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Summary The coupled nonlinear partial differential equations governing the thermomechanical 
and axisymmetric deformations, of a cylindrical rod penetrating into a thick target, also made of a 
rigid/viscoplastic material, are solved by the finite element method. It is assumed that the 
deformations of the target and the penetrator as seen by an observer situated at the stagnation 
point and moving with it are independent of time. Both the rod and the target material are assumed 
to exhibit strain-rate hardening and thermal softening, and the contact between the penetrator 
and the target at the common interface is smooth. An effort has been made to assess the effect of 
the strain-rate hardening and thermal softening on the deformations of the target and the penetrator. 
It is found that the axial resisting force experienced by the penetrator, the shape and location of 
the free surface of the deformed penetrator and the target/penetrator interface, and normal 
tractions on this common interface depend rather strongly upon the speed of the stagnation point 
and hence on the speed of the striking rod. Results presented graphically include the distribution 
of the velocity field, the temperature change, the hydrostatic pressure and the second-invariant of 
the strain-rate tensor. 

In an attempt to help establish desirable testing regimes for determining constitutive relations 
appropriate for penetration problems, we also find histories of the effective stress, hydrostatic 
pressure, temperature and the second invariant of the strain-rate tensor experienced by four 
penetrator and two target particles. 

v velocity of a rod particle 
p mass density 
q heat flux 
U specific internal energy 
D strain-rate tensor 
o Cauchy stress tensor 
s deviatoric stress tensor 
p hydrostatic pressure 
0 temperature change 
k thermal conductivity 
c specific heat 

a o yield stress in simple compression 
b, m strain-rate sensitivity parameters 

~, thermal softening coefficient 
t a unit tangent vector 
n a unit normal vector 
h heat transfer coefficient 

grad gradient operator 
div divergence operator 
12 second invariant of D 

~t,/~ non-dimensional numbers 

NOTATION 

1. I N T R O D U C T I O N  

W h e n  a fas t  m o v i n g  l o n g  r o d  s t r i ke s  a ve ry  t h i c k  t a r g e t ,  t h e  d e f o r m a t i o n s  o f  t he  r o d  a n d  

t h e  t a r g e t  a p p e a r  to  be  t i m e  i n d e p e n d e n t  to  a n  o b s e r v e r  s i t u a t e d  a t  t he  s t a g n a t i o n  p o i n t  

a n d  m o v i n g  w i t h  it a f t e r  t h e  r o d  h a s  p e n e t r a t e d  i n t o  t he  t a r g e t  t h r o u g h  a d i s t a n c e  e q u a l  

to  a few r o d  d i a m e t e r s .  T h i s  s t e a d y  s t a t e  l a s t s  u n t i l  t h e  s t a g n a t i o n  p o i n t  r e a c h e s  c lose  to  

t he  o t h e r  e n d  o f  t h e  t a r ge t .  T h u s ,  fo r  t h i c k  t a r g e t s ,  t he  d u r a t i o n  o f  t h e  s t e a d y  s t a t e  p o r t i o n  



2 R.C. BATRA and T. GOBINATH 

of the penetration process is a significant part of the total time taken to perforate through 
the target. For very high striking speeds, the deformations of the target and the penetrator 
can be assumed to be governed by purely hydrodynamic incompressible flow processes. 
In this approach, the only significant material property is the ratio of mass densities of 
the target and the penetrator, and the same penetration depth is predicted for all impact 
velocities. Tate [1,2] and Alekseevskii [3] modified this model by incorporating the effects 
of the material strengths of the projectile and the target and representing them as some 
multiple of the uniaxial yield stress of the material, but the multiplying factor was not 
specified. These and other limitations of the one-dimensional models have been discussed 
by Wright [4], and more recently by Wright and Frank [5]. Pidsley [6], who studied the 
penetration of a copper rod into an aluminum target, found that during the steady state 
portion of the penetration process these strength parameters equalled 2.4(an) t and 
-(0.7)(crn) p for the target and the penetrator, respectively. Here cr n is the Hugoniot 
elastic limit. He explained that the negative value for the rod strength is due to the yield 
strength of the rod being lower than that of the target. 

The reader is referred to the paper by Backman and Goldsmith [7] for a review of 
the open literature on ballistic penetration until 1977. It describes various physical 
mechanisms involved in the penetration and perforation processes, and also discusses a 
number of engineering models. Other recent review articles and books include those by 
Wright and Frank [5], Anderson and Bodner [8], Zukas et al. [9], Blazynski [10], and 
Macauley [ l l ] .  Ravid and Bodner [12] have proposed a five-stage penetration model 
applicable to two-dimensional analysis of rigid projectiles penetrating deformable targets. 
Various unknowns in the assumed kinematically admissible velocity field are found 
by using an upper bound theorem of plasticity modified to include dynamic effects. The 
penetration model proposed by Ravid et al. [13] also accounts for the shock effects and 
plastic deformation in the component bodies. Forrestal et al. [14] have recently applied 
the cavity expansion model to study the penetration of rigid projectiles into geological 
materials. 

With the main objective of providing some guidelines for selecting and improving upon 
the previously used kinematically admissible fields in engineering models of penetration, 
Batra and Wright [ 15] initiated the study of an idealized steady state penetration problem. 
It simulates the penetration of a very long (semi-infinite) rod into an infinite target when 
all of the flow fields appear steady to an observer situated on the penetrator nose tip and 
moving with it and the target/penetrator interface is smooth. They studied the problem of 
a deformable target, assumed to be made of a rigid/perfectly plastic material and a rigid 
cylindrical penetrator with a hemispherical nose. Subsequently, Batra [16,17] found that 
the nose shape affected significantly the resisting force experienced by the penetrator and 
also studied the case when the target material exhibited work-hardening, strain-rate 
hardening and thermal softening effects. Batra and Lin [18-20], and Lin and Batra [21] 
studied the steady state axisymmetric deformations of a semi-infinite cylindrical penetrator 
striking a known semi-infinite cavity in an infinite and rigid target, and also computed the 
histories of the effective stress, temperature, second invariant of the strain-rate tensor and 
the plastic spin. Gobinath and Batra [22] have recently analysed the steady state 
axisymmetric penetration problem in which both the target and the penetrator are made 
of a rigid/perfectly plastic material. Since most penetrator and target materials exhibit 
strain rate hardening and thermal softening effects, we extend the previous work [22] to 
incorporate these effects. The problem is very challenging because of the presence in it of 
two a priori unknown surfaces, namely, the target/penetrator interface and the free surface 
of the penetrator material flowing backwards. The shapes and locations of these surfaces 
are strongly influenced by the value of the strain rate hardening exponent for the penetrator 
and a little by the value of the strain-rate hardening exponent for the target. The speed 
of penetration also affects noticeably the shapes of the target/penetrator interface. 

