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Effect of Electromechanical Coupling on Static
Deformations and Natural Frequencies

Jiang Jin and Romesh C. Batra

Abstract—A two-way coupled electromechanical theory
is used to study static deformations and free vibrations
of a laminated hybrid rectangular plate comprised of ei-
ther piezoceramic (PZT) layers or patches embedded at
arbitrary locations in graphite/epoxy layers. A first-order
shear deformation theory is used to develop equations for
the plate which are solved by the finite-element method
(FEM) using eight-node isoparametric elements. Static de-
flections and natural frequencies computed with open-
circuited PZT layers are found to differ significantly from
those of grounded PZT layers.

I. Introduction

Microelectromechanical systems (MEMS), con-
sisting of multilayered diaphragms of piezoelectric

(PZT)1 and nonpiezoelectric materials, often are used as
sensors and actuators. They function by converting either
electrical energy into mechanical energy or vice versa. The
PZT actuators usually are poled in the thickness direction.
The application of an electric field in the thickness direc-
tion causes the actuator’s lateral dimensions to change and
induce a strain in the host structure. In order to effec-
tively design MEMS and smart structures, one needs sim-
ple models that consider electromechanical deformations
of PZTs and account for the interaction between MEMS
and the host structure.

Modeling techniques involve either one-way or two-way
coupling between the electric and the mechanical defor-
mations. In the former theories, the actuation effect of a
PZT actuator is replaced by equivalent forces on the host
structure, and the electric displacement in a PZT layer
is determined by the strain field. In the latter theories,
the electric displacement and the mechanical response are
coupled together in the sense that the electric field and
the mechanical deformations of a PZT actuator determine
forces it exerts on the host structure.

Crawley and Lazarus [1] and Crawley and de Luis [2]
used the one-way coupled theory to analyze their experi-
mental setup and correlate computed results with the test
values. Wang and Rogers [3] and Yao et al. [4] used the
classical laminated plate theory to analyze a laminated
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plate with uniformly distributed PZT actuators. Shah et
al. [5] used Mindlin’s (or the first-order shear deformation
theory (FSDT)) plate theory and a nine-node quadrilat-
eral element to analyze the problem by the finite-element
method (FEM). Other works using the FEM and the
FSDT to study hybrid laminated structures include those
of Ghosh and Batra [6], [7] and Batra and Ghosh [8] to
control the shape and annul vibrations, Chandrashekhara
and Bhatia [9] to control the buckling of a plate, Chan-
drashekhara and Tenneti [10] to suppress thermally in-
duced vibrations, and Varadarajan et al. [11] to control
the shape of a structure. Researchers using the second type
of theories include Allik and Hughes [12] who developed a
general FEM for studying vibrations of a hybrid body, and
Batra and Liang [13] who developed a finite element (FE)
code using eight-node isoparametric brick elements to an-
alyze transient-finite, three-dimensional deformations of a
hybrid body comprised of orthotropic nonpiezoelectric and
PZT materials. Batra and Liang [13] accounted for both
material and geometric nonlinearities. It was shown that
the consideration of terms quadratic in the electric field
in the constitutive relations improved the agreement be-
tween the computed transverse deflections of a PZT layer
and those observed by Crawley and Lazarus [1]. The code
was used by Batra and Geng [14] to delineate the enhance-
ment in the dynamic buckling load of a column and a plate
by activating PZT layers perfectly bonded to its surfaces.
They [15] enhanced the code’s capabilities to include vis-
coelastic material behavior and studied the damping in-
duced by layers enclosed between the host structure and
the PZT layers. Ha et al. [16] also included incompati-
ble modes in their three-dimensional FE code, and Kim
et al. [17] and Lim et al. [18] used a combination of 20-
node brick, 13-node transition, and 9-node plate elements
to describe the behavior of an isotropic plate instrumented
with PZT sensors and actuators. Saravanos et al. [19] used
a layerwise laminated plate theory, and Thornburgh and
Chattopadhyay [20] used a higher-order laminated plate
theory to study deformations of a smart structure.

Vidoli and Batra [21] used a mixed, three-dimensional
variational principle [22] to derive two-dimensional equa-
tions for a piezoelectric plate. They used this theory to
study cylindrical deformations of a transversely isotropic
plate due to equal and opposite charges applied to its
top and bottom surfaces. Batra and Vidoli [23] used the
mixed variational principle [22] to deduce a Kth-order two-
dimensional linear theory for an anisotropic homogeneous
PZT plate. They showed that it can capture boundary-
layer effects near the clamped and the free edges. Also,

0885–3010/$20.00 c© 2005 IEEE



1080 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 7, july 2005

Fig. 1. A schematic of the problem studied.

through-the-thickness variation of the transverse shear and
the transverse normal stresses agree well with those com-
puted from the analytical solution of the three-dimensional
piezoelectric equations. Vel and Batra [24], [25] have used
the Eshelby-Stroh formalism to find analytical solutions
for static deformations of a composite beam containing
PZT patches. Vel et al. [26] have used a similar technique
to analyze cylindrical bending vibrations of a piezoelec-
tric composite plate. Yang et al. [27] and Batra et al. [28],
[29] modeled PZT layers as membranes, but Vel et al. [26]
accounted for their transverse deformations. Furthermore,
Vel et al.’s [26] approach can accommodate PZT patches.
We note that shear mode actuators have been studied by
Vidoli and Batra [30] and Vel and Batra [31], [32].

