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Abstract

A closed-form expression for shear band spacing in strain-hardening, strain-rate-hardening and
thermally softening thermoviscoplastic materials is derived by studying the stability of a homogeneous
solution of equations governing its simple shearing deformations. The wavelength of the perturbation that
maximizes its initial growth rate is assumed to determine the shear band spacing, Ls: The dependence of Ls

upon various material parameters and the nominal strain rate, _e; is delineated. When written as Ls ¼ A1k
w
1

or A2_e
w
2 where A1 and A2 are parameters and k is the thermal conductivity, it is found that w

2
’ �0:787 and

w
1
depends upon the strain-rate hardening exponent m; w

1
’ 0:5 for m ’ 10�6 and n ’ 0:011; decreases

rapidly to 0:21 for m ’ 10�4 and n ’ 0:011; and then increases slowly to 0:25 for m ’ 0:05 and n ’ 0:011:
However, for m ¼ 0 and na0; w

1
¼ 1:

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of adiabatic shear bands (ASBs) is important since they precede ductile failure in
most materials deformed at high strain rates. An ASB is a narrow region, usually a few
micrometers wide, with plastic strains often exceeding 1. Even though Tresca [1] observed these in
1880, research in this area intensified with the work of Zener and Hollomon [2] who not only
see front matter r 2004 Elsevier Ltd. All rights reserved.
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observed ASBs during the punching of a hole in a low carbon steel plate but also postulated that
they initiate when a material point becomes unstable due to softening caused by heating
overcoming its hardening induced by strain and strain-rate effects.
The perturbation technique to analyze the stability of transient simple shearing deformations of

a thermoviscoplastic body has been employed by Bai [3]. A homogeneous solution of the problem
at time t0 is perturbed by an infinitesimal amount and governing equations are linearized with
coefficients evaluated at time t0: Bai [3] derived conditions necessary for the homogeneous
solution to become unstable and also computed the wavelength of the perturbation that
maximized its initial growth rate; he defined a characteristic length in terms of this wavelength.
This and other works are summarized in books by Bai and Dodd [4] and Wright [5], in the review
article of Tomita [6], and in books or special issues of journals edited by Zbib et al. [7], Armstrong
et al. [8], Perzyna [9], Batra and Zbib [10] and Batra et al. [11]. Batra and Chen [12] have pointed
out that for locally adiabatic simple shearing deformations of a thermoviscoplastic body, the
critical strain evaluated from Bai’s criterion equals that given by the Considerè condition [13]
which states that a structure becomes unstable when the load required to deform it is maximum.
For the simple shearing problem, the Considerè criterion is equivalent to the shear stress attaining
its maximum value. Batra and Kim [14] have shown through numerical experiments that the
thermal conductivity has a negligible influence on the time of initiation of an ASB but affects the
post-localization process. Thus, even when heat conduction is considered, the critical strain
computed from Bai’s instability criterion agrees with that from the Considerè condition. Wei and
Batra [15] have shown that this holds even when damage evolution is also considered mainly
because not much damage has evolved till the time of initiation of an ASB.
Wright and Ockendon [16] also examined the growth of infinitesimal perturbations

superimposed upon a homogeneous solution and ignored strain-hardening effects. They
postulated that, in an infinite body, perturbations growing at different sites will not merge and
result in multiple ASBs. They equated the shear band spacing to the wavelength of the instability
mode that maximizes the initial growth rate of infinitesimal perturbations. The shear band spacing
so determined can be related to Bai’s [3] characteristic length. For materials obeying the
constitutive relation s ¼ s0ð1� aðy� y0ÞÞð_g=_g0Þ

m; Wright and Ockendon’s expression for the
shear band spacing is LWO ¼ 2pðm3kc=ð_g3a2s0ÞÞ

1=4: Here s is the shear stress, g the shear strain
within the ASB, a the thermal softening coefficient, m the strain-rate-hardening exponent, y the
present temperature within the ASB, c the specific heat, k the thermal conductivity and _g0 the
nominal strain rate. Values of _g and y in an ASB need to be estimated in order to compute LWO:
Molinari [17] considered strain hardening effects and defined the shear band spacing as LM ¼

inf t0X02p=xmðt0Þ; where xm is the wavelength of the perturbation introduced at time t0 that has the
maximum growth rate at t0: For materials obeying the constitutive relation _g ¼ m�1=m

0 s1=mðgþ
giÞ
�n=my�n=m; Molinari’s approximate expression for the shear band spacing is

LM ¼ L0ð1þ ð3rc@_g=@gÞð4bs0@_g=@yÞÞ�1

¼ 2pððm3kcðy0Þ2=ðb2_g3n2s0ð1þmÞÞÞ1=4 1þ
3rcn

4bns0
y0

gþ gi

� ��1
;

where L0 is the shear band spacing for n ¼ 0; s0 the shear stress and y0 the temperature at time t0
in the homogeneous solution, b the fraction of plastic working converted into heating, and r the
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mass density. Note that Bai [3] and Wright and Ockendon [16] did not find the infimum of
2p=xmðt0Þ: In contrast to the perturbation method, Grady and Kipp [18] studied simple shearing
deformations of a thermally softening rigid plastic material and considered the momentum
diffusion due to unloading within an ASB to find the shear band spacing. Based on the
constitutive relation s ¼ s0ð1� aðy� y0ÞÞ; Grady and Kipp’s expression for the shear band
spacing is LGK ¼ 2ð9kc=ð_g3a2s0ÞÞ

