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Summary—We study the initiation and growth of shear bands in prismatic bodies of rectangular
cross-section made of either depleted uranium or tungsten and deformed in plane strain compression
at a nominal strain-rate of 5000s~!. It is assumed that defects are distributed symmetrically with
respect to the two centroidal axes and each quadrant has up to 300 randomly distributed defects
in the form of a weaker material; the flow stress for the weaker material in a quasistatic simple
compression test is taken to be 5% lower than that for the original matenal. It is found that, in
the deformed configuration, shear bands in depleted uranium blocks are inclined at approximately
42.5” counterclockwise from the horizontal axis, those in tungsten are inclined at nearly 135°. When
shear bands initiate, the total compressive force required to deform the body drops sharply for the
uranium blocks but gradually for the tungsten blocks. After a shear band has developed, dead
zones form in both uranium and tungsten blocks; the size of the dead zone in the tungsten block
is more than that in the uranium block. When the shear modulus for the tungsten is artificially
changed so as to equal that for the uranium, the angle of inclination for the shear bands in tungsten
blocks changes to that found for the uranium blocks. This suggests that the value of the shear
modulus plays a noticeable role in the development of shear bands. We have also studied the effect,
on the initiation of shear band, of modeling the defects as either very weak or very strong material.

INTRODUCTION

Magness and Farrand [1] have recently pointed out that when identical cylindrical rods
of depleted uranium and tungsten impact steel plates at normal incidence, depleted uranium
rods penetrate deeper than the tungsten rods. They explained this difference by suggesting
that shear bands near the penetrator nose develop sooner in depleted uranium than in
tungsten, leading to the earlier failure and thus pointed-nose shape for depleted uranium
penetrators. Batra et al. [2] studied torsional deformations of thin tubular specimens,
identical to those used by Marchand and Duffy [3], made of twelve different materials
and twisted at a nominal strain rate of 5000s~'. They found that shear bands initiated,
as indicated by a sharp drop in the torque required to deform the tube, sooner in tungsten
than in uranium. In each case the dependence of the material’s flow strength upon the
effective plastic strain, effective plastic strain rate and temperature was modeled by the
Johnson—Cook relation [4] and values of material parameters were taken from Rajendran’s
[S] report. Of course, the stress-state at points close to the penetrator nose surface is quite
different from that of simple shear. This motivated us to study the initiation and development
of adiabatic shear bands in uranium and tungsten blocks deformed in plane strain
compression.

Backmann and Finnegan [6], amongst others, have pointed out that shear bands initiate
from a material defect or inhomogeneity in the body. Nearly all of the previous studies
(e.g. see the species issues of Applied Mechanics Reviews [7], and the Mechanics of Materials
Journal [8]) have assumed one or at most two defects in the body located at predetermined
positions. Here we assume that the cross-section of the body is rectangular, deformations
are symmetrical about the horizontal and vertical centroidal axes, the quarter of the
cross-section is divided into 10* uniform rectangular elements, and there are up to 300
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randomly distributed defects, each modeled as a weak clement, in the quarter of the
cross-section. The presumed symmetry of deformations requires that defects be distributed
symmetrically about the two centroidal axes. The flow stress in a quasistatic simple
compression test of these weak elements is taken to be 5% lower than that of the original
material. It is found that two or more shear bands form in uranium and tungsten blocks,
the effective plastic strain within these bands need not be the same and the one with the
most effective plastic strain is inclined at nearly 42.5° counterclockwise with the horizontal
axis for the uranium block and 135° for the tungsten block. If the noticeable drop in the
compressive load required to deform the material is taken as the criterion for the initiation
of shear bands, then shear bands initiate sooner in tungsten than in uranium. This ranking
agrees with that found in torsional tests conducted by Johnson et al. [4] and also computed
by Batra et al. [2] in specimens deformed in torsion, but is opposite to that conjectured
by Magness and Farrand [1]. The effects of having 100 or 200 randomly distributed weak
elements and modeling the defects as either essentially voids or as rigid inclusions have
also been scrutinized.

