll fZTZZ

X
fl -l-N1 fZ vl:NZ fN vl-NN épN
where
Mll MEZ oy M]N l+fIS“ f2S12 stlN
MZI MZZ o MZN flle 1+ fZSZZ fN52N
M-Nl M‘NZ _ Mi\lN f]éNl f2§N2 1+ fl;lsNN

One can write Eq. (12) in the following alternative form:

e =[Ale" +[D]eg (13a)
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where the strain concentration and the transformation matrices, [A]
and [D], given by Eq. (13b)

[ N
Z Ml
= Ml[ MIZ MIN
[A] B Z MZa D] = MZI MZZ NIZN
NI-NI M‘NZ Mi\IN
Z paNe (13b)
f]l]] f2[]2 FNTIN
fl 121 fZTZZ fN'l‘ZN
fl'l-‘N] fZ'l-‘NZ fN’i‘NN

capture geometric effects of inclusions and their distributions through
tensors S™ and AP, Eq. (13) is iteratively solved by initially assuming
deformations to be elastic over the incremental load applied, finding
plastic strain increments, and repeating the process within the same
load step till strains have converged in all sub-cells. Subsequently, the
macroscopic stresses in the RVE are calculated by volume averaging
them over all sub-cells, i.e.,

N
VE _ Z fa g (14)
a=l

2.2. Effective stiffness of the RVE

For elastic deformations, the stiffness matrix of the RVE derived by
using Eq. (14) and constitutive equations is given by
N
R = N e A (15)
a=1
For plastic deformations, we assume the additive decomposition of
small strains into elastic and plastic parts, and follow Dvorak [32]
to determine the instantaneous concentration tensors of the sub-cells.
From the constitutive equation for the sub-cell 'a’, we get

" =C": e"+ 06" and e =S%: 6" + &P (16)

where the relaxation stress is given by

Rea _ —C*-

c : P or gP* = 8% ; gRer a7

From Egs. (13) and (17) we get expression (18) for local strains in
sub-cell "a’.

N -1
= (1+ ZD“"’: §%: C"“) § AT gRVE = gma gRYE (18)
A=l

For inelastic deformations the concentration tensor A%replaces A%,
and the elastic—plastic stiffness matrix replaces the elastic stiffness
matrix in Eq. (15).

2.3. Determination of Q terms for wedge and cuboidal sub-volumes

The evaluation of the § and T tensors requires finding Q” (£) and
Q? (—&) terms for the sub-volume. In evaluating these, we consider
seven different cases depending upon which components [ﬁx,éy,éz] of
the frequency vector & vanish, and exclude the null frequency vector
since it corresponds to a rigid body displacement. Fig. 2 shows the
cross-section and defines quantities X, y, z, A, W, L, H and m that
appear in the expression for Q for wedge and cuboidal sub-volumes,
respectively, and Eq. (19) gives these expressions.

For wedge sub-volumes, upon integrating the expression for Q (&)
given in Eq. (10), we get the following.
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Case 1 #0:£, =0:5,=0

(12 [7+ 5])

1
l< W'_)> sm(é )ex —
Q)| =i { M} a
WEDGE = & 3 %é’x
Case 2: , =0:4, #0:£,=0
I . 1 W 1
Q(&)lwepce = %f’XP (”:y)’) <3XP (lﬁyw) [% - IE} = %> (19b)
Case 3: &£, =0; & =08, #0
_iexp (i&,2) _exp (i&,mW) — 1
Q(®lwepce = XT <W + IT (19¢)
Case 4: £, #0: éy #0;¢,=0
Q&lwepce = —exp (i&,y <CXP (i&,W) [— —l—} - é>
Y ¥
sin( &, = L exp (1&, E
(st frrt]) .
35
Case 5: &, # 0,5, = 0;£, #0
i exp(ig,z) _exp (iE,mW) — 1
Q&lwepce = ig—l <W +IT
sin L_‘fx]—“ exp | i& |X+ L
let)ons e ) o
7%

Case 6: &, = 0:&, #0:&, #0

1 exp (i&,z L
Q& lwence = K_é ) exp (i&,¥)

y {<exp(i§yw)—]>_<exp(i[§Lm+§y]W)—]>} (190
gy [e,m+¢]