Analyses based on three-dimensional deformations give
detailed information and accurate results; however, they
can be quite expensive for designing a MEMS because the
design process is intrinsically iterative. Thus, simple mod-
els that capture nearly all of the physics of the system and
are easy to use can be very helpful to designers.

Here a two-way coupled FSDT and eight-node isopara-
metric quadrilateral elements are used to analyze static
deformations and vibrations of a thin laminated hybrid
plate with rectangular PZT patches embedded at arbi-
trary locations. The primary contribution of this work is
to show that the electromechanical coupling strongly in-
fluences natural frequencies of a hybrid laminated plate.
It is established by analyzing structures with the top and
the bottom surfaces of PZT layers either grounded or open
circuited. Results computed with the FSDT are found to
match well with those obtained from the three-dimensional
commercial code ANSYS (Ansys, Inc., Canonsburg, PA).
Results computed for nine-layer and three-layer thin hy-
brid laminated plates also agree well with the test findings
of different investigators [2], [33]. Results have been com-
puted for a cantilever plate and a rectangular plate with
two opposite edges either clamped or simply supported, or
all edges free.

II. Problem Formulation

A schematic of the problem studied and the location of
rectangular Cartesian coordinate axes are shown in Fig. 1.
We consider a laminated hybrid composite plate with plies
made of either a PZT material or a fiber-reinforced com-
posite; each layer may be made of an orthotropic mate-
rial. The PZT layers need not be symmetrically located
about the midsurface of the plate. Furthermore, they need

not extend along the entire length and width of the plate.
Said differently, segmented rectangular PZT patches may
be bonded to the top and the bottom surfaces of the plate.
Two adjacent plies are assumed to be perfectly bonded to-
gether with an adhesive layer of negligible thickness. The
three-dimensional constitutive relation for an anisotropic
piezoelectric layer can be written as:

{σ} = [c]{ε} − [e]{E}, (1a)

{D} = [e]T {ε} + [ξ]{E}, (1b)

where {σ} = (σxx, σyy, σzz , σxy, σyz, σzx)T and {ε} =
(εxx, εyy, εzz, 2εxy, 2εyz, 2εzx)T are, respectively, six-
dimensional vectors of stresses and strains for infinitesimal
deformations, [c] is the 6×6 matrix of elastic constants, [e]
is the 6×3 matrix of piezoelectric constants, [ξ] is the 3×3
matrix of electric permittivities, and {E} = (Ex, Ey, Ez)T

and {D} = (Dx, Dy, Dz)T are three-dimensional vectors
of the electric field and the electric displacement, respec-
tively. The electric field is related to the electric potential
φ by:

{E} = −
(

∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

)T

. (2)

The PZT layer is poled in the z-direction and is assumed
to be transversely isotropic about the z-axis. Thus, it has
five nonzero piezoelectric constants: e31, e32, e33, e15, and
e24. For a nonpiezoelectric layer, [e] = 0.

The plate thickness is assumed to be small as com-
pared to its in-plane dimensions. Because the transverse
normal stress, σzz, is very small as compared to the in-
plane stresses, we set σzz = 0 in (1a), solve it for εzz, and
substitute the result in the remaining equations. We thus
obtain:

{σ} = [c̄]{ε} − [ē]{E}, (3a)

{D} = [ē]T {ε} + [ξ]{E}, (3b)

where [c̄] and [ē] are 5 × 5 and 5 × 3 matrices of the mod-
ified (or the reduced) elastic constants and piezoelectric
coefficients, respectively. Note that {σ} and {ε} are now
five-dimensional vectors. In most applications of plate-
like structures, surface tractions and the electric potential
are prescribed on the top and the bottom surfaces. Thus
|σzz| � min(|σxx|, |σyy|), and |Ez | � max(|Ex|, |Ey|). A
goal of this work is to analyze the influence of the elec-
tromechanical coupling upon the natural frequencies.

We use the following displacement field for the FSDT:

u(x, y, z, t) = u0(x, y, t) + zψx(x, y, t),
v(x, y, z, t) = v0(x, y, t) + zψy(x, y, t),

w(x, y, z, t) = w0(x, y, t),
(4)

where u0, v0, and w0 are displacements of a point on the
midsurface of the plate, and ψx and ψy are rotations about
the y- and the x-axes, respectively, of the normal to the
midplane. Eq. (4) gives continuous displacements across
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an interface between two adjoining layers, but generally
result in discontinuous tractions across an interface. An
alternative is to use a layerwise plate theory that signifi-
cantly increases the number of unknowns. The electric field
in the kth layer with zk ≤ z ≤ zk+1 in it is assumed to be
given by:

φ(x, y, z, t) = φk(x, y, t)

+
z − zk

zk+1 − zk
(φk+1(x, y, t) − φk(x, y, t)), (5)

where φk and φk+1 are the electric potentials on the bot-
tom and the top surfaces of the kth layer, respectively.
Thus, the electric field, Ez , in each layer does not vary
with z.

