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Summary We study the steady state axisymmetrtc deformations of a thick target being penetrated 
by a rtgtd cyhndrical penetrator with a hemtsphertcal nose and use three different constitutwe 
relatmns, namely, the Lttonski Batra flow rule, the Bodner- Partom flow rule, and the Brown Ktm 
Anand flow rule, to model the thermoelasttc-vtscoplasttc response of the target. Each of these 
constttUtlVe relauons uses an internal wmable to account for the mtcrostructural changes m the 
body. The three flow rules are cahbrated to give vmually identical effective stress-logarithmic 
strata curves during the overall adiabatic plane strain compresston of a block of the target matertal 
deformed at an average stram rate of 3300s- ~. It is found that the three constttutwe relations give 
nearly the same value of the resistmg force acting on the penetrator, temperature rtse of materml 
parttcles m the vtcmity of the target penetrator mterface, and other macroscopm measures of 
deformation, such as the effecttve stress and logarithmic strata rate. 

I. INTRODUCTION 

During the penetration of a thick target by a fast moving cylindrical rod, severe deformations 
of the target and penetrator cause the temperature of the material particles in the vicinity 
of the target-penetrator interface to rise by a significant amount. Also, strain rates prevailing 
in this region are of the order of 106 s- t. Constitutive relations that are valid over a wide 
range of strains, strain rates and temperatures are presently being developed by various 
research groups. This task is very challenging because different deformation mechanisms 
{for example, [ 1 ] ) are active at various temperatures and strain rates, and the mechanisms 
themselves (e.g. thermally activated motion of dislocations, diffusion, phonon drag motion) 
are temperature and time dependent. Another complicating factor is the microstructural 
changes such as the generation/annihilation of dislocations, development of texture, 
dynamic recovery and recrystallization, nucleation and growth of microcracks and voids, 
and the development of shear bands, that occur during the plastic deformation of the 
material. One way to account for these microstructural changes at a macroscopic level is 
to use the theory of internal variables proposed by Coleman and Gurtin i-2]. Chan et al. 

[3] have summarized more than 10 such constitutive relations valid for small strains. 
Many more are given in the review article by lnoue [4] and the book by Lubliner [5]. 

Here we use three constitutive relations, namely, the Litonski-Batra flow rule [6], the 
Bodner-Partom flow rule /-7], and the Brown-Kim-Anand flow rule [8-] to model the 
thermoelastic-viscoplastic response of the elastic-viscoplastic target. For simplicity we 
assume that the penetrator is rigid, and steady state as seen by an observer situated at the 
penetrator nose tip has been reached. Each of the aforestated three flow rules employs an 
internal variable to account for the microscopic deformations, and does not employ a yield 
surface. The material parameters in these constitutive relations have been evaluated by 
solving numerically an initial-boundary-value problem corresponding to the plane strain 
compression of a block made of the target material being deformed at an average strain 
rate of 3300 s- t  and ensuring that the effective stress-logarithmic strain curves for the 
three constitutive relations are nearly identical. With these values of material parameters, 
steady state axisymmetric deformations of the target have been analysed and various 
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quantities, such as the axial resisting force experienced by the penetrator and the pressure 
distribution on the penetrator nose surface, have been computed. 

We note that Batra and Adam 1-6] conducted such a study for the Litonski-Batra and 
the Bodner-Partom flow rules. They evaluated the material parameters by comparing the 
response of the target material deformed in simple shear. With the values of material 
parameters so determined, they found that the Bodner-Partom law gave a very high value 
of the hydrostatic pressure at the target-penetrator interface as compared to that given 
by the Litonski-Batra flow rule. However, in the present study, all three flow rules give 
essentially the same value of the hydrostatic pressure and hence the axial resisting force 
experienced by the penetrator. 