Case 7: &, #0:&, #0:&, #0

sin (§x]5“ ) exp (t.ﬁx [K + %] )
L
2

56

1 exp (i&,z) exp u,ty
T 3 exp 1§y
exp [glm +£& ] W)
[&,m+¢,]
It is possible that when the slope m is an integer, then the term
Em+¢, equals zero, and

Q& lwepce =

(19g)

exp(ifgm+¢&|W)-1
[em+&]

Similarly, for cuboidal sub-volumes, we get the following for case

éx%) sin(@%) sin (rf %)
H

Q&lcusopaL = éfx ¥§y z (19h)
oo (5244 (5 ¥) o2 (o B))
where (X + —,y+ w +% is the location of the cuboidal element

centroid. Here we have omitted expressions for Q(&)|cygompar for the

L
sin| & =
remaining 6 cases. Recall that lim;_,, (,_’ 2

2

=1 where i is x, y or z.

e

i
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Fig. 3. Unit cell configurations and fiber cross-sections analyzed using the FSA.

Since tensors S and T are real, only real part of the product of Q* (£)
and QF (=¢) is considered and imaginary part is neglected.

2.4. Elasto-plastic analysis of uni-directional fiber-reinforced composite

Uni-directional fiber-reinforced composites are usually assumed to
have two spatial length scales, one at the macro-level and the other
at the micro-level consisting of fibers embedded in the surrounding
matrix. Their elastic—plastic deformations are analyzed by assuming
fibers to deform elastically and the matrix elasto-plastically obeying
the von Mises yield criterion, the associated flow rule, and the Voce
hardening law given by Eq. (20).

K(x)=k+ (Ro)a +R II - cxp(—éa)] (20)

Here a is the effective plastic strain. Definition of variables in
Eq. (20) and its implementation is given in Gopinath and Batra [14].

Woven fabric composites have three spatial length scales, namely,
a macro-scale, a sub-scale consisting of yarns embedded in the matrix,
and a sub-sub-scale within the yarns. While analyzing fabrics using
the FSA we consider only the first two length scales and disregard the
third one by using homogenized yarns that are regarded as inclusions
embedded in the matrix.

2.5. Progressive failure of woven fabric composite

The following two approaches are primarily employed to study
progressive failure of composites; (1) continuum damage mechanics
(CDM), and (2) equating damage variable equal to the inelastic (or
the effective plastic) strain. In the CDM approach, the nonlinearity
in the stress-strain response due to either individual or combined
effects of matrix cracking, debonding, fiber breakage, etc. is captured
by the accumulation and growth of damage, which is used to reduce
elastic constants of the homogenized composite [33-35]. In the plas-
ticity based approach, the nonlinearity in the stress—strain response
is captured due to inelastic or plastic deformations. One way is to
find a hardening law by curve fitting the effective stress-the effective

plastic strain test data for a number of off-axis loading tests. This
technique proposed by Sun and Chen [36] for unidirectional fiber
reinforced composites was later employed for woven fabric composites,
amongst others, by Ogihara and Reifsneider [37], Cho et al. [38] and
Hufner [39]. We note that the hardening law incorporates nonlinear-
ities associated with plastic deformations as well as failures that may
occur in the composite during loading. As noted by Hufner [39], the
nonlinearity in fabrics is primarily associated with matrix cracking.
In a simpler plasticity-based approach, the material is assumed to be
linearly elastic till failure. Once failure initiates the material under-
goes inelastic deformations, usually softening. The problem is then
formulated as elastic—plastic thereby tacitly taking the yield surface to
represent the failure surface [34,40].

Implementing the CDM in conjunction with the FSA is difficult as
there is no inelastic/eigen-strain defined in this approach. Furthermore,
it requires generating concentration and transformation matrices at
each load step when elastic constants of its constituents are degraded
due to the accumulated damage. Hence, we use the plasticity based
approach here.

Failure of the yarn (which essentially is a unidirectional fiber-
reinforced composite) and of the pure resin pockets in the unit cell
are modeled, respectively, by using the Tsai-Wu failure and the von
Mises yield criteria. For both the resin and the yarn a linear softening
law is used post-failure initiation and the closest point projection
algorithm [41] is employed to integrate the elastic—plastic constitutive
equations. Here, inelastic deformations are essentially used to capture
softening response of the composite subsequent to failure initiation.