Fields (4) and (5) give the following for the infinitesimal
strains and the electric field at a point:

{ε} = {ε0} + z{κ},

{ε0} =
(

∂u0

∂x
,

∂v0

∂y
,

∂u0

∂y
+

∂v0

∂x
,

∂w0

∂y
+ ψy,

∂w0

∂x
+ ψx

)T

,

{κ} = (κx, κy, κxy, 0, 0)T

=
(

∂ψx

∂x
,

∂ψy

∂y
,

∂ψx

∂y
+

∂ψy

∂x
, 0, 0

)T

.

(6)

E(k)
x = −

(
∂φk

∂x
+

z − zk

zk+1 − zk

(
∂φk+1

∂x
− ∂φk

∂x

))
,
(7a)

E(k)
y = −

(
∂φk

∂y
+

z − zk

zk+1 − zk

(
∂φk+1

∂y
− ∂φk

∂y

))
,
(7b)

E(k)
z = −(φk+1 − φk)/(zk+1 − zk). (7c)

Here {E(k)} is the electric field in the kth layer.
Substitution from (6) and (7) into (3a) and integration

of the resulting equation over the plate thickness give:

{N̄} = [C̄]{ε̄} − [ē]{∆φ}, (8)

where:

{N̄} = (Nxx, Nyy, Nxy,Mxx,Myy,Mxy, Qyz, Qxz)T ,
(9)

{ε̄} = (ε0xx, ε0yy, 2ε0xy, κx, κy, κxy, 2ε0yz, 2ε0xz)T ,
(10)

(Nxx, Nyy, Nxy, Qyz, Qxz)

=
n∑

k=1

∫ zk+1

zk

(σxx, σyy, σxy, σyz, σxz)dz, (11)

(Mxx,Myy,Mxy) =
n∑

k=1

∫ zk+1

zk

(σxx, σyy, σxy)zdz,
(12)

[C̄] =

⎡
⎣A B 0

B D 0
0 0 As

⎤
⎦ , (13)

(Aij , Bij , Dij)

=
n∑

k=1

∫ zk+1

zk

c̄
(k)
ij (1, z, z2)dz, (i, j = 1, 2, 3), (14)

Asij = β
n∑

k=1

∫ zk+1

zk

c̄
(k)
ij dz, (i, j = 4, 5), (15)

[ē] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ē
(1)
31 ē

(2)
31 . . . ē

(n)
31

ē
(1)
32 ē

(2)
32 . . . ē

(n)
32

ē
(1)
36 ē

(2)
36 . . . ē

(n)
36

ē
(1)
31 z̄(1) ē

(2)
31 z̄(2) . . . ē

(n)
31 z̄(n)

ē
(1)
32 z̄(1) ē

(2)
32 z̄(2) . . . ē

(n)
32 z̄(n)

ē
(1)
36 z̄(1) ē

(2)
36 z̄(2) . . . ē

(n)
36 z̄(n)

0 0 . . . 0
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

z̄(k) = (zk + zk+1)/2, (17)

{∆φ} = (∆φ1,∆φ2, . . . ,∆φn)T , (18)
∆φk = (φk+1 − φk). (19)

Here we have tacitly assumed that max(|E(k)
x |, |E(k)

y |) �
|E(k)

z | and neglected contributions of e
(k)
15 E

(k)
y and e

(k)
24 E

(k)
x .

It is reasonable because each ply is very thin, which also
justifies the assumption that E

(k)
z is uniform in the thick-

ness direction. Note that n equals the number of layers,
β(= 5/6) is the shear correction factor, A, B, and D are
3 × 3 matrices, and As is a 2 × 2 matrix.

As charge can be collected only in the z-direction, we
compute only Dz. Eq. (1b) for the kth ply is:

D(k)
z = ē

(k)
31 ε(k)

xx + ē
(k)
32 ε(k)

yy + 2ē
(k)
34 ε(k)

xy + ξ(k)
z E(k)

z .
(20)

Substitution for {ε} from (6) and for E
(k)
z from (7c)

into (20) gives:

{D̄z} = [ē]T {ε̄} + [ξ̄z ]{∆φ}, (21)

where:

{D̄z} = (D(1)
z , D(2)

z , . . . , D(n)
z )T , (22)

[ξ̄z] =⎡
⎢⎢⎢⎣
ξ
(1)
z /(z2 − z1) 0 . . . 0

0 ξ
(2)
z /(z3 − z2) . . . 0

0 0 . . . 0
0 0 0 ξ

(n)
z /(zn+1 − zn)

⎤
⎥⎥⎥⎦

(23)
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The electric enthalpy density, H, for a three-
dimensional piezoelectric body including strain energies
due to elastic and piezoelectric deformations and the elec-
trical energy is given by [34]:

H =
1
2
{ε}T [c]{ε} − {ε}T [e]{E} − 1

2
[E]T {ξ}[E].

