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Summary--Steady state thermomechanical deformations of a semi-infinite rod moving at a very 
high speed and hitting a rigid hemispbericai cavity are studied. It is assumed that the deformations 
of the rod are axisymmetric, that its material can be modeled as rigid-viscoplastic, that the.material 
exhibits work-hardening, strain-rate hardening and thermal softening effects, and that the contact 
between the deforming rod and the cavity surface is smooth. It is found that the axial force 
experienced by the rod depends strongly upon its speed. An effort has been made to identify the 
effect of work hardening, strain-rate hardening and thermal softening on the deformations of the 
rod. Results computed and presented graphically include the distribution of the velocity field, the 
temperature change, the second-invariant of the strain-rate tensor and the principal stresses in the 
deforming region. Also plotted are the normal tractions on the cavity wall. 

v velocity of a rod particle 
p mass density 
q heat flux 
U specific internal energy 
D strain-rate tensor 
a Cauchy stress tensor 
s deviatoric stress tensor 
p hydrostatic pressure 
0 temperature change 
k thermal conductivity 
c specific heat 

tro yield stress in simple compression 
b, m strain-rate sensitivity parameters 

), thermal softening coefficient 
~bo, n work-hardening parameters 

t a unit tangent vector 
n a unit normal vector 

h, ~" heat transfer coefficient 

N O T A T I O N  

1. I N T R O D U C T I O N  

A widely used approach in analyzing the penetration of a fast moving (speed /> 1 km s- t) 
projectile into a very thick target assumes that the deformations of the target and the 
projectile are governed by purely hydrodynamic incompressible flow processes. Thus, the 
only material property of significance is the ratio of mass densities of the target and the 
penetrator. Since this theory predicts the same penetration depth for all impact velocities, 
Tate 1,1, 2] and Alekseevskii I-3] modified this model by including the effects of the material 
strengths of the projectile and the target. They assumed the material strength to be some 
multiple of the uniaxial yield stress of the material, but the multiplying factor is unresolved 
within the context of these theories. Since these theories are one-dimensional, they ignore 
the lateral motion, plastic flow and detailed dynamic effects. These and other limitations 
of the one-dimensional models have been lucidly discussed by Wright I-4]. An authoritative 
and superb review of the open literature on ballistic penetration, containing 278 reference 

99 



100 R.C.  BATRA and PEI-RONG LIN 

citations from 1800s until 1977, is the paper by Backman and Goldsmith [5]. It describes 
different physical mechanisms involved in the penetration and perforation processes, and 
also discusses a number of engineering models. The reader is also referred to the recent 
review of the status of ballistic impact modeling by Anderson and Bodner [6]. Penetration 
models that are not very difficult to use have been proposed by Ravid and Bodner I-7] 
and Ravid, Bodner and Holcman I-8]. The model proposed in I-7] is two-dimensional, 
utilizes five penetration stages, is applicable to rigid projectiles and presumes a kinematically 
admissible flow field in the target. Various unknown parameters appearing in the presumed 
flow field are found by using an upper bound theorem of plasticity modified to include 
dynamic effects. The penetration model proposed by Ravid, Bodner and Holcman also 
accounts for the shock effects and plastic deformation in the component bodies. 

In an attempt to understand better the approximations made in simple theories of 
penetration [1-3] and to provide some guidelines for improving kinematically admissible 
fields in engineering models of penetration, Batra and Wright [9] embarked upon studying 
an idealized steady state penetration problem. In it, they assumed that the rod is semi-infinite 
in length, that the target is infinite with a semi-infinite hole, that the rate of penetration 
and all flow fields appear steady to an observer situated on the penetrator nose and that 
the target/penetrator interface is smooth. They studied the problem of the deformable 
target, presumed to be made of a rigid-perfectly plastic material, and a rigid penetrator 
having a circular cylindrical body with a hemispherical nose. Subsequently, Batra [10, 11] 
analyzed the problem for different penetrator nose shapes and accounted for work- 
hardening, strain-rate hardening and thermal softening of the target material. 