The present work is a continuation of the one initiated by Batra and Wright 1-9] with 
the goal of providing some guidelines for selecting and improving upon the previously 
used kinematically admissible fields in engineering models of penetration. Subsequently, 
Batra and co-workers [ 10-18] have analysed various aspects of the steady state penetration 
process. The reader should consult the review articles by Backman and Goldsmith [19], 
Wright and Frank [20], and Anderson and Bodner [21], and books by Blazynski [22], 
MaCauley [23] and Zukas et al. [24] to gain a comprehensive view of the work completed 
on the penetration problem. The engineering models proposed by Tate [25-28] and 
Alekseevskii [29] for the steady state penetration problem have been found very useful by 
ballisticians. Batra and Chen [30] selected a kinematicaily admissible field based upon 
the numerical studies of Batra et al. alluded to above, and proposed an engineering model 
of steady state deformations of a viscoplastic target. 

2. FORMULATION OF THE PROBLEM 

We use a cylindrical coordinate system with origin attached to the center of the 
hemispherical penetrator nose, moving with it at a uniform speed Vo, and positive z-axis 
pointing into the target, to describe the thermomechanical deformations of the target. We 
note that target deformations appear to be steady to an observer situated at the penetrator 
nose tip and moving with it. Equations governing the target deformations and written in 
the Eulerian description of motion are the following. 

Balance of mass 
div v = 0 

Balance of linear momentum 

Balance of internal energy 

where 

(1) 

div q = p(~'grad)~ (2) 

- d i v  q + tr(qO p) = p(v 'grad)U (3) 

D = (grad v + (grad v)T)/2, W= (grad v - (grad v)T)/2 (4) 

q = - -kgrad0  (5) 

U = cO (6) 

q = - p !  + s (7) 

. g=2G( .D-D.  p) (8) 

g = (v. grad)s + s W -  Ws (9) 

s = 2u(/, 0, ~)DP (10) 

12 = ½tr(QP2). (11) 

Here v is the velocity of a material particle, q the Cauchy stress tensor at the present 
location of a material particle, p the mass density, q the heat flux,/9, the stretching tensor, 
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and W the spin tensor. Equation (5) is the Fourier law of heat conduction with k the 
thermal conductivity assumed here to be a constant, and 0 the temperature of a material 
particle in ~C. Equation (6) is the constitutive relation for U, and (8) for the deviatoric 
stress tensor s, defined by Eqn (7), where p is the hydrostatic pressure not determined by 
the history of the deformation, since the deformations are assumed to be isochoric. Equation 
(8) is Hooke's law written in the rate form, and is based on the assumption that the strain 
rate (D) has additive decomposition into elastic (Qe) and plastic (DP) parts. The 
superimposed open circle on s indicates its Jaumann derivative, which for steady state 
deformations is given by the right-hand side of (9). We recall that Pidsley [31] used the 
ordinary time derivative of s in Eqn (8), which is not frame-indifferent, and equals the first 
term on the right hand side of (9) for steady state deformations. Equation (10) is the flow 
rule, and the expression for ~, wherein qJ is an internal parameter, depends upon the flow 
rule employed. In order to complete formulation of the problem, we need to specify the 
form of It, the evolution equation for ~,, and the pertinent boundary conditions. We first 
give details of the three constitutive relations. 

Litonski-Batra flow rule 

2~l(l, 0 , ~ b ) = ~ - ( l  + b I ) m ( 1 - v 0 )  1 + ~ o  (12.1) 
,/31 

(o = 

a° (  1 + ~oJ  

Bodner-Partom flow rule 

12.2) 

Z 2 21~(I, 0, W) = 13.1) 
`/~,[ 2fi+ l / D \-ll/z,; 'nt/)J 

Z2 = Z1 + (Z3 - Z1)exp(-tf iW/Z3) 13.2) 

h = ~ T= 273 + 0 13.3) 

IV= tr(qDP). (13.4) 
Brown-Kim-Anand flow rule 

21~(I, 0,9) = 29 sinh_ ~ (qSa,) ' (14.1) 
31¢ 

q~=(/)exP(RQ----T), T = 2 7 3 + 0  (14.2) 

O=hol(max(O,(1--~) )), (14.3) 