(24)

For the FSDT, matrices [c] and [e] in (24) are first
replaced by [c̄] and [ē] respectively, and {ε} by the five-
dimensional vector obtained from {ε} by deleting εzz. Sub-
stituting for {ε} and [E] from (6) and (7) into (24), and
integrating the resulting equation over the plate thickness,
we get the following expression for the surface density, HL,
of the electric enthalpy:

HL =
∫ h/2

−h/2
Hdz =

1
2
({ε̄}T [C̄]{ε̄}

− 2{ε̄}T [ē]{∆φ} − {∆φ}T [ξ̄z]{∆φ}). (25)

Equations of motion for the piezoelectric laminate are
derived by using the Hamilton principle:

δ

∫ t

0
dt

∫
V

(ρ

2
{u̇}T {u̇} − H

)
dV

+
∫ t

0
dt

∫
S

({t}T {δu} − qδφ)dA = 0. (26)

Here ρ is the mass/volume, {u̇}T = (u̇x, u̇y, u̇z) is the ve-
locity vector, {t}T = (tx, ty, tz) is the surface traction vec-
tor, and q is the charge/surface area. The surface integral
in (26) is over all bounding surfaces of the laminate, and
V is the volume of the region occupied by the body. Sub-
stitutions from (3) and (24) into (26) and integration with
respect to z over the plate thickness give:
∫ t

0
dt

∫
S0

[{δU̇}T [M̄ ]{U̇} − {δε̄}T [C̄]{ε̄} + {δε̄}T [ē]{∆φ}

+{δ∆φ}T [ē]T {ε̄} + {δ∆φ}T [ξ̄z]{∆φ}]dA

+
∫ t

0
dt

∫
S±

{δU}T{P}dA −
∫

S±
{δφ}T {q}dA = 0,

(27)

where

{U} = (u0 v0 ψx ψy w0)T , (28)

[M̄ ] =

⎡
⎢⎢⎢⎢⎣

I0 0 I1 0 0
0 I0 0 I1 0
I1 0 I2 0 0
0 I1 0 I2 0
0 0 0 0 I0

⎤
⎥⎥⎥⎥⎦, (29)

(I0, I1, I2) =
n∑

k=1

∫ zk+1

zk

ρ(k)(1, z, z2)dz, (30)

I0, I1, I2 are the normal, coupled normal-rotary, and ro-
tary inertia coefficients, respectively. {U} is the vector of
generalized displacements, {P} is the vector of generalized
surface tractions conjugate to {U}, S0 is the midsurface of

the plate, and S+ and S− are, respectively, the top and
the bottom surfaces of the plate.

Eq. (27) can be viewed as a weak formulation of equa-
tions governing electromechanical deformations of the hy-
brid piezoelectric plate.

III. Finite-Element Formulation

The midsurface of the plate is divided into eight-node
isoparametric quadrilateral elements. The same set of
shape functions is used to approximate the electric poten-
tial, and each one of the five components of the generalized
displacement. That is:

{U(x, y, t)} = [NU(x, y)]{Ue(t)}, (31a)
{φ(x, y, t)} = [Nφ(x, y)]{φe(t)}, (31b)

where:

[NU (x, y)] = [N1(x, y)Iu, N2(x, y)Iu, . . . , N8(x, y)Iu],
[Nφ(x, y)] = [N1(x, y)Iφ, N2(x, y)Iφ, . . . , N8(x, y)Iφ],(32)

here Iu and Iφ are, respectively, 5 × 5 and n × n identity
matrices, and {Ue(t)] and {φe(t)} are 40 × 1 and 8n ×
1 matrices, respectively. Substitution from (28), (6), and
(31a) into (10) yields:

{ε̄} = [BU ]{Ue}, (33)

where:

[BUi] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni,x 0 0 0 0
0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0
0 0 Ni,x 0 0
0 0 0 Ni,y 0
0 0 Ni,y Ni,x 0
0 0 0 Ni Ni,y

0 0 Ni 0 Ni,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1, 2, . . .8,

(34)

Ni,x = ∂Ni/∂x etc., (35)
[BUi] = [BU1 BU2 . . . BU8]. (36)

Similarly:

{∆φ} = −[Bφ]{φe}, (37)

where:

[Bφ] =

⎡
⎢⎢⎣

1 0 . . . 0 0
−1 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . −1 1

⎤
⎥⎥⎦

n×n

[Nφ]n×8n.
(38)

Substitution from (31), (33), and (37) into (27) and
exploiting the fact that the resulting equation must hold
for all choices of δU and δ∆φ that vanish where U and
φ are prescribed, we obtain the following two equations
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governing the time evolution of the generalized nodal dis-
placements and the nodal electric potentials:

[M ]{Ü} + [KUU ]{U} + [KUφ]{φ} = {F}, (39)
[KφU ]{U} + [Kφφ]{φ} = {G}, (40)

where:

[M ] =
∑

e

∫
Se

[NU ]T [M̄ ][NU ]dA, (41)

[KUU ] =
∑

e

∫
Se

[BU ]T [C̄][BU ]dA, (42)

[KUφ] =
∑

e

∫
Se

[BU ]T [ē][Bφ]dA, (43)

[KφU ] = [KUφ]T , (44)

[Kφφ] = −
∑

e

∫
Se

[Bφ]T [ξ̄z ][Bφ]dA, (45)

{F} =
∑

e

∫
S±

e

[NU ]T {P}dA, (46)

{G} = −
∑

e

∫
S±

e

[Nφ]T {q}dA. (47)

The summation in (41)–(47) is over all elements. Eq.
(39) and (40) can be written as:

[
M 0
0 0

] {
Ü

φ̈

}
+

[
KUU KUφ

KφU Kφφ

] {
U
φ

}
=

{
F (t)
G(t)

}
.