We note that there is no fracture or failure criterion incorporated in our work. Thus 
both the penetrator and target materials are presumed to undergo unlimited plastic 
deformations. It is hoped that the details of the kinematic and stress fields provided herein 
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~vill help propose better estimates of the kinematic fields in engineering models of steady 
state penetration process. Also the histories of the stress, temperature, the second invariant 
of the strain-rate tensor and the plastic spin for four penetrator and two target particles 
given herein should help establish desirable testing regimes for practical problems, and 
help assess the efficacy of different plasticity theories for the penetration problem. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We use a cylindrical coordinate system, with origin at the stagnation point and moving 
with it at a uniform speed v S and positive z-axis pointing towards the undeformed portion 
of the rod, to describe the deformations of the target and the penetrator. The equations 
governing their deformations are 

div v = 0, (1) 

div a = p~, (2.1) 

= p(v .  grad)v, (2.2) 

- div q + tr(aD) = p(v- grad)U, (3) 

2D = grad v + (grad v) r. (4) 

These equations are written in the Eulerian description of motion. Equation (1) expresses 
the balance of mass, Eqn (2) the balance of linear momentum, and Eqn (3) the balance 
of internal energy. Here v is the velocity of a material particle, a the Cauchy stress at the 
present location of a material particle, p the mass density, q the heat flux, and U the 
specific internal energy. A dot superimposed over a character implies its material time 
derivative, and the operators grad and div signify the gradient and the divergence operators 
defined in the present configuration. In writing Eqn (1) we have assumed that the 
deformations of the target and the penetrator are isochoric, and in Eqn (3) all of the plastic 
working rather than 90-95% of it as asserted by Farren and Taylor [23] is assumed to 
be converted into heat. 

For constitutive relations, which are characteristic of the target and the penetrator 
materials, we take 

o o 
o" = - - p l  + ~ (1 + bl )m(1 - 70)D, D ¢ O, (5) 

" v  

O = 0 if tr(s) ~ < ~a~(1 - 70) 2, (6) 

s = o + p l ,  (7) 

q = --k grad 0, (8) 

U = cO, (9) 

212 = tr(D2). (10) 

In these equations, p is the hydrostatic pressure not determined by the deformation history 
of a material particle because we have assumed the target and penetrator materials to be 
incompressible, 1 is the unit tensor, a o the yield stress in a quasistatic simple tension or 
compression test, I z the second invariant of the strain-rate tensor, b and m characterize 
the strain-rate hardening of the material, 7 describes its thermal softening, 0 equals the 
absolute temperature of a material particle, s is the deviatoric stress tensor, k the thermal 
conductivity and c the specific heat. Both k and c are assumed to be independent of the 
temperature. From Eqns (5) and (7), we get 

o- 0 
(2 a- tr s2) 1/2 = , /3  (1 + hi)m(1 - 70). (11) 

This can be viewed as a generalized yon Mises yield criterion when the flow stress, given 
by the right-hand side of Eqn (11), at a material particle depends upon its strain-rate and 
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the temperature change. That the flow stress decreases linearly with the temperature rise 
has been observed by Bell [24], and Lindholm and Johnson [25]. The range of temperatures 
studied by these investigators is not as large as that likely to occur here. We add that Tate 
[26] also used a linear thermal softening law in his study of the penetration problem. 

Rewriting Eqn (5) as 

O" o 
~r = --[/3 + ~(0 -- 0o)K]l + x/3~I (1 + bl)m(1 -- 7 0 ) 0 ,  (12) 

where 2~ and K equal, respectively, the coefficient of thermal expansion and the bulk 
modulus of the material, we see that Eqn (5) embodies implicitly thermal stresses caused 
by the non-uniform temperature rise at different material particles. In Eqn (12), p is not 
determined by the deformation history of a material particle and the addition of a 
determinate term to it gives rise to p in Eqn (5) which is taken to be an independent 
variable throughout this work. 

Substitution for a, q, and U from Eqns (5), (8) and (9) into Eqns (2.2) and (3) gives the 
following field equations: 

--grad p + ao div[(1 + bl)m(1 - 7 0 ) D / x ~ 3  I]  = p ( v .  grad)v (13) 

k div(grad 0) + 2aol(1 + bl)m(1 - 70)/~3 ~- p c ( v . g r a d )  0. (14) 

The nonlinear coupled Eqns (13) and (14), and Eqn (1) subject to the appropriate boundary 
conditions are to be solved for the fields of the velocity v, pressure p and temperature 0 
in the deforming target and penetrator regions. Even though governing equations for the 
target and penetrator regions are the same, the values of material parameters ao, b, m, °/, 
p, k and c need not have the same values for the target and penetrator materials. In order 
to solve Eqns (1), (13) and (14), we need to know the domains over which they apply. 
This in turn requires a knowledge of the shapes and locations of the target/penetrator 
interface Fi and the free surface Ff of the deformed penetrator. Both these surfaces are 
unknown a priori .  For the time being, we presume that Fi and Ff are known. Subsequently, 
we discuss how to find these surfaces. 

It is convenient to introduce non-dimensional variables, indicated below by a super- 
imposed bar, as follows: 

- v 2 = p v ~ / ~ o ,  Oo v~/c, = ~ / p v  2, {9 - p / p  ~, ~ = 

= V/Vs, ~ = r/ro, ~ = z/ro, 0 = 0/0o,  

9 = 700, fl = k/(pcVsro),  b =  bv~/ro, h =  h/pcvs .  (15) 

We note that vs is the same for the target and the penetrator, but the values of other 
variables need not be the same. When non-dimensionalizing a quantity for the target 
(penetrator), the value of the material parameter for the target (penetrator) is used. An 
advantage of the non-dimensionalization (15) is that the governing equations for the 
penetrator and the target look alike. In Eqn (15), ro is the radius of the undeformed 
cylindrical penetrator, the pair (r, z) denotes the cylindrical coordinates of a point, 00 is 
the reference temperature, h is the heat transfer coefficient between the penetrator material 
and air, and the non-dimensional number :~ gives the magnitude of the inertia forces relative 
to the flow stress of the material. Rewriting Eqns (1), (13) and (14) in terms of 
non-dimensional variables, dropping the superimposed bars, and denoting the gradient 
and divergence operators in non-dimensional coordinates by grad and div, we arrive at 
the following set of equations: 

div v = 0, 

- grad p + div [ (1 + bl)m(1 - 7 0 ) D / , f 3  I~]  = (v.  grad)v, 

fl div(grad 0) + 2I(1 + hi)m(1 - 70)/(xf3 ~) = (v-grad)0. 

(16) 

(17) 

I18) 
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F o r  the b o u n d a r y  c o n d i t i o n s ,  w e  take  

t. (an) = 0 o n  I" i, (19.1)  

n.at  n = PP n.apn on  Fi, (19.2)  
Pt 

v . n = O  o n  Fi, (19.3)  

0p ~--- (00t/0Op)0 t o n  l-i, (19.4)  

~nflt Off ~ P o n  F i, (19.5)  

o n  Ire, (19.6)  

o n  I f ,  (19.7)  

a n  = 0  

v ' n = 0  

~0 
-f l~n=h(O-Oa) on If,  (19.8) 

where n is a unit outward normal to the surface, t is a unit tangent to the surface, 0a is 
the air temperature and subscripts p and t signify the quantity for the penetrator and the 
target, respectively. We note that boundary conditions (19.3) and (19.7) which signify that 
F i and F r are streamlines are not required for a complete specification of the problem 
provided that these surfaces are known. Since these surfaces are not known, we presume 
their shapes, solve the problem without using (19.2) and (19.7), and then use these conditions 
to ensure that the presumed F i and F r are correct. The procedure for adjusting F i and F r 
if (19.2) and (19.7) are not satisfied within the prescribed tolerance is described in Section 4. 