2. FORMULATION OF THE PROBLEM

We use rectangular Cartesian coordinates and the referential description of motion to
study dynamic plane strain thermomechanical deformations of a prismatic body of
rectangular cross-section (cf. Fig. 1a). The deformations of the body are governed by the
following balance laws of mass, linear momentum, moment of momentum and internal
energy.

pJ=p,  J=detF, (1)
pod=DivT, 2)

TF =FT" 3)

poé= —DivQ+tr(TFT), (4)

where F is the deformation gradient, p the present mass density of a material particle
whose mass density in the stress-free reference configuration is p,, v the present velocity
of a material particle, T the first Piola—Kirchhoff stress tensor, e the specific internal energy,
Q the heat flux measured per unit area in the reference configuration, Div the divergence
operator with respect to coordinates in the reference configuration, and a superimposed
dot indicates the material time derivative. In Eqn (4) we have assumed that all of the plastic
working, rather than 90-95%, as asserted by Farren and Taylor [10] and Sulijoadikustmo
and Dillon [11], is converted into heating.

We assume that the material is isotropic and can be modeled by the following constitutive
relations.

6=—pl+s. p=K(p/po—1), 6=J 'TF, (5)
6=8+cW'— We, W = ((gradv) — (gradov)")/2, (6)
Y=2uD—D°).  trD°=0, ﬁzD—(%tr 1))1, (7)
é=c—pp/p’),  D=((gradv)+(gradv)")2, @®)
g= —kgrads, g=J 'QF". ©)

Here K is the bulk modulus, u the shear modulus, ¢ the specific heat, W the spin tensor,
s the deviatoric Cauchy stress tensor, D the deviatoric strain-rate tensor, and & is the
Jaumann derivative of a. Equation (7), is the deviatoric part of Hooke’s law written in
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Fig. 1. Aschematic sketch of the problem studied, and the time-dependence of the vertical component

of velocity prescribed on the top surface.
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the rate form. The deviatoric part DP of the plastic strain-rate tensor is assumed to be given by

DP = As.

(10)

Equation (10) implies that the plastic strain-rate is in the same direction as the deviatoric
Cauchy stress s provided that A>0. With

3 1/2
Js :<§sijsij) s

A =0 if either J, <0, or J,=0, and s;;D; <0, and

A>0if J,>0,, or J,=0,, and 5;D, >0,

in which case it is a solution of the non-linear equation

Tm=(A+ Ble,)") (1 + Cln(s,/60)) (1 - T™),

.]2=0'm,

(11)

(12a)



378 R. C. Batra and Z. Peng

00,
0,—0,

2 o 172
gp:(§tr(mop> . e=[&di, T (12b)

Equation (12a}, was proposed by Johnson and Cook [4] based upon the tests of thin tubular
specimens conducted at moderate strain rates and temperatures. However, the range of
temperatures and strain rates studied by them is not close to that likely to occur in a shear
band problem. In Eqn (12) £, equals the effective plastic strain rate, &, is the reference
strain-rate of 1571, &, the effective plastic strain, ¢, the effective flow stress, 6, the room
temperature, 8, the melting temperature of the material, and A4, B, n, C and m are material
constants.
For the initial conditions we take

o(X0)=0 p(XO)=ps  vX0)=0, OH(X.0)=0,. (13)

That is, the body is initially stress free, has uniform mass density p,, is at rest and the
initial temperature equals the room temperature 6,. However, because of the presence of
randomly distributed weak elements, the body is not homogeneous in the reference
configuration. The body is loaded by prescribing the vertical component of velocity on
the top and bottom surfaces. Because of the symmetry of initial and boundary conditions
about the horizontal and vertical centroidal axes, we assume that its deformations at all
times are symmetrical about these two centroidal axes and analyse deformations of only
a quarter of the domain lying in the first quadrant. The pertinent boundary conditions
are taken to be