9* = 04 ~. (14.4) 

The constitutive relation (12), proposed by Batra [14], incorporates and generalizes that 
suggested by Litonski [32] for simple shearing deformations. Batra and co-workers 
[6,14,16] have used it to study thermomechanical penetration problems, and the initiation 
and growth of shear bands in viscoplastic materials. In it ao is the yield stress in a quasistatic 
simple compression test, the material parameters b and rn characterize the strain rate 
sensitivity of the material, v its thermal softening, and ~o and n the strain hardening of 
the material. With ~k interpreted as the plastic strain 

(;o) t r = a o  1 + (15) 
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describes the stress-strain curve in a quasistatic simple compression test. In a dynamic 
test, the effect of the history of deformation upon the present state of deformation is 
accounted for through the parameter tp. The linear dependence of the flow stress upon the 
temperature rise has been used by Tare [33] in the analysis of a penetration problem, and 
has been observed by Bell [34], Lin and Wagoner [35] and Lindholm and Johnson [36]. 
Should the temperature of a material point exceed 1Iv so as to make p negative, we set 
p = 0. Thus, the material point behaves like an incompressible fluid for 0 ~> l/v. However, 
the latent heat required for the phase transformation to occur is not accounted for in our 
work. We add that for the problem studied herein, the maximum temperature at any point 
in the deforming target region never reached l/v. 

In Eqns (13.1)-(13.4), Tis the absolute temperature of a material particle, the internal 
variable Wequals the plastic work done, D o is the limiting value of the plastic strain rate 
and is usually assigned a large value, the material parameter rfi characterizes the rate of 
work hardening and t] is the strain rate sensitivity parameter. In Eqn (13.2), Z 3 equals the 
hardening at zero inelastic strain, and Z~ is the limit or saturation value of the work 
hardening of the material. We set 5 equal to the melting temperature of the material, and 
we need to specify D o, 5, Z~, Z 3 and rh to characterize the material. Once Tequals 5, we 
set/,~ = 0, analogous to what we did for the Litonski-Batra  flow rule. However, for problems 
studied herein, the temperature at a point never reached the melting temperature of the 
material. 

In the Brown-Kim-Anand  flow rule described by Eqns (14.1)-(14.4), A is called the 
pre-exponential factor, Q the activation energy, R the gas constant, ~fi the strain rate 
sensitivity parameter, h o a constant rate ofathermal hardening, and g* equals the saturation 
value of g associated with a given temperature/strain rate pair. Thus, g never exceeds g*. 
In order to characterize the material, we need to specify ~, ~fi, A, Q, R, 17 o, g*, 5, 0 and ~. 

We nondimensionalize variables by scaling stress-like quantities by a o, length variables 
by r o, time by (ro/Vo), and the temperature by the reference temperature Or, defined by 

o" o 
0 r - (16) pc" 

Here r o equals the radius of the cylindrical part of the penetrator. Substituting for g from 
(9) into (8), and rewriting the result and Eqns (1)-(3) in terms of nondimensional variables 
we arrive at the following set of equations. 

d i v v = 0  (17.1) 

- g r a d  p + divs = c~(t2-grad)v (17.2) 

s + flT((t,.grad).s + s W -  Ws)= 2flD (17.3) 

tr(qD p) + 3 div (grad 0) = (v. grad)0 (17.4) 

where 

pv~ Pro ao k 
- f l -  I' = - -  and 6 - - -  (18) 

(7 0 ' O'Or 0 ' G p c / ; o r  0 

are nondimensional numbers. Henceforth we will use nondimensional variables only. Note 
that a, 7 and 6 are constants for the given problem, but fl varies from point to point in 
the deforming region. The value of a signifies the influence of inertia forces relative to the 
flow stress of the material, those of ), and 6 give the effect of material elasticity and the 
heat conduction, respectively. For most metals, 7 is of the order of 10 -3, and it equals 
zero for a rigid perfectly plastic material. The value of the Weissenberg number (fl),) varies 
from I0-3 to 10 4 in the deforming region. For typical penetration problems involving long 
rod penetrators, 6 is of the order of 10-s; hence, the target deformations may be considered 
adiabatic. The form of flow rules in terms of nondimensional variables remains unaltered. 