At target particles far away from Fi, we take 

I v + e [ ~ 0  as(r2+zZ)l/z---,oo, (20.1) 

[anl ~ 0 as z ~ oo, (20.2) 

~ ! ~ 0  as z ~  oo. (20.3) 

That is, target particles at a large distance from F i appear  to be moving at a uniform speed 
to an observer situated at the stagnation point. Equations (20.2) and (20.3) state that the 
fields of surface tractions and heat flux vanish at target particles behind the stagnation 
point and far from it. On the penetrator cross-section far from the stagnation point, 

Iv+(Vp-1)el~O as z -*  ~ ,  (21.1) 

l0 - 0al --' 0 as z ~ oo, (21.2) 

and on the deformed penetrator material at the outlet, 

]an[ ~ 0 as (r 2 + z2) 1/2 ~ oo. (21.3) 

6940 --* 0 as (r 2 + z 2) ~ oo. (21.4) 
tin 

Equations (21.1) and (21.2) state that the end of the penetrator far from the stagnation 
point is moving in the negative z-direction with a uniform speed of (% - 1) relative to the 
observer at the stagnation point and is at a uniform temperature 0 a. Equations (21.3) and 
(21.4) state that the surface of the deformed penetrator near the outlet is traction free and 
there is no heat exchange between them and the material on the other side of the outlet 
surface. Ideally, one should specify the rate of decay of quantities in Eqns (20.1) through 
(20.3), and (21.1) through (21.4). However, at this time, there is little hope of proving any 
existence or uniqueness theorem for the stated problem and we, therefore, gloss over the 
issue. Herein we assume that the problem defined by Eqns (16)-(21) has a solution and 
seek an approximation to that solution by the finite element method. 
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3. F I N I T E  E L E M E N T  F O R M U L A T I O N  O F  T H E  P R O B L E M  

Unless one uses infinite elements, a numerical solution of the problem necessitates that 
we consider a finite region and know the shapes of the free surface Ff and the 
target/penetrator interface Fi. We presume F i and Ff and study deformations of the 
penetrator over the region ABGHIJA shown in Fig. 1 and of the target on the region 
BCDEFGB also shown in Fig. 1. The figure depicts a finite element discretization of the 
domain; the mesh is very fine in the darker regions. We note that the finite domains for 
the penetrator and the target considered here are larger than the penetrator region studied 
by Batra and Lin [18-19] and the target regions examined by Batra [15 17]. 

The boundary conditions ( 19.1 ), (19.3) and (19.4) apply on the target/penetrator interface 
BG and (19.6) and (19.8) on the penetrator free surface JIH. We recall that conditions 
(19.2) and (19.7) are used to verify the accuracy of the assumed surfaces F~ and If. On the 
axis of symmetry ABC, we impose 

c~O 
Crrz = 0, V r = 0, ~r = 0. (22) 

The boundary conditions (20) and (21) at the far surface of the penetrator and the target 
are replaced by the following conditions on the bounding surfaces of the finite region being 
analysed: 

vz = 1, Vr = 0, 0 = 0, on the bounding surfaces CD and DEF,  (23.1) 

?,0 
azz = 0, v r = 0, - 0 on FG,  (23.2) 

?z 

H G  ~ H G 

B 

FIG. 1. The finite region studied and its discretization. 
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d0 
v z = v e, vf = 0, - -  = 0 on the outlet surface GH,  (23.3) 

#z 

v z = - (Vp - 1 ), v r = 0, 0 = 0a on the surface AJ. (23.4) 

The value of ve is computed so as to satisfy the balance of mass. 
Referring the reader to one of the books [27-29] for details of deriving a weak formulation 

of the problem, we simply note that a weak formulation of the problem defined on the 
target region R t by Eqns (16)-(18), and boundary conditions (19.1), (22), (23.1) and (23.2) 
is that equations 

fR 2(div v) = (24.1) dV 0 
! 

fgp(div q b ) ~  I~,(I, O, ~t)[D: (grad 4~) + (grad d V -  4,) T] dV 
t JRt  

~ - I R  ~ ( J y ' g r a d ) v ~ ' ~ ) d [ / - ~ F  ( ~ . o ' n ) ( ~ . n ) d S  ( 2 4 . 2 )  
t i 

fltfg (gradO.gradrl)dV+fg [(v.grad)O]qdV=fg qQt(I,O,~)dV-f flrl~nd, (24.3) 
t t t ,d Fi 

where 

#t ( l ,  0, ct)-- (1 + b l )m(l  - ~0)/(2~I~), (25 .1)  

Qt(I, 0, ct) = 2I(1 + bI)m(1 - 70)/xf3 ~, (25.2) 

hold for arbitrary smooth functions 2, 4~ and q defined on Rt such that 4~ = 0 on CD and 
DEF,  q~r=0 on BC and FG,  and q = 0  on CD and DEF.  If at a boundary point a 
component  of the trial solution is prescribed, the corresponding component  of the test 
function is taken to vanish there. In Eqn (24.2) A:B= tr(AB T) for linear transformations 
,4 and B. A similar set of equations can be derived for the penetrator region. Note that 
for the penetrator region the second term on the right-hand side of Eqn (24.3) will be 
replaced by 

- fr B'1eOdS+ fr h(O-Oa)qdS" (25.3) 
i (~F/ f 

Because of the boundary condition (19.4), we use the following iterative scheme to solve 
the problem. We estimate 0 in Rp and Rt, solve equations (24.1), (24.2) and a similar set 
of equations for the penetrator for the fields of v and p in Rp and Rt, (cf. Section 4.1 below), 
use these values of v in Eqn (24.3) and a similar equation for the penetrator to solve these 
for 0 in RpWR t. Thus the boundary conditions (19.4) and (19.5) requiring the continuity 
of the temperature and the normal component  of the heat flux across the target/penetrator 
interface Fi are satisfied. The computed value of 0 is compared with the estimated value and 
the aforementioned process is repeated until the difference between the two at every node 
point is less than the prescribed tolerance. The nonlinear equations (24.1) and (24.2) are 
solved iteratively for p and v. At the ith iteration, equations 

fR 2(div = 0, (26.1) ~i) dV 
t 

fR pi(divga)dV- fR ~(li-l,O,~t){Di:[grad~+(grad~)T]}dV 
t t 

= ~R [(vi-l"grad)vi]''dV- fr (n'°'i-ln)(' 'n)dS (26.2) 
t i 

are solved for v i and pl. The iterative process is stopped when, at each nodal point, 

]l vl - v i-  1][ _< e[jl v ~ - till (26.3) 
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2 2 and e is a preassigned small number. Since Eqn (26.2) is linear in p, where Ilvll 2 = vr + v z, 
its values are not included in the convergence criterion (26.3). 