R
T,.(X ,H,t)=0,
0,(X1,0,0)=0, T, (X ,0,)=0, (14)
T:1(B.X ,1)=0,

TZI(O’XZJI):Oa UI(OsXZ)t)ZO’
QX H)=05(X 1,0.)=0,(0.X,.0)=0,(B.X,,)=0.
Here (X, X ,) denote coordinates of a material point in the reference configuration, ¢ is
the time, 2H is the height of the block, 2B equals its width, and ¢, equals the rise time for
the prescribed velocity to increase from 0 to the steady value v,; the load curve (14), is
depicted in Fig. 1b. Boundary conditions (14) imply that the bounding surfaces are thermally

insulated, there are no tangential tractions on the top surface, bottom surface and the left
vertical surface, and the right vertical surface is traction free.

3. COMPUTATION AND DISCUSSION OF RESULTS

In order to compute numerical results, we assigned the following values to various
material and geometric parameters.

2B=H=1cm, vo=50ms™?, t,=5 us. (15)
For depleted uranium,

A=1079 MPa, B=1119.69 MPa, C=0.007, n=0.25 m=1.0,
k=28Wm°C™!, p=18600kgm~>  0,=1200°C, K=92GPa, (16)
u=>58 GPa, c=117Jkg°’C™}
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and for tungsten,

A=150579MPa, B=1765MPa, C=0016, n=0.12, m=10,
k=7SWm°C™!,  p=17000kgm 3%,  0,=1450°C, K=257GPa, (17)
u=133GPa, ¢=134Jkg’C ..

Values of material parameters in the Johnson-Cook model are taken from Rajendran’s
report [5]. Even though these values are based on test data at strain-rates and temperatures
higher than those used earlier by Johnson and Cook [4], the maximum temperatures and
strain rates involved are nowhere close to those likely to occur in a shear band. For large
variations in the temperature, nearly all of the material parameters in Eqn (12) and the
shear and bulk moduli may be temperature dependent (e.g. see Klepaczko et al. [12]).
Since test data for uranium and tungsten for the range of values of strain, strain rate and
temperature likely to occur within a shear band are not available in the open literature,
the dependence of material parameters upon temperature cannot be delineated and the
error introduced by assuming the material parameters to be constants cannot be ascertained.
Figures 2a and 2b depict the stress—strain curves for the uranium and tungsten blocks as
computed from Eqn (12) at different values of the initial temperature and nominal strain
rate. In plotting these it is assumed that the temperature does not vary while the body is
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Fig. 2. Stress strain curves for (a) uranium and (b) tungsten at different strain rates and initial

temperatures obtained from the Johnson Cook relation without solving an initial-boundary-value

problem.
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Fig. 3. Stress—strain curves for (a) uranium and (b) tungsten blocks deformed in plane strain
compression at different nominal strain rates and initial temperatures; these curves are obtained by
solving initial-boundary-value problems.

being deformed and no initial-boundary-value problem is solved. However, an experi-
mentalist will observe the stress—strain curves shown in Figs 3a and 3b which are obtained
by solving initial-boundary-value problems corresponding to plane strain deformations of
a defect free homogeneous body. We note that the temperature continues to change and
that the body may not deform homogeneously especially at the higher strain-rates
considered. It is clear from these plots that uranium shows less strain-rate sensitivity than
tungsten but exhibits a higher strain hardening effect.

For the prescribed value of vy, the nominal strain rate increases from 0 to 5000s~ ' in
5 us, after which it remains steady. The problem is analysed by using a modified version
of the large-scale explicit finite element code DYNA2D developed by Whirley et al. [13].
We have incorporated the effect of heat conduction into the code. It uses quadrilateral
elements with one-point integration rule to evaluate various integrals and the hour-glass
control to suppress the spurious modes. The time step is selected to satisfy the Courant
condition. For a very fine mesh, the time step required to integrate satisfactorily the energy
equation is considerably smaller than that needed for the momentum equation. In such
cases, the energy equation should be integrated several times during one time step integration
of the momentum equation. However, for the mesh used herein, the time step for the stable
integration of the energy equation was larger than that for the integration of the momentum
equation.