Because of our inability to solve analytically nonlinear Eqns (17), we seek their 
approximate solution by the finite element method. Accordingly, we consider deformations 
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FIG. I. The finite region studied and its dlscretizatlon. 

of the finite target region shown in Fig. 1 and impose on it the following boundary conditions. 

a_. = 0 ,  

v , = 0 ,  v : =  - 1 ,  0 = 0 ,  

t - ( q o ) = 0  on Fi, (19.1) 

v . n = 0  on F i, (19.2) 

q.n = he(0 - 0a) on Fi, (19.3) 

v~ = 0, --c~0 = 0 on the surface AB, (20.1) 
dz 

~ = 0 ,  g = l ,  p = 0 ,  sr~=0, s0e=0, s:_,=0, s~__=0 
on the bounding surface EFA, (20.2) 

a,.=O, vr=0, --80=0 on the axis of symmetry DE. (20.3) 
Or 

Here ~3 and t are, respectively, a unit normal and a unit tangent vector to the surface, 0 a 
is an average temperature of the penetrator, and hc is the heat transfer coefficient between 
the penetrator and the target, and F~ denotes the target-penetrator interface. Equation 
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( 19.1 ) implies that V~ is smooth, and (19.2) ensures that there is no interpenetration of the 
target material into the penetrator and vice versa. The boundary conditions (20.3) are due 
to the axial symmetry ofdeformations. That the region R studied is adequate was established 
by increasing the size of the region in both r and z direction until the values of p, ~, s, 0 
and ~ at points on F~ differed by less than 5%. 

Figure 1 depicts the final region R so obtained, and its finite element discretization used 
to compute the results presented below. We note that enlarging the region ahead of the 
penetrator from 19 to 20r o changed the value of []gl] by a maximum of 4.7% and of 
pressure, p, by 2.7%, increasing the target region behind the penetrator nose from 17 to 
18r o resulted in a maximum variation in II s II and p of 2.2%. The values of other variables 
changed by considerably smaller amounts. When the target region R was divided into 700, 
900 and 1250 elements proportioned as shown in Fig. 1, the peak values of the temperature 
rise at any node, and the pressure and the strain rate measure I at the centroid of an 
element were found to be (12.07, 3.42, 1.38), (12.17, 3.69, 1.52) and (12.10, 3.67, 1.53), 
respectively. Results presented below are for a finite element mesh with 1250 elements. 

We refer the reader to [37] for details of obtaining a finite element solution of the problem. 

3. NUMERICAL RESULTS 

3.1. Determination of material parameters for the three flow rules 

In order to compute predictions from the three flow rules for the penetration problem, 
we first need to calibrate them against the same test. Since the experimental data for a 
typical target material over the ranges of strain rates and temperature changes likely to 
occur in a penetration problem is not available in the open literature, we consider a 
hypothetical simple compression test. The code developed by Batra and Liu [38-] to analyse 
the plane strain thermomechanical deformations of a viscoplastic body obeying the 
Litonski-Batra flow rule was modified to include the Bodner-Par tom and the B r o w n - K i m -  
Anand viscoplastic models. The same initial-boundary value problem corresponding to 
the plane strain simple compression of a viscoplastic block being deformed at an average 
strain rate of 3300 s-  1 was solved with each of the three flow rules. The value of each 
material parameter was changed in turn to assess the sensitivity of the effective deviatoric 
stress s c vs strain e, c curve. Here 

s~ = x//~tr (S sT) 1/2 (21) 

~c= l n ( ~ )  (22) 

I and / o being the current and reference heights of the block. The values of material 
parameters determined so that the st vs ec curves for the three constitutive relations almost 
matched, as shown in Fig. 2, are listed below. 