4. C O M M E N T S  O N  C O M P U T A T I O N A L  A S P E C T S  O F  T H E  P R O B L E M  

Batra [17] and Batra and Lin [19] used 6-noded triangular elements to analyse steady 
state thermomechanical deformations of the target and the penetrator, respectively, while 
assuming that the other body was rigid. Thus, they approximated the velocity and pressure 
fields by piecewise quadratic and piecewise linear fields over Rp and R t. Each of these fields 
is continuous across inter-element boundaries. The convergence rate of the iterative scheme 
used to solve Eqns (24.1) and (24.2) deteriorated significantly once the value of % or cq 
exceeded 5. We note that for higher values of  0~p and at, the convective part of the acceleration 
plays a dominant role and the finite element mesh required to obtain a satisfactory solution 
of Eqns (24) by the Galerkin approximation [29] needs to be very fine. This difficulty was 
overcome by adding an artificial viscosity to the diffusive terms in Eqns (24) and using 
4-noded quadrilateral elements in which the pressure field is taken to be constant and the 
velocity field bilinear. The value of the artificial viscosity v to be added in each element 
depends upon the values of v and #, defined by Eqn (25.1), at the centroid of the element 
and the dimensions (hr, h~) of the element. Here hr and hz equal, respectively, the largest 
distances in the r and z directions between the midpoints of the sides of a quadrilateral. 
Following Brooks and Hughes [30], we take 

V ~--- V r ' l -  Vz, 

vr = hr(coth vl - 1 / v l ) /2 ,  

Vz --- hz(coth vz - 1/v2)/2,  

v 1 = v~hr/p( l  ~, W ,  ~), 

when solving Eqn (24.2), and 
c 

v l = vrhr/fl ,  

v2 = v~hz /#( l  c, 0 c, ~), 

(27.1) 

(27.2) 

(27.3) 

(27.4) 

v 2 = v ~ h z / f l  (27.5) 

when solving Eqn (24.3). In these equations, the superscript c signifies that the quantity 
is evaluated at the centroid of an element. Brooks and Hughes [30] have shown that 
adding artificial viscosity is equivalent to using the Petrov-Galerkin approximation of Eqn 
(24). 

4.1 So lu t ion  a lgor i t hm  

Assume the shapes and locations of the target/penetrator interface F i and the free surface 
Ff of the deformed penetrator. Estimate the temperature field 0 over the regions Rp and 
R t occupied by the penetrator and the target. Solve Eqns (24.1) and (24.2) for (v, p) on 
R t and a similar set of equations on Rp with the boundary condition (19.3). Thus ~b.n = 0 
on Fi and the contribution from the surface integral term on the right-hand side of Eqn 
(24.2) vanishes. Equations (19.2) and (19.7) are used to ascertain the accuracy of F i and 
Ff. Emphasis is placed on finding Ff first, and once Ff has been determined, F i is found 
always ensuring that Ff is still reasonably correct and if necessary, Ff is adjusted. During 
the adjustment of F i nodes on it are moved in a direction perpendicular to it by an amount 
proportional to ( f p - f [ ' )  where f p  and f t  equal, respectively, the normal force on the 
penetrator and target particles abutting Fi. A check is made to ensure that the elements 
adjoining F i are not severely distorted after the nodes on F i have been shifted. The algorithm 
for modifying If, if necessary, is given below in Section 4.2. 

After the mechanical problem has been satisfactorily solved, the computed velocity field 
is used to solve the thermal problem for the combined domain Rp u R,. Thus the boundary 
conditions (19.4) and (19.5) are trivially satisfied. The second term in Eqn (25.3) results 
in the satisfaction of the boundary condition (19.8). The computed values of 0 are compared 
with the estimated values and, if necessary, the solution process is repeated until the 
prespecified convergence criteria have been met. 
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4.2 Adjustment of the free surface 

The algorithm used to adjust the free surface Ff is the same as that given by Gobinath 
and Batra [22] and is included herein for completeness. Referring to Fig. 2, let point Q 
on Ff be downstream from P on Ff. Assume that the computed velocity vp is tangent to 
Ff at P and v o does not satisfy v o-n = 0. In order to find the new location of point Q, we 
draw a circular arc that passes through points P and Q and is tangent to Vp at P. Let C 
be the center of this circular arc. Point Q is moved along CQ to Q* such that P and Q* 
lie on a circular arc with Vp and v o being tangent to the circle at P and Q*. Points 
downstream from Q are moved to an intermediate location before this rule is applied to 
them. Let R be a point neighboring Q and downstream from it. R is moved to R 1 such 
that the vector RxQ* equals the vector RQ. The final location R* of R 1 is then found in 
the same way as Q* was determined and by assuming that the velocity of R 1 is YR. Since 
point J is on Ff, the algorithm can be applied starting from J. 

4.3 Mesh regeneration 

After the position of Ff has been determined, the finite element mesh on Rp is regenerated 
by solving on it the Poisson equation 

V2~ = P(r, z) 

under the essential boundary conditions ~b = r and ~b = z at nodes on the boundary C~Rp. 
Here P is the control function [31-34] that helps generate an appropriately graded mesh. 
The points of intersection of the equipotential curves through nodes on the boundary define 
the new locations of interior nodes. 

O* 

6 
C 

FIG. 2. Illustration of the algorithm to adjust Ff. 
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5. D I S C U S S I O N  O F  R E S U L T S  

Except when we study the effect of varying the value of a material parameter,  we assign 
the following values to different parameters for the penetrator and target materials: 

Pp = Pt = 7800 kg/m 3, r o = 10 mm, 

aop = 350 MPa,  O-or = 114.3 MPa,  

mp = 0.025, m t = 0.025, 

bp = 10000 s, b t --- 10000 s, 

7p = 0.000555/°C, 7t = 0.000772/°C, 

Cp = 473 J kg-  1 °C-  1, c t = 395 J K g -  1 °C-  1, 

kp = 48 Win-  x ° C -  x, kt = 111 W m -  1 ° C -  a, 

h = 20 W m -  2 °C - 1, 0 a = 0. 

We recall that subscripts p and t signify the quantity for the penetrator and the target, 
respectively. For an assigned value o f v ,  the value of% is estimated from the relation [1] 

½(% - 1 )2 + yp = (Rt + ~)(pt/Pp) (28) 

where Yp and R t represent strength parameters for the penetrator and target, respectively. 
Pidsley [6], for a copper penetrator and an aluminum target, estimated these parameters 
to equal ( -0.7)(an)p and 2.4(an)t, respectively, where a n is the Hugoniot  elastic limit. In 
his 1967 paper, Tate [1] found R t = 3.5(an) t and in a recent paper [25] he gave 

Yp = 1.7O-op, 

Rt = aot[2/3 + ln(O.57Et/ao,)], 
(29) 

where E t is Young's modulus for the target material. Batra and Chen [36] used a 
semianalytical method to analyse the steady state axisymmetric deformations of a 
viscoplastic target being penetrated by a rigid hemispherical nosed penetrator and found 
that 

Rt = 9.43aot. 