The domain, i.e. a quarter of the cross-section, in the reference configuration is divided
into 10* uniform rectangular elements with 100 elements along the horizontal axis. It is
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assumed that of these, randomly distributed 100, 200 or 300 elements are weak in the sense
that, for them, values of A and B equal 95% of the values given in (16) and (17); the
locations in the reference configuration of these weak elements are shown in Fig. 4. The
presumed symmetry of deformations about the two centroidal axes necessitates that defects
also be distributed symmetrically about the two centroidal axes.

Figures 5a and 5b depict respectively the deformed meshes for uranium and tungsten
blocks at an average strain of 0.28 and 0.20 when there are 300 randomly distributed weak
elements in the reference configuration; the results for 100 and 200 randomly distributed
weak elements were qualitatively similar and hence are not shown. It is clear that for the
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Fig. 4. Locations in the reference configuration of (a) 100, (b) 200 and (c) 300 randomly distributed
weak elements.

uranium block, two shear bands each having a maximum effective plastic strain of 1.4, which
is determined from the contours of the effective plastic strain, and at least two more in
which the maximum effective plastic strain equals 0.56 have developed. Each one of these
bands is inclined at an angle of approximately 42.5° counterclockwise with the horizontal;
the slight deviation from the expected 45° direction could be due to the inhomogeneous
deformations of the block and the band being not straight. The maximum temperature
within the former two bands equals nearly 810°C and that in the latter two 360°C. There
are also narrow regions of less intense plastic deformations that are nearly perpendicular
to the four shear bands stated above. Since points on the left vertical edge are constrained
from moving horizontally and those on the bottom surface from moving vertically, the
only direction in which the material can expand is to the right. The deformations of the
material enclosed by shear band boundaries are minuscule and it moves essentially as a
rigid body resulting in striations on the right surface. Because of the randomly distributed
defects, the deformations of the block are inherently non-homogeneous. The deformation
patterns in the tungsten block, shown in Fig. S5b, are quite different from those in the
uranium block. In the tungsten block, one dominant shear band as measured by the value
of the maximum effective plastic strain in it forms at an angle of approximately 135°
counterclockwise from the horizontal axis. This band is reflected from the left vertical edge
into a weaker band inclined at an angle of nearly 45° counterclockwise with the horizontal
axis. The maximum effective plastic strain in the dominant shear band equals 1.53, that in the
reflected band equals 1.03, and in each of the other two weak bands parallel to the dominant
one equals 0.54; the maximum temperature in each of these bands equals 815°C, 563°C,
311°C and 311°C, respectively. Thus the maximum temperature and the effective plastic
strain in shear bands developed in uranium and tungsten blocks are nearly the same. We
note that these occur at different values of the average strain or the non-dimensional time.
Since the effect of heat conduction is usually very small, especially when the time duration
of the problem is of the order of tens of microseconds, according to the energy equation,
the temperature rise at a point is essentially proportional to the total plastic work done
there. This was confirmed by the plotted results too, since the contours of the temperature
and effective plastic strain were identical. An examination of the contours of temperature
rise in uranium and tungsten blocks at different times revealed the following. In the uranium
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Fig. 5. Deformed meshes for the case of 300 randomly distributed weak elements: (a) for uranium
block at an average strain of 0.28, and (b) for tungsten block at an average strain of 0.2.