Batra and Lin [12] have recently studied the steady state axisymmetric deformations of 
a semi-infinite cylindrical penetrator striking a known semi-infinite cavity in an infinite 
and rigid target. This problem is more challenging than the companion problem analyzed 
in 1,9-11] because of the presence in it of a free surface whose shape is not known a priori. 
Batra and Lin's calculations revealed that peak strain-rates in the range 105-106 s -1 
invariably occurred at or near the bottom-most point of the free surface. Since many 
materials used for high energy penetrators have strain-rate sensitive properties, we extend 
herein the previous work [12] to viscoplastic materials that exhibit thermal softening too. 
The effect of work hardening of the material is accounted for by the use of an internal 
variable whose rate of evolution is proportional to the plastic working. 

We note that there is no fracture or failure criterion incorporated in our work. Thus 
the material is presumed to undergo unlimited plastic deformations. Nevertheless, the 
kinematic, kinetic and temperature fields found herein should help in proposing and/or 
checking results from simpler engineering theories of penetration. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We use a cylindrical coordinate system, with the origin at the bottom of the hemispherical 
cavity in an infinite rigid target and z-axis pointing out of the cavity, to describe the 
steady-state axisymmetric deformations of the cylindrical penetrator striking the cavity. 
We assume that the axes of the penetrator and the cavity coincide with each other. The 
governing field equations are 

div v = 0, (1) 

div a = p*, (2.1) 

= p(v. grad)v, (2.2) 

-d iv  q + tr(aD) = p(v .grad)U, (3) 

2D = grad v + (grad v) r. (4) 

Equations (1)-(3), written in the Eulerian description of motion, express the balance of 
mass, balance of linear momentum and balance of internal energy, respectively. Here, v is 
the velocity of a rod particle, a the Cauchy stress, q the heat flux, p the mass density and 
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U the specific internal energy; a dot over a character denotes the material time 
differentiation, and the operators grad and div signify the gradient and the divergence 
operators on fields defined in the present configuration. In equation (1) we have assumed 
that the deformations are isochoric, and in equation (3) that all of the plastic working, 
rather than the 90-95% of it asserted by Farren and Taylor [13], is converted into 
heat. Equations (1)-(3) ought to be supplemented by constitutive relations and boundary 
conditions. 

For the constitutive relations, which are characteristic of the penetrator material, we take 

q = - k grad 0, (5) 

U = cO, (6) 

,r = - p l  + 2#(1, 0, ~,)D, whenever D :~ 0, (7) 

D = 0  if tr(s 2)< ao2(1-~,0) 2 1 + ~ o )  ' (8) 

s = ,r + p l ,  (9 )  

2#(•, O, •) = ao (1 + bl)"(1 - ~,0) 1 + ~oo ' (10) 

~) = (v-grad)~b = tr(oD) 1 + , (11) 

212 = tr(D2). (12) 

In these equations k is the thermal conductivity, c the specific heat, 0 the temperature 
change of a material particle from that in the reference configuration (0o), p the hydrostatic 
pressure not determined from the strain-rate field D because of the assumption of 
incompressibility of the material, ao the yield stress in quasistatic simple tension or 
compression test, and ~k, whose growth is governed by equation (11), is an internal variable 
used to describe the work-hardening of the material. The material parameters b and m 
define how the flow stress depends upon the strain-rate, ~b o and n characterize the 
dependence of the flow stress upon the work-hardening, and ~ is the inverse of (0m - 0o) 
where On, is the melting temperature of the penetrator material. That the flow stress decreases 
linearly with the temperature rise has been observed by Bell [14] and Lindholm and 
Johnson [15]. Of course, the range of temperatures investigated by Bell and by Lindholm 
and Johnson is not as large as that likely to occur here. Rosenberg et al. [16] observed 
that for C1008 steel the stress at 10% strain in simple compression decreases linearly when 
the temperature is increased from 25°C to 500°C, and stays constant from 500°C to 700°C. 
Other investigators, e.g. Costin et al. [17], have reported a power law dependence of the 
flow stress upon the temperature. In writing equation (7), we have neglected the elastic 
deformations of the penetrator. Equations (7), (9) and (10) imply that 

1 \1/2 ~k 
~ t r s2 )  = t ro  ( l + b i ) m ( l _ 7 0 ) ( l + ~ o ) ,  (13) 

which can be viewed as a generalized yon Mises yield criterion when the flow stress, given 
by the right-hand side of equation (13), at a material particle depends upon its strain-rate, 
strain and temperature. Zienkiewicz et al. [18] used a similar approach and took 