We describe modeling of inelastic deformations of a yarn in this sub-

section. Following van der Meer and Sluys [40], we write the failure
surface for the composite yarn as

1
J (o, K)rcumposilﬁ = 50- r (K)f:umposuc ct+op ('c)lcompmiln —-1=0 (21)
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Assuming ‘1’ to be the fiber direction, we define

pe po

P (K‘Ncnmpusile = E and p(K)lcompnsile = F

[_2 - 2 - 2 ) 0 0 ]
FiiFy VELF Fy Py VE1F Py Fp
2 1
T - 0 0 0
Fy Fy, FaFae
2 0 0 0
P° — FZLFZL: 1 )
— 0 0
F4 ]
= 0
P
X
2
L F6 2
O
Fll Flc
L1
Fy  Fy
=l
FZ[ F’Zc
0
0
0
(22)

Here, p® and P° are, respectively, the failure vector and the 6 x 6
matrix representing the Tsai-Wu failure criteria, and h(x) = 1 + xkH
is the linear softening/hardening law for the composite with H being
the softening/hardening modulus. (This H should not be confused with
the H shown in Fig. 2.) In Eq. (22), F, /F,. represents composite’s fiber
strength in tension/compression, F, /F,. represents composite’s matrix
strength in tension/compression and F,,F, represents composite’s ma-
trix shear strengths. The evolution of the internal variable « is given by,
Ak = 1/ AeP [Q] AeP where the right-hand-side represents the equivalent
plastic strain as [Q] is the diagonal matrix [1,1,1,0.5,0.5,0.5].

The constitutive relation for the composite and the flow rule is given
by

6=C: (e—¢£P)

p_ 0/ (0.%)
==
do

(23a)
(23b)

The evolution of the plastic strain follows the Kuhn-Tucker relation

20,7920, fr=0 (24)

The integration of the elastic—plastic constitutive equations is per-
formed by using the Newton-Raphson technique following the closest
point projection algorithm [41].

The unknown plastic strain in Eq. (23b) in the (n+ 1) time step is
written as

ELI =l + Aym, (25)
We write the residue, R, ,, for Eq. (25) as
Rpuq = —€h,, +en +4ymyy (26)

Linearizing R, ,, for small increments in the variables gives

dR
Roi + ey n+1

dR
2 460 + —hdAy =0 27)
n+1 dAy
The yield surface for the (n+ 1) load step is also linearized as
ddy =0 (28)

af af
LK)+ ——dog, g + ——
Het g, it oy
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-1
L] [M] and substituting for
00,41

dogi

Pre-multiplying Eq. (27) with [

] do,,y we get

s o] | ] (Rar) 29)

-1
af dRpy g dRpyy | df
Aoy dopg,y dAy dAy

Stresses, strains, and the hardening parameter are then updated as

[dﬁ' +1

del =-C':doy,

P = P
{Enﬂ } - {En+l } {dEnH } (30
Ay = Ay +dAy

Kyl = Ky +A}/ anlQJm

For elastic—plastic deformations, we take Eq. (21) to represent the
yield surface, and follow the preceding analysis. When the solution has
converged, we deduce the following from Egs. (23) and (26)

— 54 d da amﬂ+1
=5 Enyq —dAy { m, ¢ + Ay s (31)

r’""1|+I

doyyy

where £ = (C~ l+Ay

Substituting for da }'rom Eq. (31) into Eq. (28) we get

n+l

m,, . Zde
n+1 l:—l o (32)
— my,
my,,: = (mn“ + Ay dd:l ) ~5

Substituting from Eq. (32) in Eq. (31) we get

dAy =

- oam, —_ t
= (l“n+l + 4y d:;l ) ® (—"mnﬂ)

> _af dEn+]
dAy

I

(33

doyy =
m, . : E( my +d}’ d;;l

We note the asymmetry in the stiffness matrix due to the presence
of the term d—““ which was also mentioned in [40].

We follow Lf‘ie same approach as above for failure of resin pockets
in which the yarn is embedded by taking the following failure surface

/3
f (o, K)[malrix = 55 LS— YrrJalrix —Hk=0 B34

where s is the deviatoric stress tensor, and Y,,,.ix and H are the failure
strength and the softening/hardening modulus, respectively.