block the temperature rise at an average strain of 0.1375 is higher in a rather large region
near the centroid of the cross-section and also in a tiny region that adjoins the right
boundary surface and is below the top right corner. The temperature rise and hence plastic
deformations of the material in the top left portion and the bottom right region are nearly
one-half of that of the material in the bottom left region. At an average strain of 0.1875,
a kink in the right bounding surface and a little bit below the top right corner appears,
and the temperature rise of the material aligned around the diagonal is 259°C, whereas
that of the material in the bottom right portion is 169°C, and that of the material near
the top left corner is below 169°C. At this time there are several thin parallel regions with
temperature equal to 259°C. During subsequent compression of the uranium block several
kinks form on the right bounding surface. Narrow regions of large plastic deformations,
as also signified by the higher temperature, develop and adjoin these kinks. At an average
strain of 0.2275, there are five such narrow regions, three of them with more intense plastic
deformations than the other two. However, during continued compression of the block,
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Fig. 6. Continued

plastic deformations in only two of these regions intensifies and steps in the right bounding
surface appear. For the tungsten block, at an average strain of 0.0875, the material in the
region near the top left corner is heated up more than that elsewhere. However, there is
no clear delineation of regions of highest temperature. We should add that the deformations
of the block are non-homogeneous because of the presence of weak elements. At an average
strain of 0.1125, the initially vertical right edge gets inclined inwards near the bottom right
corner, and at an average strain of 0.1275, a perceptible kink appears there. Note that for
the uranium block a kink first appeared on the right boundary near the top right corner.
At an average strain of 0.1375, a narrow region inclined at about 135° counterclockwise
from the horizontal axis and abutting the kink develops. Subsequently more kinks form
on the right bounding surface and parallel narrow regions of high temperature develop
that adjoin these kinks. However, eventually only one dominant band passing through the
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clearly discernible discontinuity near the bottom of the right bounding surface develops.
Why a kink first appears on the right bounding surface near the top right corner in uranium
and the bottom right corner in tungsten is not clear. We will discuss below one possible
reason for this difference.

Figure 6 shows the distribution of the velocity field in the deforming uranium block at
an average strain of 0.2675 and in the neighborhood of three points A, B and C; the
location of these points is shown in Fig. 7a. A close examination of the velocity field suggests
that the deforming region is divided into four parts; the region above the upper 42.5° band
is moving vertically down as a rigid body, and that in between the two 42.5° bands is
moving as a rigid body but material particles have both horizontal and vertical components
of velocity. The material region enclosed by the lower 42.5° band, the horizontal centroidal
axis and the right bounding surface is moving as a rigid body to the right and that near
the centroid of the cross-section is essentially at rest. Thus the velocity field changes in
direction and/or magnitude across a shear band. Since the normal component of velocity
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across a shear band must be continuous, it is the tangential component that is discontinous
as asserted by Tresca [14]. The velocity field in the neighborhood of points A, B and C
in the deforming tungsten block at an average strain of 0.1875 is shown in Fig. 7. The dead
zone, identified as the region whose material particles have practically zero speed, forms
below the 135° band. The small region above the 45° band and enclosed by the vertical
centroidal axis and the upper boundary is moving vertically downwards as a rigid body,
and a rather large region enclosed by the 135° and 45° bands and the two bounding surfaces
is deforming as a rigid body whose velocity has both horizontal and vertical components.
The tangential component of the velocity field is discontinuous across the two shear bands.

In order to delineate the variation of the effective plastic strain and the effective plastic
strain-rate within a shear band and at neighboring points, we have plotted in Figs 8 and
9 their distributions on the line ab perpendicular to the estimated centerline of the dominant
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band; the line ab is shown in Figs 6a and 7a, respectively, for the uranium and tungsten
blocks. It is clear that the effective plastic strain and the effective plastic strain rate within the
band is very high as compared with that at the neighboring points. The peak strain rate
within the band is of the order of 10°s™ ' and far exceeds that used in the evaluation of
material parameters. The width of the band(s) cannot be determined since the finite element
mesh used is not fine enough. An optimum strategy will be to use an adaptively refined
mesh as was done by Batra and Ko [15]. However, they used triangular elements. The
finite element mesh used herein is the best we could use within the constraints of available
computing resources.