(48)

The electric potential on the faces of PZT layers that
act as sensors is grouped together into the array {φS}, and
on those acting as actuators into the array {φA}. Eq. (48)
is split into the following two equations:

[M ] {Ü} + [KUU ]{U} + [KSS
Uφ]{φS} = {F} − [KSA

Uφ ]{φA},
(49a)[

KSS
φU

]
{U} + [KSS

φφ ]{φS} = {G} −
[
KSA

φφ

]
{φA},

(49b)

where superscripts S and A indicate partitioned submatri-
ces. Substitution for φS from (49b) into (49a) gives a set of
coupled ordinary differential equations for the determina-
tion of U . These equations subject to the prescribed initial
displacements, initial velocities, and boundary conditions
are integrated with respect to time t. Having found U , φS

can be computed from (49b).
For free vibrations of the hybrid plate {F} = {0},

{G} = {0}, and one assumes that:

{U(t)} = {Ũ}eiωt, {φ(t)} = {φ̃}eiωt, (50)

where ω is a natural frequency, and Ũ and φ̃ are, re-
spectively, amplitudes of the displacement and the elec-
tric potential. Substitution from (50) into (48) and setting
{F} = {0}, {G} = {0}, we get:

[
KUU KUφ

KφU Kφφ

] {
Ũ

φ̃

}
= ω2

[
M 0
0 0

] {
Ũ

φ̃

}
, (51)

or:

[K̃]{Ũ} = ω2[M ]{Ũ}, (52)

where:

[K̃] = [KUU ] − [KUφ][Kφφ]−1[KφU ]. (53)

The second term on the right-hand side of (53) describes
the effect of electromechanical coupling on the natural fre-
quencies of the hybrid plate.

Mechanical boundary conditions imposed at clamped
(C), free (F), and simply supported (SP) edges are given
below.

C: u0 = v0 = w0 = ψx = ψy = 0;
F: Nxx = Nxy = Qxz = Mxx = Mxy = 0 on x = 0, a,

Nyy = Nxy = Qyz = Myy = Myx = 0 on y = 0, b;
SP: w0 = 0, Nxx = Nxy = Mxx = Mxy = 0 on x = 0, a,

w0 = 0, Nyy = Nxy = Myy = Myx = 0 on y = 0, b.

(54)

Electrical boundary conditions for grounded (or short-
circuit) and open-circuited layers are:

Grounded: φ = 0,

Open-Circuited: Dz = 0 on the surface z = const.

IV. Results and Discussion

A. Static Deformations

1. Comparison of Computed Results with Experimental
Observations of Crawley and Lazarus: A computer code
based on the afore-stated formulation has been developed.
It uses an eight-node isoparametric element and 2 × 2 in-
tegration rule. It has been verified and validated by an-
alyzing the problem studied experimentally by Crawley
and Lazarus [1]. The 0.83-mm thick [0/ ± 45◦]s AS4/3501
graphite/epoxy cantilever plate has 15 PZT-4 patches
bonded symmetrically to its top and bottom surfaces as
shown in Fig. 2 in which dimensions of the plate also are
given. An electric field of 395 V/mm of opposite polar-
ity is applied to PZTs bonded to the top and the bottom
surfaces of the plate. The graphite/epoxy is modeled as an
orthotropic material and the PZT as transversely isotropic
with the z-axis as the axis of transverse isotropy. Values of
material parameters are listed in Table I. Fig. 3 compares
the computed and the observed transverse deflections T1,
T2, and T3 normalized as follows:

T1 = w2/b,

T2 = (w2 − 0.5(w1 + w3))/b,

T3 = (w3 − w1)/b

Here w2, w1, and w3 are, respectively, the transverse dis-
placement of a point on the centroidal axis and the left
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Fig. 2. Cantilever composite plate with surface-bonded piezoelectric actuators [1].

TABLE I
Material Properties (Electric Permittivity of Air, ε0 = 8.85 × 10−12

F/m).