3. Prediction of elastic moduli

3.1. Effect of fiber shape and unit cell configuration on elastic-plastic
analysis of fiber-reinforced composite

Though modern manufacturing methods have allowed production
of noncircular fibers, there have been very limited studies on char-
acterizing effects of fiber shape on the response of composites [43].
Both experiments and numerical studies have shown that fiber shape
significantly influences composite’s response. Pathan et al. [43] stud-
ied damping characteristics of circular, elliptical, triangular and star
shaped fibers. Agnese and Scarpa [44] experimentally showed a signif-
icant increase in damping properties of star shaped fibers compared to
that of circular fibers. Paknia et al. [45] studied the effect of size and
shape of Silica-Carbide particles in aluminum matrix. Out of square,
circular and triangular shaped reinforcements considered, they found
that circular cross section provided the softest elastic—plastic response
in comparison to square and triangular cross section reinforcements.
Brockenbrough et al. [42,46] studied the effect of fiber shape and unit
cell configuration on the inelastic response of metal matrix composites.
Herraez et al. [47] found that composites with lobular fibers exhib-
ited superior strength than those with circular fibers under transverse
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Fig. 4. a—c: Sensitivity of the elastic-plastic response to SEP, SDP and HCP config-
urations having square, octagonal and star-shaped fibers. The FEM results are from
Brockenbrough et al. [42].

compression, while Yang et al. [48] showed that triangular fibers had
higher elastic modulus and strength than their circular counterparts.
Yang et al. [49] showed that gear shaped fibers had significantly higher
strength than circular fibers.

Here we use the FSA to study the effect of fiber shape and unit cell
configuration on the elastic—plastic response of a fiber-reinforced com-
posite. Square edge packing (SEP), hexagonal close-packing (HCP) and
square-diagonal packing (SDP) unit cell configurations having square,
circular and star shaped fibers (as shown in Fig. 3) are employed
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Table 1
Values of elastic constants for Aluminum matrix and Boron fibers.
Aluminum-6061 O Boron
E % E v
69 GPa 0.33 410 GPa 0.2
Table 2
Voce hardening parameters for Aluminum-6061.
k (yield stress) Ro R &
43 MPa 30 MPa 72 MPa 35

to study Boron-Aluminum fiber-reinforced composite under transverse
loading. This composite system with 46% fiber volume fraction was
previously analyzed by Brockenbrough et al. [42,46] using the FEM,
and by Gopinath and Batra [14] with three micro-mechanics tech-
niques, including the FSA but with only square fibers and cuboidal
sub-cells. In [14] we used the transformation field analysis to study
the effect of fiber cross-section on composite’s elastic—plastic response.
Here we employ the FSA and consider circular (approximated by
octagonal) and star shaped fibers.

Elastic constants of the constituents given in Brockenbrough et al. [42]
are listed in Table 1. We assume Aluminum and Boron fibers to,
respectively, deform elasto-plastically and elastically. The von Mises
yield criteria with the associated flow rule and the Voce hardening
law (given by Eq. (20)) govern plastic deformations of the Aluminum.
Values of hardening parameters are listed in Table 2 [14]. All analyses
are carried out using approximately 150 to 160 sub-cells. In Table 3 we
have compared elastic constants predicted from the FSA using Eq. (15)
for the three fiber shapes and the 3 unit cell configurations with those
reported by Brockenbrough et al. It is clear that the transverse elastic
modulus and the shear moduli are sensitive to changes in the unit
cell configuration and the fiber shape. The SEP arrangement with
square fibers gives the highest values while the SDP arrangement with
octagonal fibers the least. The elastic constants for star shaped fibers
fall in between those for the square and the octagonal fibers. Values
of G, are unaffected by both the packing arrangement and the fiber
cross-section, but those of v, , E; and Gt strongly depend upon them.

In Fig. 4 we compare the elastic-plastic response for the three
fiber cross-sections for each of the three unit-cell configurations under
transverse loading. The SEP (SDP) fiber arrangement gives the stiffest
(softest) response and the HCP arrangement falls in-between that for
the SEP and the SDP fiber arrangements. Looking at the response for
the three fiber shapes, we see that square fibers have a stiffer response
than the octagonal fibers for all packing arrangements and the response
of star shaped fibers falls in between that of the square and the circular
fibers for all three unit-cell arrangements. As seen from the figure the
trends mimic those from the FEA but the FSA predicts more hardening
than that given by the FEM.