In terms of dimensional variables, we need to know (Rt - Yp) rather than the values of R t 

and Yp to find Vp from Eqn (28). 
In all of the results presented below the solution for the velocity and temperature fields 

was assumed to have converged when, at each nodal point, the value of these quantities 
during two successive iterations differed by no more than 5%. The free surface was taken 
to have converged when at each node point on it, Iv.nl was less than 0.02. The iterative 
process to compute the target/penetrator interface was stopped when the values of the 
normal tractions f~  and f t  at each node point on F i differed from their mean values by 
less than 5%. We discuss below results for different speeds of the penetrator, and for 
different values of the strain-rate hardening exponent m and the coefficient of thermal 
softening 7. 

5.1 Results for vs = 500 m/s 

Figure 3 depicts the computed velocity field in the penetrator and target regions for 
v~ = 500 m/s. The penetrator speed, as computed from Eqn (28), equals 1041 m/s. The plots 
clearly show that the velocity at points on the free surface and the target/penetrator interface 
is along the tangent to these surfaces. In order to show this effect clearly, the velocity field 
in only a part  of the deforming region is shown. The computed velocity field establishes 
the validity of the iterative technique outlined above to find the shapes of the free surface 
and the target/penetrator interface. A least squares fit to the bot tom surface of the 
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target/penetrator interface Fi can be represented by the equation 

r 2 ( z  - 0.874) 2 
- - +  - l .  ( 3 0 )  
1.8612 0.8742 

It is interesting to note that Tate [37] found the equation of the bottom surface o f f  i to be 

3 r 2 (z - a) 2 
- 1. ( 3 1 )  4 a 2 a 2 

A possible reason for the difference in the value of the coefficient for the first term is the 
lower value of Vs considered here. 

If the penetrator speed is less than the limiting velocity and there is no perforation of 
the target, Eqn (30) will give approximately the shape of the bottom surface of the cylindrical 
cavity in the target. We note that the computed shape of F i does not match well with the 
hemispherical cavity considered by Batra and Lin 1-19] in their study of the deformations 
of a thermoviscoplastic rod striking a rigid cavity. The thickness 0.38r o of the outlet region 
computed by Batra and Lin [19] for % = 5.6 is comparable to 0.42r o found herein. At the 
penetrator and target particles that lie to the rear of the bottom-most point of the free 

[ I I 
5 7  8 6  11.4 

5.0 

2.5 

0 .0  

- 25 

- 5 . 0  

-T.5) 

-10.( 

-12.5 

- 1 5 D  

-17 .5  [ 
0 , 0  2 9  

E 
o 

E 
2 
a 

I I 
14.3 17.1 2 0 0  

1.o 
" 0 0 W ~ . _ . . . ~  

O5 

02 

0.0 I 1 I I I 
0 . 0  0.2 0.5 0.7 0.9 1.2 1 4  1.6 1.9 

R c o o r d i n a t e  

FIG. 4. Contours  of the hydrostatic  pressure in the penetrator and target regions for v s = 500 m/s. 
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surface, the flow quickly becomes essentially parallel to the axis of the penetrator. Target 
particles that lie ahead of the penetrator/target interface and within one penetrator radius 
from it have a noticeable radial component of velocity. The velocity field for other values 
of v~ was found to be similar to that shown in Fig. 3. 

Figure 4 shows contours of the hydrostatic pressure in the penetrator and target regions. 
Recalling that the non-dimensionalization is with respect to pV2s, and Vs = 500 m/s, these 
values need to be multiplied by 5.6 and 17.1 for the penetrator and target, respectively, 

;ide 

' I 1.82 

FIG. 5. Distribution of the strain-rate invariant I in the deforming penetrator and target regions 
for v, = 500 m/s. 
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FIG. 6. Variation of 2nd invariant I of the strain-rate tensor along three arbitrary lines LM, PQ, 
and PS perpendicular to F~ (vs = 500 m/s). 

to get values of  p as a multiple of  corresponding ao. The maximum values of the 
non-dimensional hydrostatic pressure were found to be 0.8975 and 1.017 for the penetrator 
and the target, respectively. These equal 5.03 aov and 17.39~rot, respectively. When the 
penetrator and the target materials are modeled as rigid/perfectly plastic, Gobinath and 
Batra [38] found for vs = 500 m/s,  the peak pressures in the penetrator and target to be 
5.06aOp and 15.68aot near the stagnation point. It seems that the consideration of strain-rate 
hardening and thermal softening effects has virtually no effect on the value of the peak 
hydrostatic pressure in the penetrator but increases its value in the target region. We note 
that for the rigid ellipsoidal nosed penetrator (r , / r  o = 2.0) and rigid/thermoviscoplastic 
target, Batra [16] computed the maximum value of p to be 12aot for at = 5.0 and for the 
thermoviscoplastic rod upset at the bottom of a rigid hemispherical cavity, Batra and Lin 
[19] found Pmax to be 3aop for ~p = 5.0. Pidsley [6] who studied the penetration of a copper 
rod into a steel target by using the HELP code, computed Pmax to be 5.53aOp and 4.33aot 
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for ~p = 7.84 and a t = 1.92, respectively, during the steady state portion of the penetration 
process. 

The distribution of I in the deforming penetrator and target regions is shown in Fig. 5. 
Note that the scales in the two regions are different but the values of I in each case are 
to be multiplied by vs/ro to get the dimensional values of I. Thus peak strain-rates of the 
order of 105/s occur in the penetrator and the target. As for the thermoviscoplastic target 
striking a rigid hemispherical cavity [19] significant deformations of the penetrator occur 
within the hemispherical region of radius nearly 1.0 and centered at the bottom-most point 
of the free surface. Note that the values of I near the stagnation point are quite high both 

ScaLe 

Temperatures on target side 

FIG. 7. Distribution of the temperature rise in the deforming penetrator and target regions 
(v~ = 500 m/s). 
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T - Temperature 
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FIG. 8. Distribution of the hydrostatic pressure, tangential velocity, 2nd invariant I of the strain-rate 
tensor D, and the temperature rise on the target/penetrator interface (v~ = 500 m/s). 

in the target and penetrator regions. Whereas peak values of I in the deforming penetrator 
region occur at points near the free surface where the flow is reversing, those in the target 
occur at points adjoining the common interface Fi. Peak values of I in the penetrator and 
target equal 5.25 at the point (1.135, 1.01), 3.75 at the point (1.106, 0.17), respectively. In 
dimensional units these equal, respectively, 0.2625 x 106/s and 0.1875 x 106/s. 