Property 0◦AS4/3501 PZT-4 0◦T300/976 PZT G1195N

Elastic properties:
E11(GPa) 132.38 81.3 150.0 63.0
E22(GPa) 10.76 81.3 9.0 63.0
E33(GPa) 10.76 64.5 9.0 63.0
G23(GPa) 3.61 25.6 2.5 24.2
G13(GPa) 5.65 25.6 7.1 24.2
G12(GPa) 5.65 30.6 7.1 24.2

ν12 0.24 0.33 0.3 0.3
ν13 0.24 0.43 0.3 0.3
ν23 0.49 0.43 0.3 0.3

Piezoelectric Coefficients (10−12 m/V)
e31 0 122.0 0 254.0
e32 0 122.0 0 254.0
e33 0 285.0 0 374.0
e24 0 0 0 584.0
e15 0 0 0 584.0

Electric permittivity
ξ11/ε0 3.5 1475.0 3.5 1728.8
ξ22/ε0 3.0 1475.0 3.0 1728.8
ξ33/ε0 3.0 1300.0 3.0 1694.9

Mass density ρ (kg/m3) 1578.0 7600.0 1600 7600

edge and the right edge of the midsurface of the plate,
and b is the plate width. The normalized displacements
T1, T2, and T3 represent, respectively, the bending deflec-
tion of the centroidal axis, the transverse bending curva-
ture, and the twisting angle due to the coupling between
bending and twisting. Results have been computed by ne-
glecting the effect of inertia forces. It is clear that the com-
puted transverse deflection of a point on the centroidal axis
agrees well with the measured one. However, the agree-
ment between the computed and the measured deflections
of points on an edge of the plate is not very good. This
discrepancy could be due to the three-dimensional effects
present at points near the free edges of the plate that are

ignored in the FSDT. These effects are negligible at points
on the centroidal axis.

2. Deflection of a Hybrid Plate with PZT Layers
Grounded Versus Short Circuited: We now investigate the
effect boundary conditions imposed on PZT layers have on
the lateral deflections of a plate subjected to mechanical
loads. Two problems, namely a cantilever plate and a sim-
ply supported plate each made of a single 0◦ AS4/3501
graphite/epoxy layer with identical G-1195N (Piezo Sys-
tem, Cambridge, MA) PZT layers bonded to its entire top
and bottom surfaces are analyzed; the plate geometry is
shown in Fig. 4(a). The hybrid cantilever plate is loaded
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(a)

(b)

(c)

Fig. 3. Comparison of the computed transverse deflections with the
test values of [1]. (a) Transverse deflection of the centroidal axis,
(b) the transverse bending curvature, and (c) the transverse twisting
angle.

(a)

(b)

(c)

Fig. 4. (a) Composite laminated plate with surface-bonded piezo-
electric layers (dimensions in mm). (b) Comparison of transverse
deflections of the centroidal axis computed from the present code
with those from the three-dimensional commercial code ANSYS; can-
tilever. (c) Simply supported only on the left and the right edges.
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TABLE II
Lay-up of Layers: [0/-0/0/-0/PIC151/-0/0/-0/0].

Mode No. Exp. ANSYS % Error Present code % Error Mode Shapes

1 961 899.73 −6.38 896.5 −6.71

2 1073 1015 −5.41 1025.7 −4.41

3 2158 2097 −2.83 2090.7 −3.12

4 2837 2786.4 −1.78 2800.9 −1.27

5 — 3908 — 3892.6 —

6 4361 4023.7 −7.73 4004.4 −8.18

7 4729 4416.1 −6.62 4390.2 −7.16

8 5525 5364.8 −2.90 5341.2 −3.33

9 5950 5640.6 −5.20 5601.7 −5.85

10 — — — — —

11 6529 6508.6 −0.31 6453.2 −1.16

12 7461 7375.1 −1.15 7284.9 −2.36

13 9018 8957.1 −0.68 8844.7 −1.92

by a 10 N/m uniformly distributed load on its free edge
and the simply supported hybrid plate by 1 kN/m2 uni-
formly distributed pressure on its top surface. In each case,
effects of inertial forces are neglected. Three-dimensional
deformations of each problem also are analyzed with the
commercial code ANSYS by dividing the graphite/epoxy
layer into 50× 20× 2 eight-node (solid 45) brick elements,
and each piezoceramic layer into 50 × 20 × 1 eight-node
coupled field (solid 5) brick elements. For analysis with
the present code based on the FSDT theory, the plate is
divided into 50×20 eight-node isoparametric quadrilateral
elements. It is clear from the results depicted in Figs. 4(b)
and (c) that the two deflected shapes of the centroidal
axis of the plate agree with each other. Also plotted in
Figs. 4(b) and (c) are the deflected shapes when the PZT

layers are open circuited (i.e., act as sensors) and when
they are grounded. Because the PZT layers also store elec-
tric energy in the former case, it should deflect less than
that when these layers are grounded. The difference in
the tip deflections of the cantilever plate computed with
grounded and open-circuited PZT layers is 21.6%. The two
deflections of the centroid of the simply supported plate
differ by 17.8%. These differences in deflections illustrate
the importance of considering proper boundary conditions
on the PZT layers.

B. Natural Frequencies

1. Comparison with Experimental Results: For five dif-
ferent orientations of plies in a nine-layer hybrid lami-
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TABLE III
Lay-up of Layers: [30/-30/30/-30/PIC151/-30/30/-30/30].