1=4: We note that the dependence of LWO and LGK upon
k; c; _g; a and s0 is the same. However, LGK cannot be deduced from LWO since LWO ¼ 0 for
m ¼ 0: Batra and Chen [19] considered the effects of strain-rate gradients in strain-rate hardening
and thermally softening materials. Three viscoplastic relations, namely those due to Wright and
Batra (e.g. see [19]), power law and Johnson–Cook [20] were considered. For locally adiabatic
deformations (i.e. k ¼ 0), they found that

LBC ¼

‘

_g0

� �1=2
mð1� ay0Þc

a

� �1=4

for the Wright2Batra relation;

‘

_g0

� �1=2

�
cyim

n

� �1=4

for the power law;

‘

_g0

� �1=2
cCð1� ay0Þ

að1þ C ln _g0Þ

� �1=4
for the Johnson2Cook relation;

8>>>>>>>>><
>>>>>>>>>:

where ‘ is a material characteristic length, C defines strain-rate hardening of the material in the
Johnson–Cook relation, and yi is the temperature when the homogeneous solution is perturbed.
For heat-conducting nonpolar materials they found that

~LBC ¼

m3kcð1� ay0Þ
ð1þmÞ_g30a2s0

 !1=4

for the Wright2Batra relation;

m3y20kc

ð1þmÞ_g30s0n2

 !1=4

for the power law;

C3kcð1� ay0Þ

a2 _g30ð1þ C ln _g0Þ
3s0

 !1=4

for the Johnson2Cook relation.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Thus for positive shear band spacing, either the thermal conductivity or the material characteristic
length must be positive. Chen and Batra [21] have also analyzed numerically the shear band
spacing in strain-hardening, strain-rate hardening and thermally softening strain-rate gradient-
dependent materials. For locally adiabatic deformations of a material obeying the constitutive
relation of the type used by Molinari but generalized to strain-rate gradient-dependent materials,
they found the following expression for the shear band spacing:

LCB ¼ 2p ‘=_g0
� �1=2 mcy0

ð1� ð�n ~nÞ�1=2Þ

 !1=4

ð�nÞ�1=8½ð�nÞ1=2 � ð ~nÞ1=2��1=4:

Here ~n ¼ n=ð1þ nÞ; and y0 is the temperature when the homogeneous solution is perturbed. For
n51; ~n ¼ n: For LCB to be positive, 14ð�n ~nÞ�1=2 and jnj4 ~n; these inequalities hold for most
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materials. We note that LWO and ~LBC are proportional to m3=4 but LBC is proportional to m1=4:
However, the dependence of LM and LCB upon the strain-hardening exponent n is more involved.
Nesterenko et al. [22] and Xue et al. [23] observed multiple shear bands, generally 1mm apart,

during the radial collapse of explosively loaded thick-walled titanium and stainless steel hollow
cylinders. The average strain rate within the shear-banded region was estimated to be 104=s:
In addition to thermal softening, strain hardening and strain-rate hardening, the softening due

to accumulated damage because of the nucleation and growth of voids may also influence shear
band spacing. Wei and Batra [15] have shown that the damage evolution decreases the instability
strain.
We note that the aforementioned studies have not derived a closed-form expression for the

shear band spacing for strain- and strain-rate hardening but thermally softening materials. Here
we obtain a closed form expression for the shear band spacing. Even though we consider
infinitesimal perturbations that identically satisfy boundary conditions, the need to differentiate
expressions with respect to the wavelength of admissible perturbations requires that the specimen
thickness be very large as compared to the wavelengths considered. It is found that effects of the
thermal conductivity and the strain-rate hardening on the shear band spacing are more strongly
coupled than previously recognized.
2. Formulation of the problem

We study simple shearing deformations of an isotropic, homogeneous, strain hardening, strain-
rate hardening and thermally softening thermoviscoplastic body occupying the region 0pxph
and sheared in the y-direction. Equations governing its thermomechanical deformations are

r_v ¼ s;x; ð1Þ

_� ¼ v;x; ð2Þ

rc_y ¼ bs_�þ ky;xx; ð3Þ

where r is the mass density, v the velocity of a material particle in the direction of shearing, s the
shear stress, � the shear strain, c the specific heat, y the temperature rise, b the fraction of plastic
working converted into heating or the Taylor–Quinney parameter, and k the thermal
conductivity, a superimposed dot indicates the material time derivative which for this problem
equals the partial derivative with respect to time t, and v;x ¼ @v=@x: In Eq. (3) we have employed
Fourier’s law of heat conduction, and neglected elastic deformations which is reasonable because
plastic deformations envisaged are large as compared to the elastic deformations. The flow stress
s of the thermoviscoplastic material is given by

s ¼ sð�; _�; yÞ: (4)