2# = [a o + (21/x/~$)l/~]/x/~l, 

where $ and n are functions of 0. They asserted that it represents Perzyna's viscoplastic 
model. Tate [19] considered the effect of thermal softening only and used equation (7) 
with m = n = 0 in equation (10). Batra [11], who also used equation (7) to study the 
steady-state thermomechanical deformations of a target being penetrated by a rigid 
cylindrical rod, has discussed the relation of equation (7) to other constitutive relations. 
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Finally, we note that equation (7) may be interpreted as a constitutive relation for a 
non-Newtonian fluid whose viscosity # depends upon the strain-rate, temperature and 
material parameter ~k. 

For the boundary conditions on the rod/cavity interface, we take 

t. (an) = 0, (14) 

v.n = 0 ,  (15) 

q . n  = h(O - Oa), (16) 

where h is the heat transfer coefficient between the rod and target materials and n and t 
are, respectively, a unit normal and a unit tangent vector. Note that n points into the rigid 
target and 0a is the average temperature of the target material. The boundary condition 
(14) represents smooth contact between the rod and the target, and equation (15) implies 
that rod particles do not penetrate into the rigid target. The boundary condition (14) 
appears reasonable, since a thin layer of material at the interface either melts or is severely 
degraded by adiabatic shear. On the free surface of the rod, 

a n = 0 ,  (17) 

v . n = 0 ,  (18) 

q.n = ~(0 - 0), (19) 

where n is a unit outward normal to the surface, fi" is the heat transfer coefficient between 
the rod material and air and ~ is the air temperature. The boundary condition (18) ensures 
that the velocity of particles on the free surface is tangent to the surface. We note that the 
boundary condition (18) is not needed for the complete specification of the problem, 
provided that the shape of the free surface is known. Since this is not the case here, 
condition (18) is used to test whether or not the presumed shape of the free surface is correct. 

On the rod cross-section far from the cavity bottom, 

Iv + voezl --* O, I 0 - 01 ~ 0 as z ~ ~ ;  (20) 

on the deformed rod material at the cavity outlet, 

lanl-'0, la'.l 0 as ( r 2 + z 2 )  ' / z ~ .  (21) 

Equation (20) states that the end of the rod far from the cavity bottom is moving with a 
uniform speed v o in the positive z-direction and is at a uniform temperature ~r. According 
to equation (21), at the cavity outlet, the rod particles are traction free and there is no 
heat exchange between them and the material on the other side of the outlet surface. A 
precise statement of equations (20) and (21) will involve the specification of the rates of 
decay of the field quantities. However, at this time, there is little hope of proving any 
existence or uniqueness theorem for the stated problem and we therefore gloss over this 
rather touchy issue. Herein we assume that there exists a solution to the problem defined 
by equations (I)-(12) and (14)-(21), and seek an approximation to that solution by the 
finite element method. 

The introduction of non-dimensional variables, indicated in equation (22) by bars over 
characters, will help in the analysis of the problem over a broad range of values of various 
parameters: 

8 = a / a  o, ~ = p / a o ,  ~ = S/Oo, V = V/Vo, ~ = r/ro, ~ = z /ro ,  

~= 0/0o, E =  bvo/ro, ~ = yOo, ~ = pv~/ao ,  (22) 

fl =- k / (pcvoro)  , Oo = a o / ( p c ) ,  i f =  h / (pcvo) .  

Substituting from equations (5)-(10) into equations (1)-(3) and (11), rewriting these in 
terms of non-dimensional variables, denoting the gradient and divergence operators in 
non-dimensional coordinates by grad and div, and dropping the bars, we arrive at the 
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following set of equations: 

where 

div v = 0," 

div o = ~t(v. grad)v, 

tr(aD) + ~ div(grad 0) = (v. grad)0, 

tr(¢D) 1 + = (v.grad)O, 

(23) 

(24) 

(25) 

(26) 

1 (1 + bI)m(1 - ) ' 0 )  1 + D .  (27) 
a = - p l  + x / ~ l  

The boundary conditions (14)-(21) when written in terms of non-dimensional variables 
look exactly the same. Hereafter we shall use non-dimensional variables only. 