Mode No. Exp. ANSYS % Error Present code % Error Mode Shapes

1 848 751.08 −11.43 746.09 −12.02

2 1473 1334.7 −9.39 1316.3 −10.64

3 2249 2110.9 −6.14 2090.6 −7.04

4 3064 2829 −7.67 2785 −9.11

5 4314 3957.7 −8.26 3895.7 −9.70

6 4660 4468.2 −4.12 4388.3 −5.83

7 5012 4799.7 −4.24 4719.9 −5.83

8 5415 — — — —

9 5730 5034.3 −12.14 4930.6 −13.95

10 6960 6639.3 −4.61 6496.4 −6.66

11 — 7013.6 — 6837.6 —

12 7531 7355.2 −2.33 7204.9 −4.33

13 — 9409.4 — 9157.3 —

nated plate with all edges free, we have compared in Ta-
bles II–VI the presently computed first 13 natural frequen-
cies with the experimental values of [33]. Material prop-
erties and dimensions of the plate are given in [33]. We
also have included in Tables II–VI frequencies computed
with the three-dimensional, finite-element code ANSYS,
and depicted the mode shape obtained from the present
code. A dash signifies that this frequency was either not
observed in experiments or not computed from the code.
The frequency corresponding to mode shape 10 in Table II
could neither be computed with the present code nor ob-
served experimentally. However, Lin et al. [33] computed
this mode with ANSYS by using their FEM I and FEM II
formulations. Frequencies computed with ANSYS essen-
tially equal those listed in Tables IV through VIII of [33]
under the column FEM III because the two analyses used

the same solid elements in ANSYS. The percent error be-
tween the experimental frequency and that computed by
the present code is nearly the same as that between the
test value and the value obtained from ANSYS. The two
percentage errors differ by at most 2%. However, the max-
imum difference between the computed and the experi-
mental frequency is ∼15%. In summary, for all five hybrid
plates, the first 10 frequencies computed from the FSDT
differ at most by ∼15% from their corresponding exper-
imental values, and by ∼2% from those computed with
ANSYS. The first 13 modes of vibration of the five plates
are compared in Fig. 5.

2. Frequencies of a Hybrid Plate with PZT Layers
Grounded Versus Open Circuited: For the cantilever and
the simply supported plates studied in Section IV-B and
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TABLE IV
Lay-up of Layers: [45/-45/45/-45/PIC151/-45/45/-45/45].

Mode No. Exp. ANSYS % Error Present code % Error Mode Shapes

1 648 578.43 −10.74 573.41 −11.51

2 1471 1427.6 −2.95 1407.3 −4.33

3 1746 1658.8 −4.99 1641.6 −5.98

4 2983 2954.2 −0.97 2906.4 −2.57

5 3510 3288.1 −6.32 3246.1 −7.52

6 4687 4658.4 −0.61 4568.5 −2.53

7 — 5246 — 5153.8 —

8 5496 5301.7 −3.54 5218.4 −5.05

9 6388 6229.9 −2.47 6113.9 −4.29

10 6736 6784.5 0.72 6633 −1.53

11 7698 7658.1 −0.52 7469.6 −2.97

12 8439 8594.8 1.85 8404.3 −0.41

13 9083 9228.5 1.60 8991.4 −1.01

using the same FE meshes as those described there, we
have listed in Table VII the first 10 natural frequencies
computed with the present code and with ANSYS for the
faces of the two PZT layers either grounded or open cir-
cuited. In each case, the first natural frequency computed
with the present code agrees very well with that obtained
from ANSYS. However, the difference between frequencies
computed with the two codes increases with an increase in
the order of the mode shape. Also, the open circuited and
the grounded PZT layers give quite different frequencies;
the first natural frequency in the two cases differs by 14.2%
for the cantilever plate and 9.4% for the simply supported
plate.

3. Frequencies of a Hybrid Plate with Two Opposite
Edges Clamped: For the hybrid plates analyzed in Sec-

tion IV-B,1, we have listed in Table VIII the first 13 fre-
quencies computed with the present code when edges x = 0
and x = 70 mm are clamped and the other two are free.
The PZT faces are open-circuited. A comparison of fre-
quencies listed in Tables II and VIII reveals that clamping
these two edges increases each one of the first 13 frequen-
cies; the maximum percent increase is ∼14%.

C. Piezoelectric Layers Acting as Sensors

Static deformations of a hybrid composite plate com-
prised of [0/±45◦] T300/976 graphite/epoxy (DuPont,
Wilmington, DE) plate with four G1195N PZT patches
bonded symmetrically to its top and bottom surfaces as
shown in Fig. 6(a) are studied. All PZT layers act as sen-
sors, and the plate is loaded by a uniformly distributed
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TABLE V
Lay-up of Layers: [60/-60/60/-60/PIC151/-60/60/-60/60].

Mode No. Exp. ANSYS % Error Present code % Error Mode Shapes

1 596 510.77 −14.30 505.89 −15.12

2 1281 1304.4 1.83 1286.1 0.40

3 1517 1434.6 −5.43 1419 −6.46

4 2673 2693.3 0.76 2650.4 −0.85

5 3048 2844.2 −6.69 2808.7 −7.85

6 4143 4244 2.44 4164.1 0.51

7 4877 4712.3 −3.38 4643.6 −4.79

8 5924 6015.3 1.54 5882.1 −0.71

9 6524 6364.8 −2.44 6263 −4.00

10 7087 7006.7 −1.13 6878.3 −2.94

11 — 7232.7 — 7107.5 —

12 — 8084.1 — 7878.8 —

13 8479 8560.6 0.96 8359.8 −1.41

pressure of 1 N/m2. The cantilever plate is clamped at the
left edge. The left and the right edges of the other plate are
simply supported, and the other two edges are free. The
thickness of the hybrid plate is not uniform. The com-
puted electric potentials on top surfaces of the upper PZT
patches are depicted in Figs. 6(b) and (c). In each case,
the maximum voltage occurs at points of the maximum
curvature.