The sensitivity of the elastic—plastic response to the fiber geometry
and packing arrangements can be explained by examining the local
plastic strains and the hydrostatic stress within the unit cell due to
transverse loading [14]. Figs. 5 and 6 depict, respectively, for a macro-
strain of 0.25%, fringe plots of the effective plastic strain and of the
hydrostatic stress in the square edge and diagonal arrangements. These
plots were generated using MATLAB’s grid-data interpolation function
using field variables at centroids of the sub-cell locations. White border
lines indicate the fiber location within the unit cell. The imposed
periodic boundary conditions and the symmetric arrangement of fibers
within the unit cell about the XY- and the XZ-planes (the X-axis is
along the fibers) result in symmetric contour plots of the field variables
about these planes. From the contour plots we see that for the SEP
arrangement magnitudes of the effective plastic strain increase as we
go from the square = star = octagonal fibers. This is attributed to
the buildup of the hydrostatic stress along surfaces of the fibers which
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Table 3
Effect of fiber geometry and unit cell configuration on predicted values of elastic constants.
E, (GPa) v E.(GPa) G(GPa) G, (GPa)
Packing arrangement Experiment 228 0.24 138 57
FEM-Square 228 0.266 153 60
Square edge packin FEM-Circular 228 0.263 152 57
(E?EP) 26 packing FSA-Square 226 0.263 152 44 53
FSA-Octagon 226 0.263 149 45 53
FSA-Star 226 0.262 151 45 55
FEM-Square 228 0.263 138 50
Hexsasnal dose FEM-Circular 227 0.262 137 50
5 FSA-Square 226 0.262 140 51 56
packing (HCP)
FSA-Octagon 226 0.263 136 50 53
FSA-Star 226 0.262 138 51 54
FEM-Square 227 0.262 134 48
Sousie disecial FEM-Circular 227 0.24 138 45
quare dlag FSA-Square 226 0.26 132 58 53
packing (SDP)
FSA-Octagon 226 0.263 126 57 53
FSA-Star 226 0.262 127 57 54
Table 4a
Elastic constants for plain weave fabric predicted using FSA.
Plain weave
E-Glass/epoxy [9,24]
Elastic constants Geometric parameters
E, Ep G,y Viz Vo3 Vi /V, Vr/V) 8
(GPa) (GPa) (GPa)
Yarn 47.77 18.02 3.88 0.314 0.249 0.35 0.65 9.5
E (GPa) v
Matrix 3.5 0.35
Method E./Eyy E, G,,/G,, G, Vel Yy,
(GPa) (GPa) (GPa) (GPa)
MoCs 1-step [9] 13.1 9.42 2.53 2.46 0.307 0.246
MoCs 2-step [9] 18.1 9.85 2.54 2.76 0.318 0.177
Tanov & Tabiei [24] 17.85 9.79 2.5 3.53 0.332 0.172
FSA 17.3 9.76 2.46 2.31 0.332 0.179
% diff FSA vs [24] 3% 0.3% 1.5% 34% 0% 4%
Graphite/epoxy [9,24]
Elastic constants Geometric parameters
Ej Ey Gy Viz Va Vi/Ve Vi/Vy 8
(GPa) (GPa) (GPa)
Yarn 137.3 10.79 5.394 0.26 0.46 0.38 0.65 1.4
E (GPa) v
Matrix 4.511 0.38
Method B /By E. G, /G, G,y Vel Vye Vi
(GPa) (GPa) (GPa) (GPa)
MoCs 1-step [9] 14.2 8.11 2.75 2.99 0.46 0.131
MoCs 2-step [9] 45.08 10.12 276 3.24 0.464 0.056
Tanov & Tabiei [24] 45.08 10.12 2.76 3.82 0.464 0.056
FSA 45.0 10.1 2.83 3.47 0.464 0.058
% diff FSA vs [24] 0.2% 0.1% 2.5% 9.2% 0% 3.5%
E-Glass/Vinylester [23]
Elastic constants Geometric parameters
Ey, Ey, Gp\Gos Viz Va3 Vi/Ve Vr/v, a
(GPa) (GPa) (GPa)
Yarn 57.5 18.8 7.44/7.26 0.25 0.29 0.8 0.55 10.5
E (GPa) v
Matrix 3.4 0.35
Method E/E,, E, G, /G,, Gy Var/ Vys Vay
(GPa) (GPa) (GPa) (GPa)
Expt. [23] 24.8 8.5 4.2 6.5 0.28 0.1
Analytical [23] 25.33 13.46 5.24 5.19 0.29 0.12
FSA 24.4 12.7 3.7 4.12 0.306 0.137
% diff FSA vs Expt. 1.6% 33% 12% 37% 7% 37%
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Table 4b
Elastic constants for 2/2 twill weave fabric predicted using FSA.
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2/2 Twill weave