3. F I N I T E  E L E M E N T  F O R M U L A T I O N  O F  T H E  P R O B L E M  

We note that a numerical solution of the problem requires that we consider a finite 
region and know the shape of the free surface. We presume the latter and study deformations 
of the rod over the region R shown in Fig. 1, which also depicts a spatial discretization 
of R. The iterative procedure used to check whether or not the assumed shape of the free 
surface is correct and to modify it if necessary has been described by Batra and Lin [12]. 
The adequacy of the finite domain studied will be verified by solving the problem for two 
separate regions, one of them larger and containing the other, and ensuring that the two 
sets of computed values of various field quantities are close to each other. 

The boundary conditions (14)-(16) and (17)-(19) apply on the cavity surface BC and 
the free surface FED, respectively. Equations (20) and (21) are replaced by the equations 

Vz = - 1.0, Vr = 0, 0 = 0 on AF, (28) 

v = yen, t. (an) = 0, q-n = 0 on the outlet surface CD (29) 

O 
o 

F 

[ ' ~  D C 

O 

I I 

°Ol. O0 1 , 0 0  2 . 0 0  
R-coordinate 

FIo. 1. The finite region studied and its spatial discretization. 
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00 
a~ = 0, v, = 0, - 0 (30) 

c~r 

on the axis of symmetry AB. When a shape of the free surface has been presumed, the 
value of v~ is computed so as to satisfy the balance of mass. 

The details of the derivations of a weak formulation of the problem are given in several 
books--see for example Becker et al. 1-201, Zienkiewicz 1,21] and Hughes [22]. We omit 
the details, and simply state that a weak formulation of the problem defined on the region 
R by equations (23)-(26) and boundary conditions (14)-(19) and (28)-(30) is that equations 

f 2(div v)dV=O, (31) 

R p(div # ) d V -  fR #(I, 0, ~k)1,D: (grad ~b + (grad ,)T)] d V = a f [(v" grad)v]-~ d V, (32) 

fR[(v'grad)O]~dV+flf, gradO'grad~dV+hfo,RO'TdA+~fos, O'tdA 

1R 2R 
(~- D)~ dV, (34) 

fR [(v" grad)~b]~ d V = fR (1 + ~_o)" 

hold for arbitrary smooth functions 2, 4, ~/and ~ defined on R such that 4, = 0 on AF 
and AB, ~z = 0 on AF, ~. n = 0 on FED and DC and ~/= 0 on AF. In these equations 
A: B = tr(AB T) for linear transformations A and B, 01R is the surface BC and 02R denotes 
the free surface FED. The nonlinear equations (31)-(34) are solved iteratively for v, 0 and 
~,. At the ith iteration, equations 

fRS(d iv¢)dV 0, (35) 

f p'(div f, #(I i- 1, 0'-1, ~i- t)1,D,: ~)T)] dV ¢)dV- (grad ÷ + (grad 

= a  fR [ ( ¢ - l . g r a d ) ¢ j . ~ d V ,  (36) 

fR1'(v'-X'grad)O']rldV+flf gradO"gradqdV+hfo, o'~ldA+~fosRO'tldA 

.-~;R~(Gi-l:Di-X)dV-hfo Oa. dA-~fo Ol~dA, (37) 
1R 2R 

f O./_ 1. D i _  1 

\ ¢Jo/ 
are solved for v i, 0 i, #i and pi. The iterative process is stopped when, at each nodal point, 

Hvi--vi-1]l'~-]oi--oi-l["~']~Ii--~i-1]~e1'[]Vi-ll["~]Oi-1]"l-II~li-l]], (39) 

where Ilvll - v ,  + vz, and e is a preassigned small number. Values of p~ are not included 
in equation (39) since p appears linearly in equation (32). The boundary condition (15) 
on the rod-cavity interface has been accounted for by the use of Lagrange multipliers. 
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4. C O M P U T A T I O N  A N D  D I S C U S S I O N  O F  R E S U L T S  