In order to examine whether or not sharp gradients o f / o c c u r  across the target/penetrator 
interface F i, we have plotted in Fig. 6 the variation of I along lines LM, PQ and PS which 
are arbitrarily selected and shown in the figure. The distribution of I along these three 
lines exhibits similar behavior in that the values of I are discontinuous across F i and the 
value of I at the target particle abutting Fi is higher than that for the penetrator particle 
occupying the same spatial position. The maximum value of I within the deforming target 
region occurs at a point slightly away from Fi. For points on line LM,/max for the target 
is higher than that for the penetrator particles, but the converse holds for points on lines 
PQ and PS. Since the tangential velocity of target and penetrator particles abutting F~ are 
nearly the same, for normal tractions to be continuous across F i, normal derivatives of v 
on F~ must be discontinuous if target and penetrator particles are made of different materials. 
This provides a justification for the jump in the value of I as one crosses F~. Recalling that 
the hydrostatic pressure contributes significantly to the normal tractions, it is not necessary 
that I be sharply discontinuous across Fi for the normal tractions on the two sides of F~ 
to match with each other. 

Figure 7 depicts the temperature distribution in the deforming penetrator and target 
regions. Note that the scales for the two plots are different. As for the values of the 
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strain-rate invariant I, high temperatures occur in the deforming penetrator region near 
the stagnation point and points adjoining the free surface. Because of the high speed of 
material particles, a considerable amount of heat is transferred by convection. For this 
reason, the temperature decreases rather slowly as one moves downstream along the 
target/penetrator interface or along any other streamline such as the free surface of the 
penetrator. The maximum temperature rise in the penetrator and target is found to be 
232°C at the point (0.17, 0.66) and 191°C at the point (0.479, 0.05), respectively. This is 
considerably less than that found when either the penetrator (504°C) or the target (605°C) 
is regarded as rigid for nearly the same value of vs. One possible explanation for this is 
that the external work done in the present problem is used to deform both the penetrator 
and the target, whereas in the previous studies referred to, all of the external work was 
used to deform either the penetrator or the target. Along the axial line the temperature 
decreases slowly within the penetrator but quite rapidly in the target. 

Figure 8 shows the distribution of the non-dimensional hydrostatic pressure, second 
invariant I of the strain-rate tensor, tangential velocity and the temperature rise at points 
on the target/penetrator interface F i. The temperature values are to be multiplied by 52.8°C 
to get their dimensional counterparts. It is clear that on F i, the maximum value of the 
temperature occurs at a point slightly away from the stagnation point. Even though the 
values of the non-dimensional and dimensional pressures on the penetrator and target 
sides of the common interface Fi are nearly the same, their values as a multiple of the flow 
stress are not because of the difference in the values of the flow stresses for the penetrator 
and target regions. The slight difference in the value of the tangential velocities of the 
target and penetrator particles situated at the same spatial position on F i reveals that there 
is some slippage between the two. This is consistent with our assumptions of only the 
normal velocity and normal tractions being continuous across F i. 

On the axial line, uniaxial strain conditions prevail, approximately. Thus the magnitude 

of the deviatoric stress szz should equal 2/3 the effective stress, which equals ~/3 times the 
right-hand side of Eqn (11). As shown in Fig. 9(a), the difference between sz~ and 2/3ae is 
less than 4% on the penetrator side and less than 0.3% on the target side. Also depicted 
in the figure are contributions of various terms in Eqn (32), obtained by integrating the 
equation of motion along the central streamline r = 0 

+ p - Szz - 2 [ :  ~ar~ dz = - a~z(0 ). (32) ½v 2 
Jo 

This equation holds both for the penetrator and the target, and z is measured from the 
stagnation point. Even though az~(0) for the target and the penetrator should equal each 
other, the two do not match in our plot because the solution was taken to have converged 
when the normal tractions on the penetrator and target sides differed from the mean normal 
tractions by, at most, 5%. Note that the integral term in Eqn (32) contributes significantly 
to the total as we move away from the stagnation point. This was pointed out by Wright 
[4] and has also been verified by Pidsley I-6]. We add that while computing a~  from the 
computed velocity and temperature fields, contributions from the artificial viscosity were 
not considered. Figure 9(b) depicts the variation of the second invariant I of the strain rate 
tensor and the temperature rise 0 on the axial line. The temperature on the target side 
falls off rather rapidly as one moves away from the stagnation point. However, within the 
penetrator, the maximum value of the temperature rise occurs at a point away from the 
stagnation point. Even though the maximum value of I on the target axial line occurs near 
the stagnation point and is much higher than that on the penetrator axial line, 0m, x for 
the penetrator particles is larger than 0max for the target. This is due to the differences in 
the value of their heat capacities and flow stresses. A possible explanation for the 
discontinuity in the values of I as one crosses the target/penetrator interface is the same 
as that given above for lines LM, PQ and PS. 

5.2 Effect of the speed of penetration 
Figure 10 depicts the distribution of the mean normal tractions on the target/penetrator 
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interface for Vs--450 m/s, 500 m/s and 550 m/s. The values of (%, St) corresponding to 
these values of vs equal (4.51, 13.82), (5.57, 17.06), and (6.74, 20.65), respectively. The values 
of the penetrator speed for these values of v s equal 850 m/s, 1041 m/s and 1234 m/s, 
respectively. These plots elucidate that the normal tractions on the c o m m o n  interface 
increase sharply with the penetration speed. The normal tractions diminish to nearly zero 
values for non-dimensional values of arc length on Fi exceeding 2.0. We note that these 
curves are similar to that given by Gobinath and Batra [22] who assumed the penetrator 
and target materials to be rigid/perfectly plastic and solved the problem for vs = 400 m/s. 
The axial resisting force experienced by the penetrator for the three values of vs considered 
herein equalled 8.91, 11.52, and 14.51, respectively. These numbers need to be multiplied 
by ~r~aop to get the corresponding dimensional values of the axial force acting on the 
penetrator. We have plotted the shapes of the free surface and the target/penetrator interface 
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FIG. 10. Distribution of the mean normal tractions on the target/penetrator interface for three 
different speeds of penetration. 
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FIG. 10(a). Shapes of the free surface for three 
different speeds of penetration. 

2ooo ii (b) 

19.5( 

19.25 

19.oo 
0.0 0.5 1.0 1.5 2.0 

R 

FIG. 10(b). Shapes of the target/penetrator interface 
for three different speeds of penetration. 

for the three values of vs stated above in Figs 10(a) and 10(b), respectively. In order to 
elucidate the dependence of the location of the stagnation point upon the speeds of 
penetration, the ordinate is measured from the bottom surface (CD in Fig. 1) of the target 
region considered. The stagnation point moves away from the free surface of the deformed 
penetrator as the speed of penetration is increased. Also with the increase in the speed 
of penetration, the distance between the free surface of the undeformed penetrator and 
the deformed penetrator particles moving rearwards increases. The shape of the target/ 
penetrator interface also depends strongly upon the penetration speed. 

5.3 Effect of the strain-rate hardening exponent m 

Figures 11, 11 (a) and 11 (b) depict the distribution of the mean normal tractions on the 
target/penetrator interface Fi, its shape and the shape of the free surface Ff for three different 
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FIG. 1 l(b). Shapes of free surface for three different strain rate hardening exponents. 

FIG. l 1 (c). Comparison of shapes of free-surface for three different combinations of material model. 