$2-Glass/C50 [50]

Elastic constants

Geometric parameters

Ey Ep, G, Gy Viz Va3 Vy/vu [
(GPa) (GPa) (GPa) (GPa)
Yarn 71.6 23.7 10.2 8.4 0.22 0.27 0.64 7
E (GPa) v
Matrix 3.45 0.35
Method E./E,, E, G,,/G,, G,y Vae/ Ve Vay
(GPa) (GPa) (GPa) (GPa)
Expt. [50] 28.7 - 0.1366
Analytical [50] 30.6 6.83 0.1327
FSA 29.7 14.3 3.62 4.71 0.283 0.118
% diff FSA vs Expt. 3.5% 70% 4%
E-Glass/Epoxy [23]
Elastic constants Geometric parameters
Ey, E; Gy, Gy Via Va3 V(/'V). A/ /Vy 0%
(GPa) (GPa) (GPa) (GPa)
Yarn 55.7 185 6.89 6.04 0.22 0.34 0.75 0.38 6.5
E (GPa) v
Matrix 3.2 0.38
Method E/Eyy E, Gy, /Gy, Gy Veal Vo Vay
(GPa) (GPa) (GPa) (GPa)
Expt. [33] 19.2 ~ 3.6 0.13
Analytical [33] 19.54 10.92 3.78 3.92 0.305 0.122
FSA 19.2 9.91 2.37 2.78 0.355 0.14
% diff FSA vs Expt. 0% 29.5% 7.8%
E-Glass/Polyethylene/Epoxy hybrid [23]
Elastic constants Geometric parameters
E-glass Epn Ey G, Gy iz Vaa Vi/V, Vi/Vy 6=
(GPa) (GPa) (GPa) (GPa)
Yarn 55.7 18.5 6.89 6.04 0.22 0.34 0.75 0.32 17
E (GPa) v
Matrix 3.2 0.38
PE Ey Eyp Gy Gy Viz Va3 Vi/Vy Vi/Vy 0%
(GPa) (GPa) (GPa) (GPa)
Yarn 11.1 9.22 3.26 3.25 0.39 0.39 0.75 0.2 17
Method E,./E, E, G,,/G,, Gy Yy,
(GPa) (GPa) (GPa) (GPa)
Expt. [23] 18 3.5 0.13
Analytical [23] 19.95 12.84 4.51 4.36 0.33 0.165
FSA 17.9 10.9 3.0 3.2 0.374 0.171
% diff FSA vs Expt. 0.6% 1.7% 31%

limits plastic flow of the material. For the SDP arrangement, the plastic
strains are comparable but the hydrostatic stress for square fiber is
almost twice of that for the star and the octagonal fibers.

Regarding differences in the fiber arrangement on the elastic-plastic
response, we see that though the magnitude of the maximum plastic
strain observed in the SEP is either higher or comparable to that for
the SDP, the hydrostatic stresses are an order of magnitude higher.
Thus, regions of high magnitudes of plastic strains in the SEP are
more localized. The geometric constraints imposed by the relatively
stiff fibers in terms of the buildup of the hydrostatic stress and the
plastic flow of the matrix help explain why the SDP arrangement with
octagonal fibers shows much softer response than that exhibited by the
SEP arrangement with square fibers. Further details on the effect of the
shape and the packing arrangement are provided in [14].

3.2. Prediction of elastic constants of woven fabric composite

Woven fabric composites offer a number of advantages over non-
woven/non-crimp laminates. The interlocking of yarns provides better

reinforcement in the out of plane direction giving it higher delamina-
tion and impact resistance. Woven fabrics can also be easily molded
and draped into complex shapes reducing manufacturing cost. The
disadvantage, however, is reduction in stiffness and strength in the
plane of the laminate due to crimping of fibers in the yarn. Since they
form an important class of composites we explore using the FSA in
predicting their stiffness and strength by neglecting their crimping.
We consider here plain and 2/2 twill weave composites shown in
Fig. 7; other weaves like the 5H and 8H satin can be constructed in a
similar manner with the unit cell sub-divided into many more sub-cells
to accommodate the pattern. We assume the yarn cross-section to be
rectangular with the geometric and material constants of yarns in the
warp and the weft directions to be the same. We simplify the problem
by assuming that there is no interstitial matrix present at cross-over
points between the warp and the weft yarns. The unit cell dimensions
for the FSA approach are taken to be 1 x 1 x 27 with t being the yarn
thickness. Sub-cell dimensions, determined from the volume fraction,
V¢, of the fiber in the yarn and the composite, and the yarn crimp