The finite element code developed by Batra [11] and used to analyze steady state 
axisymmetric deformations of a viscoplastic target being penetrated by a rigid cylindrical 
penetrator was modified to solve the present problem. It employs six-noded triangular 
elements with v,, vz, 0 and ~ approximated by piecewise continuous complete quadratic 
polynomials and p by piecewise linear polynomials. Within each element, p is expressed 
in terms of its values at the corner nodes, and other variables are expressed in terms of 
their values at all of the six nodes of the element. The absence of a diffusive term in equation 
(34) necessitates the use of either a superfine mesh or a fine mesh, with an artificial diffusive 
term included in equation (34) or the use of upwinding test functions [23]. The last 
technique is also referred to as the Petrov-Galerkin formulation [22]. Whereas Batra and 
Gobinath [24] used the Petrov-Galerkin formulation to study the steady-state penetration 
problem for compressible rigid-perfectly plastic targets, we follow Batra [11] and add a term 

fa  grad ~b-grad ~ d V 

to the left-hand side of equation (34). Brooks and Hughes [25] have discussed in detail 
the justification for including such a term and have given equivalent ways of achieving the 
same objective. 

We assume the penetrator to be made of a typical steel and take for it the following 
values of various material parameters: 

n = 0.01, ~b o = 0.017, b = 104 s- 1, m = 0.025, a = 0.000555°C- 1, 

k = 4 8 W m - l o C  -1, c = 4 7 3 J k g - l ° C  -1, p = 7 8 0 0 k g m  -a, ao=180MPa  , 

h = 2 0 W m - 2  oC-1, ~'= 5 W m-Z oC-1, ro = 2.54 mm, 

e = 0.02, 0o=0, ~ = 0 ,  di = 2.4 × 10 -s 

This choice of values gives 00 = 48.9°C. However, we present below results in terms of 
non-dimensional quantities. We first investigate the effect of varying ~, and then of different 
material models on the deformations of the rod. 

Figure 2 depicts the computed velocity field for • = 5.0 and the radius of the hemispherical 
bottom of the cavity equal to 2.5. The plotted velocity field clearly shows that the velocity 
at points on the free surface and the cavity wall are along the tangent to these surfaces. 
Thus the iterative technique [12] used to find the shape of the free surface, and the method 
of Lagrange multipliers employed to satisfy v. n = 0 on the cavity wall, work quite well. 
Because of the presence of the advective term in equations (25) and (26), the finite element 
mesh had to be refined considerably as compared to that used in [12], where only the 
mechanical problem for a rigid-perfectly plastic rod striking the cavity defined by z = 0.04r 4 
was analyzed. The finite element mesh shown in Fig. 1 and used in all of the work discussed 
herein has 7,865 nodes, as compared to 1,357 nodes in the earlier work [12]. A reason for 
changing the cavity shape from the parabolic one studied earlier to the hemispherical one 
being studied here is that the latter is closer to the shape of the target-penetrator interface 
found in the solution of the complete penetration problem in which both the target and 
the penetrator are presumed to be deformable; see e.g. Pidsley [26]. 

The velocity field for other values of • was found to be similar to that shown in Fig. 2. 
In Fig. 3 are shown the free surfaces for ~ = 3.3, 4.0 and 5.0, and also the variation of the 
thickness of the outlet region with ~. These results are strikingly different from those 
obtained in [12]. Whereas for the rigid-perfectly plastic rod studied in [12], the normal 
velocity at the outlet was very small as compared to the inlet speed of 1.0, such is not the 
case here. Consequently, the thickness of the outlet region is noticeably smaller for the 
present problem as compared to the one studied earlier. For the rigid-perfectly plastic 
rod, the thickness at the outlet increased significantly with an increase in the value of ~; 
in the present problem, the outlet thickness increases only slightly when ~ is varied from 
3.3 to 5.0. 
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FIG. 2. The  c o m p u t e d  velocity field for ~ = 5.0. 
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FIG. 4. Distribution of the strain-rate invariant I and temperature rise in the deforming region 
(~ = 5.0). 