In Fig. 10 we have plotted the time history of the compressive force required to deform
uranium and tungsten blocks containing 0, 100, 200 and 300 randomly distributed weak
elements with values of A and B equal to 95% of those given in (16) and (17). The abscissa,
i.e. the average strain, equals the non-dimensional time. Marchand and Duffy [3] in torsion
tests and Magness and Farrand [1] in compression tests characterized the initiation of
shear bands as the instant when the load required to deform the specimen suddenly drops.
With this criterion, shear bands initiate in tungsten at a lower value of the average strain
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Fig. 8. Distribution of the effective plastic strain on a line perpendicular to the estimated centerline
of the band for (a) the uranium block, and (b) the tungsten block.

than those in uranium. That damage can evolve even when there are no defects assumed
to be present in the specimen has also been pointed out by Eftis et al. [16] in their numerical
study of the microporous thermoviscoplastic materials deformed in tension. The oscillations
in the load are due to inertial effects, and the higher amplitude and lower time period of
oscillations for tungsten is due to the larger values of the shear and bulk moduli for it. The
time period of oscillations is found to be the same as the time taken for an elastic wave
to traverse a distance equal to twice the instantaneous height of the block. The load drops
rapidly in uranium blocks but rather gradually in tungsten blocks. Both for uranium and
tungsten blocks, an increase in the number of defects from 0 to 200 results in the load
drop occurring at a lower value of the average strain, signifying that shear bands will
initiate sooner with an increase in the number of defects. However, the average strain at
which the load drops when there are 300 defects present is higher than that for the 200
defects, indicating that the shear bands need not always form sooner when the number of
randomly distributed defects is increased.

The locations of 300 randomly distributed defects depend upon the seed numbers used
to generate them. In addition to the case discussed above, we used three different sets of
seed numbers to generate 300 random numbers. In each case, the orientations of shear
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Fig. 9. Distribution of the effective plastic strain on a line perpendicular to the estimated centerline
of the band for (a) the uranium block, and (b) the tungsten block.

bands in uranium and tungsten stayed essentially the same. However, the number of bands
in the uranium block, their locations, and the values of the maximum effective plastic strain
in them for the same value of the average strain were found to be different in each case.
The vertical compressive load versus the average axial strain curves plotted in Fig. 11
reveal that, prior to the initiation of the shear band, the precise locations of randomly
distributed defects do not affect in any noticeable way the load required to deform the
block. However, they do influence the rate of load drop. The period of oscillations in the
load for tungsten is less than that for uranium because of the higher values of the shear
and bulk moduli for tungsten.

Since we are using a phenomenological theory and the specimen geometry and loading
conditions are identical for tungsten and uranium blocks, the differences in the inclinations
of shear bands in the two materials must be due to the difference in the values of material
parameters. An examination of the values of material parameters given in (16) and (17)
indicates that values of strain-hardening coefficient B, strain-hardening exponent n,
strain-rate hardening coefficient C, thermal conductivity k, shear modulus ¢ and the bulk
modulus K are noticeably different for the two materials. In order to see which one of
these parameters affects the angle of inclination of the shear band, we artificially changed
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Fig. 10. Effect of number of randomly distributed defects on the compressive force required to
deform the block vs the average strain (a) uranium block, and (b) tungsten block.

the value of one of these material parameters for tungsten to that for uranium and analysed
the problem. These numerical experiments indicated that when the value of shear modulus
for tungsten was changed from 133 GPa to 58 GPa so as to equal that for uranium, as
depicted in Fig. 12a, the angle of inclination of the shear band was found to be nearly the
same as that for uranium. For all other cases, the orientation of the band remained
unchanged even though their number and locations varied. Figure 12b shows the deformed
mesh for the fictitious tungsten block for which the value of bulk modulus K was reduced
from 257 GPa to 92 GPa. It is clear that two parallel bands oriented essentially the same
way as for the tungsten block (cf. Fig. 5b) formed. When the value of the strain-rate
hardening coefficient C was lowered to that for uranium, several weak bands (ie. the
effective plastic strain in them was lower than that in shear bands formed in the original
tungsten block) in addition to the two dominant ones were computed. However, the angle
of inclination of the dominant bands was the same as that for the original tungsten material.