(a) The Litonski-Batra (LB) flow rule: 

b = 10s, v = 1.2 x 10-3/°C, ~o = 0.1, m = 0.01, n = 0.13. 

(b) The Bodner -Par tom (BP) flow rule: 

D o = 3 . 3  x 106s-1, ~ =  1800K, Z 3 = 5 0 M P a ,  Z l = 6 5 0 M P a ,  ~ = 0 . 0 5 .  

(c) The B rown-Kim-Anand  (BKA) flow rule: 

A = 6 . 3 4 6  x 1015s -1, Q = 2 7 5 k J / m o l e ,  0 = 4 0 5 M P a ,  h o = 5 0 0 0 M P a ,  

=3.25, rf i=0.1,  ~ =0.002, t~= 1.5. 

Values of geometric and other material parameters that are independent of the constitutive 
relation employed are: 

p = 7 8 6 0 k g / m  a, tr o = 4 0 5 M P a ,  G = 8 0 G P a ,  c = 4 7 3 J / k g ° C ,  k = 5 0 W / m ° C ,  

h = 2 0 W / m  2°C, 0 a = 0 ,  r o =  10mm. 
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FIG. 2 The effective stress VS Iogan thmtc  s t ra ta  curves  for the three cons t l tu twe  relat ions for a 

vlscoplast ic  block deformed m plane  s t ra ta  compress ion  at an average  s t ra ta  ratc of 3300 s -  ~. 

We note that the initial-boundary-value problem solved to compute the se vs ~¢ curve is 
highly nonlinear, and its solution may not be unique. 

The aforestated values are used in studying the penetration problem whose results are 
discussed below. 

3.2. Comparison of results for the penetration problem fi'om the three constitutive relations 

Figure 3 depicts the distribution of the normal stress, temperature rise and the tangential 
speed on the penetrator nose surface and the strain rate measure I at the centroids of 
elements abutting the nose surface for ~ = 10, which corresponds to the penetrator speed 
of 718 m/s. In these and subsequent plots, the values of various quantities have been divided 
by a factor so that the curves fit on the same graph. For the values of material parameters 
used herein, the reference temperature 0 r, used to nondimensionalize the temperature rise, 
equals 108.9°C. The values of the tangential speed and the strain rate measure I for the three 
models are nearly the same. However, the value of the normal stress and the temperature 
rise computed with the BP model is more than that for the other two models. The value 
of the temperature rise at every point on the nose surface as computed with the BKA flow 
rule is more than that found with the LB model, but less than that determined by using 
the BP flow rule. The maximum difference between the temperature rise computed at any 
point on the nose surface with the three flow rules is nearly 30°C for an average temperature 
rise there of 400°C. One reason for the temperature being essentially uniform over the 
nose surface is that heat is transferred mainly by convection, since the value of 6 in Eqn 
(17.4) equals 1.9 x 10 -6. The BP flow rule gives the highest value of the normal stress on 
the nose surface among the three flow rules because the pressure computed with it is the 
highest. For example, the pressure at the stagnation point equalled 12.07 and 12.67 for 
the LB and the BP flow rules, respectively. The nondimensional axial resisting force 
experienced by the penetrator was found to be 8.19, 8.84 and 8.26 for the LB, BP and 
BKA flow rules, respectively. 

We recall that Batra and Adam [6]  used the material parameters determined by Batra 
and Kim [39], who evaluated them by ensuring that the computed shear stress-shear 
strain curve during overall adiabatic simple shearing deformations of a viscoplastic block 
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FIG. 3. Comparison of the variation of normal stress, strain rate measure, tangential speed, and 
the temperature rise at target particles abutting the penetrator nose surface for the three constitutive 

relations. 

deformed at an average strain rate of 3300 s- 1 matched well with the experimental curve 
of Marchand and Duffy [40] for a HY-100 structural steel. Batra and Adam [6] found 
that for c~ = 4.5, the peak pressure at or near the stagnation point equalled 18.71 and 
30.16, respectively, for the LB and BP flow rules. Also, the values of the tangential speed 
and the strain rate measure I at points on the target-penetrator interface were not as close 
as that found in the present case. The BP flow rule predicted considerably higher values 
of the normal stress, mainly because of the significantly higher value of the hydrostatic 
pressure, and also of the temperature rise as compared to that for the LB flow rule. When 
G was set equal to infinity and material parameters assigned values used by Batra and 
Adam in the present code, the peak pressure with the BP flow rule was found to be twice 
that with the LB flow rule for e = 4.5. We note that the target region analysed herein is 
more than that studied by Batra and Adam, and the problem formulation, as well as the 
finite element meshes used, is different. 