Figure 4 shows, for • = 5.0, the distribution of the strain-rate invariant I and the 
temperature rise 0 within the deforming region. It is obvious that significant deformations 
of the rod occur within the hemispherical region H of radius nearly 1.0 and centered at 
the bottom B (Fig. 1) of the cavity. Since the non-dimensional strain-rates ought to be 
multiplied by vo/ro to get their dimensional counterparts, strain-rates of the order of 
10s-10 6 s-1 occur within this region. The strain-rate invariant I equals zero at the inlet 
and should be negligibly small near the outlet. Whereas for the rigid-perfectly plastic rod 
[12], the maximum value of/occurred near the bottom-most point E of the free surface, such 
is not the case here. At the stagnation point there is considerable heat generated due to 
plastic working and the temperature is high because of the very small value of the thermal 
diffusivity. Since the tangential velocity of the rod particles abutting the cavity wall increases 
slowly from 0 at the stagnation point to about 0.6 at r = 1.5, the transfer of heat by 
convection from the region near the stagnation point is also small. The plastic working 
and the heat generated thereby are appreciable at material particles within the hemispherical 
region H; at material particles outside of this region and on the outlet side, the temperature 
rise is mainly due to the transport phenomenon and--to a lesser extent--the conduction 
of heat. The maximum temperature found to occur at any point is 504°C, which equals 
nearly one-third of the presumed melting temperature of the rod material. 
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FIG. 5. Distribution of the principal stresses and the hydrostatic pressure in the deforming region 
(~ = 5.0). 

The spatial distribution of the work-hardening parameter qJ is very similar to that of 
the temperature rise 0 shown in Fig. 4. This is to be expected, since the equation governing 
the evolution of ~k is virtually identical to that of 0. Recall that we added the term 

~e grad Vs. grad 5 d V 

to the left hand side of equation (34). The computed value of VJ at any point is found to 
be a little less than that of 0 because of the slightly smaller source term for VJ. 

We have plotted in Fig. 5 the distribution of the principal stresses and the hydrostatic 
pressure in the deforming region. The lines are directed along the axes of principal stresses, 
and their lengths are proportional to the magnitudes of the principal stresses. The arrows 
at the ends of a line signify that the corresponding principal stress is tensile; otherwise it 
is compressive. Because of the high values of the hydrostatic pressure and the strain-rate 
invariant I in the hemispherical region H defined above, the magnitudes of the principal 
stresses at points in H are considerably more than that at points outside H. We should 
add that points near the cavity wall, which appear to be on the bounding surface and 
seemingly imply that the boundary condition of zero tangential traction on the wall is not 
well satisfied, are really a small distance away from the cavity surface. The presence of 
small tensile stresses on the exit side suggests that the incoming speed of the rod is not 
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high enough for the deformed material to be pushed out completely. Thus, at this striking 
speed, the head of the rod will very probably be upset into a mushroom shaped region. 
Recall that strain-rates at points in the vicinity of the inlet and outlet regions are negligibly 
small. The calculation of stresses at these points, according to equation (7), therefore 
involves the multiplication of and division by small numbers. Accordingly, the computed 
values of stresses near the inlet and the outlet region are not very reliable. This is one 
possible explanation for the small tensile stresses at isolated points near the inlet and rather 
large tensile stresses near a corner at the outlet. The high value of the hydrostatic pressure 
at the inlet is also an artifact of the numerical technique employed rather than a 
representation of any real phenomenon. These limitations notwithstanding, the computed 
values are meaningful in the severely deforming region near the bottom of the cavity. 

That there is a tendency for the material particles to leave the cavity wall near the outlet 
region is evident from the computed positive values of the normal traction at these points. 
The normal and axial tractions at different points on the cavity wall are plotted in Fig. 6, 
where the arc length is measured from the bottom-most point B (of. Fig. 1) of the cavity. 
As one would expect, the point where the separation tends to occur first moves outwards 
with an increase in ~. Note that the axial traction computed at points for which the arc 
length exceeds 2 is quite small and, therefore, the contribution to the total axial force from 
points where flow separation seems to occur is insignificant. This is due to the fact that 
the cavity surface near the outlet is nearly parallel to the rod axis. As observed earlier, 
rod particles within a distance of r o from point B undergo severe deformations. 

As for the rigid-perfectly plastic rod [12], the total axial force F, found to be given by 
F = - 1.848 + 1.569~, 3 ~< ~ ~< 5, depends rather strongly upon ~t in the present problem 
too. This was not so for the deformable viscoplastic target [11] being penetrated by a rigid 
cylindrical rod. In that problem, the computed axial force depended strongly upon the 
penetrator nose shape. In a real penetration problem, both the target and the penetrator 
materials deform, and the shape of the target-penetrator interface very probably changes 
with ~. In the approximate theory of Tare [1, 2], the axial force acting on the target- 
penetrator interface is presumed to be constant. Because of the lack of availability of the 
experimental data in the open literature, it is hard to assess the range of validity of the 
computed results. 