This excercise suggests that the shear modulus strongly influences the angle of inclination
of the shear band.
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Fig. 11. Compressive force required to deform the block vs the average strain for four different
random distributions of weak elements. (a) Uranium block and (b) tungsten block.

In order to assess the effect of the type of defects on the shear band formation, we varied
the strength of defects by changing the values of A and B for them first from 95% of those
given in (16) and (17) to 5% and then to 10° times of those given in (16) and (17). In the
former case the defects are indeed very weak and can instantaneously deform plastically
and in the latter case they simulate rigid inclusions. A scrutiny of the deformed meshes,
not shown herein, revealed that the angles of inclination of the dominant shear bands were
the same for defects modeled either as rigid inclusions or as 5% weak elements. However,
when the defects were modeled as 95% weak elements, the bands in uranium and tungsten
blocks were aligned in the same direction. Also, the type of defects influenced the locations
of the bands. Figure 13 shows the time-history of the compressive load required to deform
the uranium and tungsten blocks. The average strain at which shear bands form in uranium
and tungsten was found to be lowest for 95% weak elements and maximum when the
defects were modeled as 5% weak elements.

In order to assess the effect of heat conduction on the initiation of a shear band, we
have plotted in Fig. 14 the time-history of the compressive force required to compress the
block both with and without the consideration of heat conduction. It is clear that for
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Fig. 12. Deformed meshes for the tungsten block when the value of (a) shear modulus was changed
from 133 GPa to 58 GPa, (b) bulk modulus was changed from 257 GPa to 92 GPa.

uranium as well as tungsten, heat conduction affects minimally the value of the average
strain at which a shear band initiates in them. Subsequent to the initiation of a shear band,
the load drop is slightly lower when heat conduction effects are considered than that when
they are neglected. We note that the values of non-dimensional thermal conductivity k/p 0,
for uranium and tungsten are quite low. Similar results were computed by Batra and Kim
[17] who studied one-dimensional simple shearing deformations of a thermoviscoplastic
body. We note that the angles of inclination of shear bands in uranium and tungsten blocks
were not affected by the consideration of heat conduction.

CONCLUSIONS

We have studied the development of shear bands in plane strain compression of uranium
and tungsten blocks deformed at a nominal strain-rate of 5000s~!. The rectangular
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Fig. 13. The time-history of the load required to deform the blocks for different types of 300
randomly distributed defects; (a) uranium (b) tungsten.

cross-section of height to width ratio of 2 is assumed to have up to 300 randomly distributed
weak elements for which the flow stress is taken to be 5% lower than that for the rest of
the body. Four different random distributions of weak elements generated by using different
seed data were examined. In each case more than one band formed, and the average strain
at which a band initiated, as signified by the drop in the load required to deform the block
varied a little. However, the load required to deform the block prior to the initiation of
the shear band was found to be independent of the distribution of weak elements. The
load drops more rapidly for uranium blocks as compared with that for tungsten blocks.
Also, the average strain at which shear bands initiate in tungsten is lower than that in
uranium. The size of the dead zone, defined as the material region whose particles are
essentially at rest, is larger for the tungsten block than that for the uranium block. The
dominant shear band, defined as the one with the maximum value of the effective plastic
strain, was found to be inclined at 42.5° counterclockwise from the horizontal axis for
uranium and 135° for tungsten. However, when either the shear modulus for the tungsten
block was artificially changed to that for the uranium block, or the defects in both were
modeled as 95% weak elements, the angle of inclination of the dominant shear band in
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each material was found to be approximately 42.5° counterclockwise from the horizontal
axis.
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