FIG. 11 (d). Comparison of shapes of target/penetrator interface for three different combinations of 
material model. 
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combinations of the values of the strain-rate hardening exponent m and Vs = 500 m/s. 
When the value of m for the penetrator is kept fixed at 0.025 and the value of m for the 
target is changed from 0.025 to 0.005, there is hardly any change in the shape of the free 
surface. However, the shape of F i and the distribution of normal tractions on it do change 
some, though not significantly, when m t is reduced from 0.025 to 0.005. In Fig. 11 (b), the 
free surfaces are plotted to a large scale so as to magnify differences, if any, in their shapes 
for different values of m. The change in the value of mp from 0.025 to 0.005 while mt is 
kept fixed at 0.025 does influence significantly the shape of the free surface and to a 
somewhat less extent, the shape of the target/penetrator interface and the distribution of 
normal tractions on it. The stagnation point moves away a little bit from the free surface 
when the value of m is changed from 0.025 to 0.005 either for the penetrator or the target. 
The peak values of 0, I, and p and where they occur are influenced by the values of mp 
and m, as evidenced by the information provided in Table 1. 

When either the penetrator or the target is modeled as rigid/perfectly plastic material 
and the other body as viscoplastic with m = 0.025, the shapes of the free surfaces and the 
corresponding intermediate surfaces are shown in Figs 1 l(c) and 1 l(d), respectively. The 
vertical scale in these figures represents the distance measured from the bottom-most point 
of the target region studied so that vertical displacements, if any, of the stagnation point 
could be determined. When either one of the two materials is modeled as rigid/perfectly 
plastic, the stagnation point moves downward, the displacement for mp ---- 0 being twice of 
that for mt = 0. The shapes of the free surface of the deformed penetrator remain unaltered 
when either m t is 0.025 or 0.0 and does not change noticeably when mp is decreased from 
0.025 to 0.0. 

5.4 Effect of the thermal-softenin9 coefficient 7 
When the value of the thermal softening coefficient 7 for either the target or the penetrator 

was doubled keeping that for the other part unchanged, the distributions of the mean 
normal tractions on the target/penetrator interface Fi, its shape and the shape of the free 
surface Ff were essentially unaltered. Therefore, these plots are not included in the paper. 
The values of 0max, p . . . .  /max in the penetrator and target regions do not change much 
when 7 is doubled either for the target or the penetrator. We note that a similar effect was 
observed by Batra 1-17] who analysed the steady state penetration of a rigid cylindrical 
rod into a thick thermoviscoplastic target. 

5.5 Effect of different ratios of mass densities 
Results presented in this section are for the case when the penetrator and target materials 

are modeled as rigid/perfectly plastic. Figure 12 shows the shapes of the target/penetrator 
interface I-" i and the distribution of normal tractions on it for Pt/Pp = 1.25, 1.0, and 0.75. 
The ordinate in Fig. 12(a) is the vertical distance from the bottom surface CD of the target 
region considered and the scales along the horizontal and vertical axes are quite different. 
The expanded scale along the horizontal axis is meant to magnify the small differences in 
the shapes of F i when Pt/Pp is varied. We note that in these computations pp was kept fixed. 
The plots of normal tractions on V i reveal that the largest normal tractions occur for 
Pt/Pp ---- 1.25 and least for Pt/Pp = 0.75 and the change seems to depend continuously upon 
Pt/Pp. Thus, for the same penetrator material, the pressure at the stagnation point will 
increase with an increase in the mass density of the target. Similarly for a fixed target 
material, higher density penetrators would result in smaller values of the pressure at the 
stagnation point. 

6. H I S T O R I E S  O F  T H E  S T R E S S ,  S T R A I N - R A T E  I N V A R I A N T ,  
H Y D R O S T A T I C  P R E S S U R E  A N D  T H E  S P I N  T E N S O R  

One of the unresolved problems in penetration mechanics is the selection for the material 
of the penetrator and the target constitutive relations that adequately model their response 
over the range of deformations anticipated to occur in a problem. In an attempt to help 
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FIG. 12(a). Shapes of the target/penetrator interface for 
three different values of Pt/Pp. 
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FIG. 12(b). Distribution of the mean normal tractions 
on the target/penetrator interface for three 

different values of Pt/Pp. 

determine which one of the many recently proposed theories (e.g. Refs [39-423) of large 
deformation elastoplasticity is most appropriate for a penetration problem, we give below 
histories of the effective stress, second invariant of the strain-rate tensor, the temperature 
and the spin for a few typical target and penetrator particles. These time histories should 
also help establish desirable testing regimes for practical problems. 

The first step in finding histories of a field variable at a material particle is to find the 
streamline for that particle. Streamlines originating from four locations, viz. A(0.1, 5.88), 
B(0.15, 5.88), C(0.90, 5.88), and D(0.95, 5.88) within the deforming penetrator region and 
two locations, i.e. E (0.10, - 3 . 1 2 )  and F(0.15, - 3 . 1 2 )  within the deforming target region 
are plotted in Fig. 13. That the four streamlines originating from points C, D, E, and F 
do not intersect or merge together is clear from the enlarged view of the portion enclosed 
in the box. In the following discussion, we identify the histories of the material particle 
that once occupied, say, the place A as histories of the variable for the material particle A. 

6.1 Histories of field variables for penetrator particles 

Figure 14 depicts the location of the four particles at different times. The time is reckoned 
from the instant when particles A, B, C, and D occupied the places (0.10, 5.88), (0.15, 5.88), 
(0.90, 5.88), and (0.95, 5.88), respectively. The radial and axial components of the velocity 
at different times for these four particles are plotted in Fig. 15. As particles A and B 
approach the region surrounding the stagnation point at t = 5, their velocities in the radial 
direction increase sharply and those in the axial direction decrease to zero. Material 
particles C and D adjoining the free surface of the penetrator reach near the bottom-most 
point on the free surface at time t - -2 .8 .  The radial velocity of these particles which was 
initially zero increases sharply, and becomes maximum when they are close to the 
bottom-most point on the free surface. It is followed by a rapid decrease to a small value 
which gradually becomes zero. Recalling that the velocities plotted are those relative to 
the velocity of the stagnation point, the sharp jump in the value of v z for these particles 
corresponds to the reversal in their direction of motion after they move past the bottom 
of the free surface. In Fig. 16 we have plotted the histories of the non-dimensional 
temperature and the second invariant I of the strain--rate tensor. For points A and B 



A cI D 

i i 
J 

I, f 
/i 

24 R.C.  BATRA and T. GOBINATH 

u/t-  / 
A / 

/ 
F/ 

FiG. 13. Streamlines emanating from four points of the penetrator region and two points of the 
target region. 