We now investigate the effect of different material models. The shapes of the free surfaces 
plotted in Fig. 7 show that there is an immense change in going from rigid-perfectly plastic 
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material to the viscoplastic material, and that the additional consideration of thermal 
softening alters the free surface only slightly near the bottom-most point. The free surface 
for the complete model virtually coincides with that when the rod material is modeled as 
viscoplastic with no work-hardening and no thermal softening. Recalling that the 
rigid-perfectly plastic material model is obtained from equation (10) by setting b = 0, n = 0 
and ~ = 0, we are now exploring whether the computed sharp change in the free surface 
profiles for b = 0 and b = 10 4 s -1 depends continuously upon b or whether there is a 
singular behavior at b = 0. Results plotted in Fig. 7(b) show that on the axis of symmetry 
and for 0 ~ z ~ 1.0, the hydrostatic pressure does not depend that much on the material 
model used. However, the material model does noticeably affect the values of a=, especially 
for 0 ~< z ~< 0.5. On the axial line, uniaxial strain conditions prevail, approximately. Thus 
the magnitude of the deviatoric stress s= should equal 2/3 the effective flow stress ae, which 
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equals ~ times the right-hand side of equation (13). The computed results satisfy 
s== = (2/3)a e reasonably well, the difference being less than 5% for 0 ~< z ~< 0.50. 

It is quite obvious from the distribution of normal tractions on the cavity wall plotted 
in Fig. 8 that there is no separation of the material from the cavity wall for the rigid-perfectly 
plastic material. The consideration of strain-rate effects makes the material stiffer, and the 
striking speed of the rod is not large enough to push out completely all of the material 
deformed severely at the bottom of the cavity. The incorporation also of the work hardening 
and thermal softening effects has a less noticeable effect on the normal tractions at the 
cavity wall. The distribution of the hydrostatic pressure on the cavity wall shows that the 
point where the material tends to separate from the wall is close to the point where the 
hydrostatic pressure changes sign. For all four material models, the strain-rate invariant 
I increases slowly, takes on a maximum value when the arc length equals 1.3 and then 
drops rather quickly. The peak value of I occurs at a point near the bottom-most point 
of the free surface. It is clear that the values of I on the cavity wall are affected significantly 
by the consideration of strain-rate effects but little by the additional incorporation of 
work-hardening and/or thermal softening. 

We realize that the maximum value 5 of ~ considered here is not high enough to solve 
strictly the problem we had set out to investigate. The three possible alternatives are to 
increase ~, to change the cavity shape or to change the boundary conditions on the rod 
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material adjoining the cavity wall near the outlet. The last option requires finding shapes 
of two free surfaces, not an arduous but certainly a time consuming task unless one has 
a very robust algorithm to find the free surface. In spite of this shortcoming, the computed 
results are quite meaningful within the hemispherical region of radius 1.0 centered around 
the bottom of the cavity. Note that strain-rates near the inlet and the outlet regions are 
negligibly small, ensuring that the finite region studied is adequate. 

5. C O N C L U S I O N S  

The computed results show that during steady state deformations of a thermoviscoplastic 
rod striking a rigid hemispherical cavity, the axial force experienced by the rod depends 
strongly upon ct. We recall that the non-dimensional parameter ~, defined by equation 
(22), equals p v 2 / t r o  . The most severe deformations occur in the region between the cavity 
bottom and the bottom-most point on the free surface. The peak values of the non- 
dimensional strain-rate invariant I are found to be 1.034, 1.111 and 1.175 for ct = 3.3, 4.0 
and 5.0, respectively, implying thereby that I depends weakly upon ~. That is not to say 
that the dimensional values of I are weak functions of ~, since the scaling factor v o / r  o 

between the two involves ct. The point on the cavity wall where the flow has a tendency 
to separate from the cavity surface moves away from the axis of the rod as the striking 
speed is increased. For fixed values of ~, the consideration of strain-rate hardening effects 
causes the separation of the rod material from the cavity wall. The maximum temperature 
of 504°C for ~ = 5 and the full material model has been found to occur at (0.12, 0.003), 
which is located a small distance away from the stagnation point. 
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