G. Gopinath and R.C. Batra International Journal of Non-Linear Mechanics 125 (2020) 103539

Square
Octagon
Star
XP
Effective plastic strain Hydrostatic stress

Fig. 5. Fringe plots of the effective plastic strain and the hydrostatic stress for square, octagonal and star cross-section fibers in the SEP arrangement.

(inclination angle), are given in Eq. (35) and are depicted in Fig. 7. The 1 M

Wiwill weave = P V, in Yarn twill weave

plain and the 2/2 twill weaves are constructed with approximately 50 (1 — 4W)
= twi . = dtan(0) 35b
and 150 sub-cells, respectively, making use of wedges and cuboids (see 4 twlll weave ( L)

Fig. 7).
While analyzing fabrics using the FSA, the yarn is taken as in-
W _ 1 V; in Composite clusions in the matrix. Elastic constants from the FSA are predicted
plain weave — 5 m plain weave i . !

: 2\;\,’ using Eq. (15). All relevant material constants and geometric param-
= (_—)lplm weave = dtan (f) (35a) eters are listed in Table 4 along with elastic constants predicted from

Py
&

10
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Fig. 6. Fringe plots of the effective plastic strain and the hydrostatic pressure for square, octagonal and star cross-section fibers in the SDP arrangement.

the FSA and those from other techniques. In Table 4, 6* for the E-
glass/vinylester plain weave and twill weaves indicates the crimp angle
estimated from the unit cell dimensions provided in the references.

3.3. Prediction of elastic constants of fiber-reinforced composite

For square edge packing (SEP) and square diagonal packing (SDP)
arrangements with square and octagonal fibers, the predicted elastic

11

constants (except for the longitudinal modulus that is accurately pre-
dicted by all methods) for fiber-reinforced composites for V; = 0.15, 0.3,
0.46 and 0.6 for Aluminum matrix and Boron fibers [37] are compared
in Fig. 8 with those from the concentric cylinder model and the test
data [51]. For small volume fractions the predicted transverse elastic
modulus and the shear moduli are close to each other and to their
experimental values indicating that they become independent of the
fiber cross-section and packing arrangement.



G. Gopinath and R.C. Batra

Plain Weave

Yarn

International Journal of Non-Linear Mechanics 125 (2020) 103539

d d w

g

d W
-

d W W
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Fig. 7. Unit cells for plain and 2/2 twill weave fabric configurations used in the FSA.

We note that the actual complex microstructure geometry is approx-
imated here by using wedge and cuboidal sub-volumes. As the response
of a composite is sensitive to its microstructure one can expect an FEA
to better predict properties of the unit cell. We note that the FEA was
used in [52] to homogenize thermo-mechanical properties of a tungsten
heavy alloy that is composed of tungsten particulates immersed in iron-
nickel matrix. The concentration tensors for unidirectional piezoelectric
and shape memory alloy fibers embedded in a matrix are given in [53].

It is difficult to quantify errors introduced by assuming periodicity
of the microstructure needed in the FSA. However, by studying numer-
ous microstructures of different periodicity, one can use a statistical
method to homogenize properties of an actual microstructure; this has

not been pursued here.
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3.4. Prediction of strengths of woven fabric composite

Fig. 9 shows the stress—strain curve for unidirectional loading in ten-
sion and compression both along and transverse to the fiber direction
for E-glass/epoxy composite with V; = 0.75 whose strength properties
are listed in Table 5. The curves have been plotted by taking H = 2,
-3, and 0, respectively, for hardening, softening and perfectly plastic
responses in post-failure (or post - yielding) deformations.