V. Conclusions

We have used a coupled electromechanical theory to an-
alyze static deformations and free vibrations of a hybrid
laminated rectangular plate comprised of PZT layers or

patches either embedded in or bonded to outer surfaces of
graphite/epoxy plies. A FSDT and a finite-element code
using eight-node isoparametric elements have been devel-
oped. It is shown that the FSDT gives results close to those
obtained from the three-dimensional commercial code AN-
SYS. Computed results show that the tip deflection of a
hybrid cantilever plate and the centroidal deflection of a
plate simply supported on two opposite edges with open
circuited PZT layers are, respectively, 21.6% and 17.8%
less than those when the PZT layers are grounded. The
natural frequencies of the two plates differ by 14.2% and
9.4% for the two sets of boundary conditions on the PZT
layers. Thus, one should use a coupled electromechanical
theory in designing a precision equipment such as a bi-
morph.
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TABLE VI
Lay-up of Layers: [90/-90/90/-90/PIC151/-90/90/-90/90].

Mode No. Exp. ANSYS % Error Present code % Error Mode Shapes

1 615 510.68 −16.96 505.25 −17.85

2 926 877.81 −5.20 861.68 −6.95

3 1539 1407.6 −8.54 1391.1 −9.61

4 1932 1862.1 −3.62 1826.3 −5.47

5 3096 2757.5 −10.93 2721.4 −12.10

6 3234 3051.1 −5.66 2988.9 −7.58

7 4733 4531.3 −4.26 4433.1 −6.34

8 5037 4550.4 −9.66 4483.1 −11.00

9 — — — — —

10 6765 6368.4 −5.86 6221.7 −8.03

11 7231 6770.8 −6.36 6658.6 −7.92

12 7841 7961.4 1.54 7812.6 −0.36

13 8106 8122.2 0.20 7965.5 −1.73

TABLE VII
Comparison of Natural Frequencies (Hz) Computed from the Present FSDT Formulation with Those from the

Three-Dimensional Commercial Code ANSYS.

Laminated plate with the left and
Cantilever laminated plate right edges simply supported

Mode grounded open-circuit grounded open-circuit
No. ANSYS FSDT ANSYS FSDT ANSYS FSDT ANSYS FSDT

1 16.09 16.09 18.38 18.466 44.37 44.48 48.52 48.625
2 76.67 77.00 78.50 79.068 142.02 143.11 144.2 145.44
3 100.4 101.27 113.38 114.72 179.52 181.96 201.15 204.43
4 246.7 249.12 256.63 260.4 324.9 328.58 340.28 345.62
5 292.12 289.05 319.56 328.81 407.39 420.27 465.11 483.4
6 464.27 473.72 494.4 508.75 575.62 588.55 620.23 640.91
7 550.7 575.54 620.08 650.58 667.81 682.21 835.12 846.95
8 620 637.62 769.78 794.74 728.66 770.22 841.76 901.74
9 752.35 775.54 818.12 868.94 851.74 870.51 998.89 1037

10 755.69 781.16 889.23 885.82 907.83 946.74 1023.4 1061.7
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Fig. 5. Comparison of modes of vibration of a hybrid plate with the five different orientation of fibers listed in Tables II–VI. Figures in
columns 2, 3, 4, 5, and 6 are, respectively, for the plates of Tables II–VI.

TABLE VIII
Frequencies Computed with the Present Code for a Hybrid

Laminated Plate with the Left and Right Edges Clamped

and the Other Two Free. All Edges are Open-Circuited.

A1 B C D E

938.95 785.76 623.87 528.42 503.81
1260.3 1535.9 1556.8 1417.4 1023.9
2499.3 2119.9 1701.1 1442.4 1374.9
2961.9 3288.5 3208.1 2800.5 2211.2
4182.6 4054.6 3329.5 2944.2 2662.3
4700.3 5061.7 5115.6 4562.8 3663.1
5207.3 5382.3 5384.9 4669.2 4335.9
5503.1 6486.5 5877.8 6578.2 5419.5
6474.3 6884.5 7299.4 6741.4 6103.4
7408.8 7841.1 7587.8 6807.8 6366.7
7521.2 8649.9 7840.5 7731.6 7484.8
7927.2 9239 8416.9 8075.8 7716.4
10081 9345.9 9763.9 8801.7 8314.6

1A = [0/0/0/0/p0/0/0/0/0],
B = [−30/30/ − 30/30/p0/30/ − 30/30/ − 30],
C = [−45/45/ − 45/45/p0/45/ − 45/45/ − 45],
D = [−60/60/ − 60/60/p0/60/ − 60/60/ − 60],
E = [−90/90/ − 90/90/p0/90/ − 90/90/ − 90],
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