We have plotted in Fig. 4 the variations of the axial stress ( -  a..2), the temperature rise 
0, and the axial velocity ( - v : )  on the axial line, and the strain rate measure I at the 
centroids of elements adjoining the central line of symmetry for the three different 
constitutive relations studied herein. As for the distribution on the target-penetrator 
interface, the curves for the axial velocity and the strain rate measure are hardly 
distinguishable from each other for the three constitutive relations. There is not that much 
difference in the computed values of the temperature, rise, but the axial stress computed 
with the BP model differs somewhat from that computed with the other two models, 
primarily due to the difference in the computed values of the hydrostatic pressure. These 
plots reveal that, at least along the axial line, significant deformations occur at target 
particles situated, at most, one penetrator diameter from the target-penetrator interface. 
The values of (I, 0) at the stagnation point, i.e. penetrator nose tip, are found to be 
(1.52, 3.53), (1.52, 3.80) and (1.53, 3.67) for the LB, BP and BKA flow rules, respectively. 
Since the nondimensional values of I need to be multiplied by (vo/ro) to get their 
dimensional counterparts, it is obvious that peak strain rates of the order of 1.1 x l0 s s-1 
occurred in the problem studied herein. 
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FIG. 4. Comparison of the variation of ( -or ). O. 1 and ( - t : )  on the axial line for the three 
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Along the axial line, uniaxial strain conditions prevail approximately. Thus, the magnitude 
of the deviatoric stress s__.. at a point on the axial line should equal 2/3 the effective flow 
stress defined as 

The error e given by 

a~ff = 2x/~#l. (23) 

e = 100 I ~ a e r f -  Is=ll (24) 

0"ef f 

is plotted in Fig. 5. The maximum error of 2.5% for the BP model suggests that the 
computed results satisfy Is.-= I = 2/3 trer f on the axial line reasonably well. The error decreases 
first as we move away from the stagnation point, but begins to increase at points distant 
7r o from the penetrator nose tip, probably because plastic deformations there are negligibly 
small. 

An integration of the equation of motion (17.2) along the central streamline (r = 0) gives 

+ p - s_. - 2 I :  oar: dz = - a= (O) .  2 
(25) 

- -  ,JO ~/" 

Figure 6 shows the con t r i bu t i on  f rom the var ious terms for ct = 10. The three models give 
nearly the same value of the kinetic energy term ( 1/2 a 0 2 ) .  The value o fp  for the BP model 
is uniformly more than that for the other two models. However, the value of s=: for the 
three models is approximately the same. As noted by Pidsley [31 ] and Wright [41 ], there 
is a substantial contribution from transverse gradients of the shear stress, unlike that for 
a perfect fluid. 

Setting z = 0 in Eqn (25) and comparing it with Tate's Eqn 1-27-], we get 

R t = - @ - -  - - ( 2 6 )  "" 2 

where R t equals the strength parameter  for the target in Tate's equation, and try__ is the 
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value of tr..__ at the stagnation point. Knowing ag: and cte, we find R t and arrive at the 
following 

Tate 1-27] gave 

R t = 8.13 o'ef t = 7.713, 

R t = 7.50 aer r = 8.459, 

Rt = 6.57 tref r = 7.886, 

for theLBmodel ,  (27.1) 

for the BP model, (27.2) 

for the BKA model. (27.3) 