The strength properties of the yarn and the resin used in the analysis
of plain and twill weave are listed in Table 5, and the geometric and
the material properties for the weaves are given in Tables 4a and 4b.
The failure analysis was carried out for four different weaves of E-glass
fiber-reinforced composites listed in Table 6. The softening/hardening
parameter for the yarn and the resin was taken to be -3 and -250 MPa,
respectively. We found that H < -250 MPa resulted in numerical issues
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Fig. 8. a—e: For different volume fraction of the fibers, elastic constants predicted from
the FSA approach (for SDP and SEP configurations having square and octagonal fibers)
and the concentric cylinder model.

in the FSA approach. Fig. 10a and b compares the predicted response
of plain and twill weave fabrics, respectively, with those reported in
the literature. It is seen that the present approach not only captures
the nonlinearity in the stress-strain curve associated with the matrix
damage but it also predicts well the ultimate failure of the weave due
to the fiber failure in the yarns along the loading direction.

Reasons for differences between predicted and experimental peak
load/stress for woven fabrics include simplification of the micro-structure
to accommodate the FSA approach, and the assumption of the linearly
elastic behavior prior to damage initiation in the failure model that
neglects nonlinearities observed in experiments.

3.5. Limitation of the FSA approach

Complex micro-structures have been approximated by the periodic
ones, and sizing of fibers used to enhance their bonding to the matrix
has been neglected. Fiber cross-sections have been assumed to be

13
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Fig. 8. (continued).
Table 5
Strength properties of the yarn and the resin used in the FSA analysis.
VF FIL Fll‘ FZI FZu F-I Fﬁ
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
E-glass/epoxy [23] 0.75 1551 721 46 141 85 85
E-glass/epoxy 0.65 1140 620 50 147 61 61
[54,55]
E-glass/vinylester 0.80 1655 769 50 150 89 89
[23]
Ymuuix
(MPa)
Epoxy [23] 70
Vinylester [23] 73
Table 6
Weaves used in the study.
Weave Material Vi/Vy Vi/V,
1 [56] Plain E-Glass/Vinylester 0.8 0.5
2 [57] Plain E-Glass/Epoxy 0.65 0.35
3 [23] Twill E-Glass/Epoxy 0.75 0.38
4 [23] Twill E-Glass/PE/Epoxy Hybrid 0.75/0.75 0.52

uniform, which rarely occurs. Also, significant computational resources
are needed to generate concentration tensors that require considering
up to a million points in the frequency domain for each sub-cell in a

unit cell.
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Fig. 9. Stress-strain response of unidirectional fiber-reinforced composite showing linear hardening/softening during post-failure deformations for loading (a) along, and (b)

transverse to the fibers.

4, Conclusions

The introduction of a wedge along with cuboidal sub-volumes has
allowed us to employ the Fourier Series Analysis (FSA) approach for
analyzing complex micro-structures. We have deduced effective prop-
erties of (i) unidirectional fiber-reinforced composites with fibers of
different cross-sections with square edge, square diagonal and hexag-
onal close packing arrangements (SEP, SDP and HCP), as well as of
(ii) both plain and twill weave woven yarn reinforced composites. It
is found that the transverse elastic modulus and the shear moduli are
sensitive to changes in the unit cell configuration and the fiber shape.
The SEP (SDP) arrangement with square (circular) fibers gives the high-
est (least) values of elastic constants and the ultimate strength. Elastic
constants for weaves predicted from the FSA are close to those reported
in the literature that were predicted either by different methods or from
the test data.

The analysis of elastic—plastic deformations showed that the SEP
configuration with square cross-section fibers has the stiffest response
while the SDP configuration with octagonal fibers has the softest and
the star shaped fibers falling between the two. These results are qualita-
tively similar to the effective response computed by other investigators
using the finite element method (FEM).

Predicted elastic constants for weaves from the FSA agree well with
those from other methods reported in the literature. A linear softening
model based on the plasticity approach for post-failure initiation in
yarn and resin captures well the nonlinear response of the composite
and provides reasonable values of the ultimate strengths.

14

With the introduction of wedge sub-cells, a wide class/range of
composites from unidirectional fiber-reinforced composites with com-
plex fiber cross-sections to woven fabric composites can be analyzed
with the FSA to not only predict elastic constants but also to analyze
inelastic deformations and failure. Since the approach is semi-analytical
it is computationally less intensive than numerical homogenizing ap-
proaches.

Future work could include accounting for strain-rate and temper-
ature dependence of moduli of the constituents, and delineating their
effects on the response of the composite.
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