adjoining the axial line, peak values of the temperature rise are higher than those for points 
C and D, but the peak values of I for points C and D are higher than those for points A 
and B. Peak values of the second invariant I of the strain-rate tensor at points A and B 
are much lower than those for points C and D. Peak values of 0 and I at points A and B 
occur when they are near the stagnation point. As these points move far away from the 
stagnation point, the value of I decreases rapidly but that of 0 decreases slowly due to the 
convective transport of heat. For points C and D near the free surface, peak values of 0 
and I occur simultaneously soon after they cross over to the right of their bottom-most 
positions. Note that the values of I and 0 increase at points C and D rapidly as they 
approach the bottom-most point on the free surface. Whereas the values of I drop quite 
rapidly, their temperature is still high because of the convective transport of heat. Figure 
17 shows histories of the effective stress S~, defined as the right-hand side of Eqn (11), and 
the hydrostatic pressure at these four particles. For  particles C and D the hydrostatic 
pressure is negligibly small. This is to be expected since these particles always stay close 
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FIG. 14. The variation of r-, z-coordinate of four penetrator particles at different times. 
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FIG. 15. Histories of the radial and axial components of velocity for four penetrator particles. 

to the free surface of  the penetrator. Note  that the peak values of Se at all four points 
considered is nearly the same. Since the material particles are undergoing plastic 
deformation, the effective stress must satisfy the yield condition (11). The variation in the 
effective stress at these points is due to the change in the values of I and 0. At points C 
and D, the peak values of  I, 0, and Se occur at the same time thereby implying that the 
strain-rate hardening effects dominate over the thermal softening effects. For t > 5 when 
the values of  I have become essentially zero, the effective stress drops because of the 
softening caused by the heating of  the material points. For material particles A and B, 
whereas /max Occurs at t ~--2.8, the maximum value of  Se occurs at t "-~ 2.2. Recalling the 
history of  the temperature plotted in Fig. 16, we see that 0max occurs at t ~ 4.5 and the 
values of  0 at t "-~ 2.8 are higher than those at t -  2.2. The higher value of  the thermal 
softening effect at t --~ 2.8 reduces the value of Se as compared to that at t "- 2.2. 
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FIG. 16. Histories of the temperature rise and 2nd invariant I of the strain rate tensor for four 
penetrator particles. 
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FIG. 17. Histories of the hydrostatic pressure and effective stress for four penetrator particles. 

Because of the assumptions of axisymmetric deformations, there is only one non-zero 
component of spin. The histories of the spin for the four penetrator particles, plotted in 
Fig. 18, reveal that the material particle C that is near the free surface has the highest 
value of spin. The peak value of the plastic spin for the material particle C is twice that 
for each of the other three particles. This peak value of the spin at C occurs when it has 
crossed-over to the right of its bottom-most position and is flowing rearwards. 

6.2 Histories of field variables for target particles 
In Fig. 19 we have plotted the r- and z-coordinates of the target material particles 

for different values of time t; their positions at time t = 0  were E(0 .10 , -3 .12)  and 
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F(0 .15 , -3 .12) ,  respectively. The radial and axial components of the velocity of these 
particles are plotted in Fig. 20. As these particles approach the region surrounding the 
stagnation point, their radial velocity increases sharply and subsequently drops to zero 
equally fast. The axial velocity of these particles relative to that of the stagnation point 
decreases and then increases as these points leave the area near the stagnation point. For 
t _> 9, these particles are moving essentially vertically and parallel to the target/penetrator 
interface. The histories of the second invariant I of the strain-rate tensor and the 
temperature rise 0 are plotted in Fig. 2l .  The peak values of 0 at these two points occur 
at the same value of time. However, the peak values of I occur a little bit later. The rate 
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of increase of temperature at these particles is much higher than the rate of increase of I, 
but I decreases much more rapidly than the temperature does because of the convective 
transport of heat. The histories of the hydrostatic pressure p and the effective stress S e 
shown in Fig. 22 reveal that the pressure attains its maximum value when points E and 
F reach the zone surrounding the stagnation point at time t ~- 4.5. Note that the maximum 
values of I and 0 occur at these points when they have moved quite a bit away from the 
stagnation point. The effective stress at these points does not vary much because the 
thermal softening caused by their getting heated up seems to balance out the strain-rate 
hardening. The histories of the plastic spin, plotted in Fig. 23, suggest that of the two 
target particles considered, the one farther from the axial line has the higher values of the 
spin. The highest value of the spin occurs just before these particles arrive near the stagnation 
point. Also, when the particles start turning upwards along the target/penetrator interface, 
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10 

their spin, now of opposite sign, is equally large in magnitude. The peak values of the spin 
are comparable in magnitude to the peak values of I for these particles. 

7. C O N C L U S I O N S  

We have analysed steady state axisymmetric deformations of a long cylindrical 
thermoviscoplastic rod penetrating into a thick thermoviscoplastic target. Also studied is 
the effect, on the deformations of the rod and the target, of the penetration speed, values 
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of the strain-rate hardening exponent and the coefficient of thermal softening. The bottom 
part of the target/penetrator interface F i is a part of an ellipsoid rather than a hemisphere. 
For vs = 500 m/s, the peak pressures in the penetrator near the stagnation point approach 
5.6trOp and that in the target 14a0t when ~r0p/a0t = 3.06 where tr0p and trot equal the yield 
stress in a quasistatic simple compression test for the penetrator and target materials, 
respectively. The peak values of 232°C of the temperature rise in the penetrator and 191°C 
in the target are significantly lower than those found when either of the two materials is 
considered as rigid. Along the axial line the temperature decreases slowly in the penetrator 
but quite rapidly in the target. The normal tractions on the common interface F i increase 
sharply with the increase in the penetration speed. Also the axial resisting force acting on 
the penetrator equalled 8.91, 11.52 and 14.51 F (F = 7trZtrop) for stagnation point speeds 
of 450, 500 and 550 m/s, respectively. The corresponding values of the penetrator speed 
are 850, 1041 and 1234 m/s, respectively. A significant contribution to the resisting force 
is made by the consideration of the strain-rate hardening effects. The value of the strain-rate 
hardening exponent for the penetrator affects more the shapes of the free surface Ff of the 
deformed penetrator and the target/penetrator interface F i than the value of the strain-rate 
hardening exponent for the target. The values of the thermal softening coefficient for the 
penetrator and target have minimal effect on the shapes of F i and Ff and the distribution 
of normal tractions on If. The computed histories of the stress, second invariant of the 
strain-rate tensor, temperature, and the plastic spin for four penetrator and two target 
particles indicate that for the material parameters selected and the three speeds considered 
here, there is no likelihood of any material instability developing in the sense that the 
effective stress at these material particles is decreasing while their temperatures and values 
of the second invariant I of the strain-rate tensor are increasing. Also no narrow layers 
with sharp gradients of I were found on either side of F i for the various cases studied. It 
is very likely that either the penetration speeds considered herein were not high enough 
for these effects to manifest themselves or the materials selected for the penetrator and the 
target were such that no localization of deformation could occur in regions surrounding 
F i. The peak values of the plastic spin for the penetrator particles close to the free surface 
are nearly twice the peak values of the second-invariant I of the strain-rate tensor for 
them. Also for the two target particles close to the target/penetrator interface, peak values 
of the plastic spin are comparable to the peak values of I for them. It seems that plasticity 
theories which account appropriately for values of the plastic spin comparable to the values 
of the strain rate tensor should be very suitable for analysing steady state axisymmetric 
problems. 
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