1  28, 
where E t is Young's modulus for the target material. Equation (28) gives R t equal to 6.64 
for each one of the three flow rules. Thus, each one of the three models predicts a slightly 
higher value of R t than that given by Tate. For  an elastic perfectly plastic target, 
Jayachandran and Batra [ 10] found R t = 5.96, and that its value depended weakly upon cc 

We have plotted in Fig. 7 contours of the hydrostatic pressure in the deforming target 
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region for the three flow rules. It is clear that along any radial line the pressure drops off 
more slowly for the BP model as compared to that for the other two flow rules. The 
contours are at an interval of 1.0 and the contour of the zero hydrostatic pressure is not 
plotted in order to concentrate on the region surrounding the target-penetrator  interface. 
For each flow rule, the pressure drops off to nearly 3.0 at the nose periphery from its peak 
value of more than 12 at the nose tip. However, when the target material was modeled as 
elastic-perfectly plastic in [10], the pressure at the nose tip equalled at most 10 and 
dropped off to nearly 2.0 at the nose periphery. The consideration of strain-hardening, 
strain rate hardening, and thermal softening effects has resulted in an increase in the 
computed value of the hydrostatic pressure. 

In the constitutive relations employed herein, it is tacitly assumed that a material point 
undergoes elastic and plastic deformations simultaneously. However, points on the 
bounding surface EFA where s = 0 cannot be deforming plastically. Here we classify points 
for which the stress state satisfies the condition 

tr(s_ 2) = ~aeff2 2 (29) 

as deforming plastically, and those for which the stress state lies inside the surface (29) as 
deforming elastically. The elastic-plastic boundary thus computed and obtained by joining 
points on the surface (29) by straight line segments is depicted in Fig. 8. Ahead of the 
penetrator nose surface, the elastic-plastic boundary extends farthest for the LB model. 
The distance 6.8 on the axial line of the elastic-plastic boundary for the BP and BKA 
models is about the same as that found when the target material is presumed to be 
elastic-perfectly plastic [10]. Tate [27],  by using a solenoid flow model and assuming 
that a material point was deforming either elastically or plastically, found that the 
elastic-plastic boundary was located at an axial distance of 6.71, which compares well 
with the presently computed results. 

For  steady state problems, Tate [28] has proposed a method to compute the components 
of the finite strain tensor from a known velocity field. He found the contours of the 
circumferential strain to be nearly parallel to the crater surface, and the circumferential 
strain at a point distant r o from the crater tip equal to 0.05. Here we define a scalar measure 
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t: of strain by 

k = x//~[trQ2] x/2 - -  2 [ (30) 

which, because of the steady state deformations, can be written as 

2 _ 
(~. grad)e = - -  I. (31) 

We note that e does not equal an invariant of any finite strain tensor. We first compute 
/-from the velocity field, and then e as a solution of Eqn (31) with boundary condition 

= 0 on EFA. The contours ofe look alike for the three flow rules; those for the BP model 
are depicted in Fig. 9. The contours of ~ are virtually parallel to the crater surface. On any 
radial line, e drops off quite rapidly for a distance of r o from the crater surface, and then 
quite slowly. Comparing these contours of e with the elastic-plastic boundary plotted in 
Fig. 8, one can conclude that e = 0.02 on the elastic-plastic boundary. The contours of e 
reveal that severe deformations of the target spread farther to the side than ahead of the 
penetrator nose. At points on the ta rge t -penet ra tor  interface e = 3.0. Since no failure 
criterion is included in our work, a material point can undergo an unlimited amount  of 
deformation. 

3.3. Histories of field variables for target particles 

The results discussed heretofore have involved the spatial distribution of field variables. 
However, in order to establish testing regimes for target materials, it is useful to know the 
histories of stress, strain rate, temperature, etc. for a typical target particle. Accordingly, 
we discuss below the histories of field variables for three target particles. The results for 
the three models are quite similar to each other. Thus, we present results for the BKA 
model only; those for the LB model have been given by Lin and Batra [ 18-]. The computer  
code developed by Lin and Batra has been used to first find streamlines originating from 
a spatial location, and then histories of field variables for that material particle. Henceforth, 
we identify the history of a field variable for the material particle that once occupied the 
place A as the history of the variable for the material particle A. 
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Figure 10 shows streamlines for three particles A(0.02, 8), B(0.05, 8) and C(0.1, 8). That 
the streamlines do not intersect should be clear from their enlarged view around the 
penetrator nose. Because of the different scales used along the vertical and horizontal axes, 
the nose shape appears flat rather than circular. The r- and z-coordinates of these three 
points at different times are given in Fig. 11, the time being measured from the instant these 
particles occupied the aforestated places. The particles reach a position near the nose tip 
at t ~ 4.5, and are near the nose periphery when t ~ 7.25. The time increment is computed 
by dividing the incremental distance a particle travels by its speed during that interval. 
The time history of the r- and z-components of the velocity of these three particles relative 
to that of the nose tip is depicted in Fig. 12. As these particles approach the penetrator 
nose, the r- and z-components of their absolute velocity increase. Whereas the peak values 
of v, for these three particles are nearly equal, the maximum value of the z-component of 
the absolute velocity varies from 0.9 for particle A to 0.8 for particle C. 

The time histories of the strain rate measure I and the spin are given in Fig. 13. Since 
the target deformations are assumed to be axisymmetric, there is only one non-zero 
component of spin. The small oscillations or bumps in the curves are due to numerical 
errors, possibly introduced because of taking larger time intervals in computing the time 
histories. The peak values of the spin for these three particles are nearly the same. However, 
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the peak value of I for particle A is 2.1, and that for C is 1.9. For particle A, peak values 
of I and the spin occur when it is near the nose tip and the nose periphery, respectively. 
Figure 14 depicts the time histories of the temperature rise 0, hydrostatic pressure p, the 
internal variable g, and the effective stress % ,  for these four particles. The value of 9 
increases slowly till these particles reach near the penetrator nose tip and then stays 
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essentially constant, suggesting that it has reached the saturation value. Nearly all of the 
temperature rise at a material particle occurs during the time it is going around the 
penetrator nose. The time histories of I, 0 and tref f reveal that even though I and 0 are 
increasing for 4 ~< t ~< 6 for particle A, the effective stress aar is decreasing during this time 
interval, implying that thermal softening exceeds the hardening caused by the strain rate 
and the evolution of the internal variable g. Whether or not this softening will lead to a 
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material instability in the form of a shear band is unclear because of the complex state of 
deformations prevailing at points adjoining the ta rge t -pene t ra tor  interface. 

4. CONCLUSIONS 

We have analysed the steady state axisymmetric deformations of a viscoplastic target 
being penetrated by a rigid cylindrical hemispherical nosed penetrator. The thermomechanical 
response of the target material is modeled by three viscoplastic flow rules, namely, the 
Li tonski-Batra ,  the B odne r -P a r t om  and the B r o w n - K i m - A n a n d .  Each of these flow 
rules is calibrated to give almost identical effective stress versus logarithmic strain curves 
for a block made of target material and deformed in plane strain compression at an average 
strain rate of 3300 s -  1. For the penetration problem, the BP model gives a slightly higher 
value of the hydrostatic pressure, and hence, normal stress on the penetrator nose surface 
as compared to that given by the use of the other two models. The pressure decays a little 
bit slowly for the BP model as one moves away from the penetrator nose surface as 
compared to the other two models. A comparison of the presently computed results with 
those obtained previously by Batra and Adam for the BP and LB models reveals that the 
models calibrated against a compression test give almost identical results for the penetration 
problem as compared to those calibrated against a simple shear test. The time histories 
of the field variables at three target particles initially close to the axis of symmetry suggest 
that they experience softening behavior, in the sense that even though the strain rate 
increases, the effective stress decreases. The peak values of the spin and the second invariant 
of the strain rate tensor are of the same order of magnitude, but a particle experiences 
these peak values when it is at different locations around the penetrator nose. 
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