Initial conditions are not needed since we will study the stability of a homogeneous solution of the
problem. The following two sets of boundary conditions are considered. Either

vð0; tÞ ¼ 0; vðh; tÞ ¼ v0;

y;xð0; tÞ ¼ 0; y;xðh; tÞ ¼ 0; ð5Þ
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or

sð0; tÞ ¼ sðh; tÞ ¼ s̄ðtÞ;

yð0; tÞ ¼ yðh; tÞ ¼ ȳðtÞ: ð6Þ

That is, either the shearing speed is prescribed on the two thermally insulated bounding surfaces
or they are sheared with equal and opposite tractions and are held at the same time-dependent
temperature. For these two sets of boundary conditions, the commonly considered spatially
periodic perturbations satisfy exactly the prescribed boundary conditions.
3. Analysis of material instability

Except for the fact that perturbations considered here satisfy boundary condition (5) or (6), the
analysis presented in this section is borrowed from Bai [3] and is included for the sake of
completeness. A similar approach has been adopted by Wright and Ockendon [16], Molinari [17],
Batra and Chen [19] and Chen and Batra [21].
Let S0ðtÞ � ð�0ðtÞ; s0ðtÞ; y0ðtÞÞ be a steady-state solution of either one of the two boundary-

value problems, and dSðt0;x; tÞ with jdSðt0;x; tÞj5jSðx; t0Þj denote an infinitesimal perturbation in
S0ðt0Þ: Perturbations considered are such that S0ðt0Þ þ dSðt0;x; tÞ satisfies the prescribed boundary
conditions. Thus, either

dvð0; tÞ ¼ dvðh; tÞ ¼ dy;xð0; tÞ ¼ dy;xðh; tÞ ¼ 0 (7)

or

dsð0; tÞ ¼ dsðh; tÞ ¼ dyð0; tÞ ¼ dyðh; tÞ ¼ 0; (8)

which follow from Eqs. (5) and (6), respectively. Eqs. ð7Þ1; ð7Þ2 and (1) imply that

ds;xð0; tÞ ¼ ds;xðh; tÞ ¼ 0: (9)

The admissible perturbation field for boundary conditions (5) is

dS ¼ dS0 cos xx eZðt�t0Þ; x ¼
2 ~mp

h
; (10)

and that for boundary conditions (6) is

dS ¼ dS0 sin xx eZðt�t0Þ; x ¼
2 ~mp

h
; (11)

where dS0 is the amplitude of the perturbation, x the wavenumber, ~m an integer, and Z equals the
growth rate of the perturbation at time t0: ReðZÞ40 implies that perturbations will grow signifying
the instability of the homogeneous solution at time t0; otherwise it is stable. The admissible
wavelengths in perturbations (10) and (11) can have discrete values determined by the values of h
and ~m: Assuming that these wavelengths are much smaller than h, we will treat x as a continuous
variable. For an infinite body, this condition is trivially satisfied.
Eq. (4) gives

ds ¼ ðQ0 þ ZR0Þd�� P0dy; (12)
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where

P0 ¼ �
@s
@y

����
S¼S0

; Q0 ¼
@s
@�

����
S¼S0

; R0 ¼
@s
@_�

����
S¼S0

: (13)

Thus P0 equals thermal softening of the material, Q0 its strain hardening, and R0 strain-rate
hardening. Note that

P0X0; Q0X0 and R0X0: (14)

Substitution of S ¼ S0 þ dS in Eqs. (1)–(4), linearizing the resulting equations in dS0; and
requiring that the system of simultaneous linear equations have a nontrivial solution, we obtain
the following equation for Z:

Z̄3 þ a1Z̄2 þ a2Z̄þ x̄
4
¼ 0; (15)

where

Z̄ ¼
kZ

cQ0

; x̄ ¼
kx

c
ffiffiffiffiffiffiffiffiffi
rQ0

p ; a1ðx̄; �0Þ ¼ Gþ ð1þ IÞx̄
2
;

a2ðx̄; �0Þ ¼ ðI x̄
2
þ 1� JÞx̄

2
;

I ¼
cR0

k
; J ¼

bs0P0

rcQ0

; G ¼
bkP0_�

0

rc2Q0

: ð16Þ

For every short wavelengths, x̄!1; Eq. (15) has the solution Z̄ ¼ �1=I ; which is negative.
For extremely long wavelengths, x̄! 0; Z̄ ¼ �G and 0. If Z̄! 0 from above, then the simple
shearing deformation is unstable for perturbations of very long wavelengths, and the growth rate
of the perturbed solution decreases with an increase in the wavelength of perturbations. Thus the
simple shearing deformation is stable with respect to disturbances of infinitesimal wavelengths,
but may be unstable with respect to disturbances of finite wavelengths.
For given t0 and x̄; the root of Eq. (15) with the largest positive real part will make the

homogeneous solution S0ðtÞ most unstable. Numerical experiments have shown that Z is real for
perturbations introduced after the shear stress has peaked. We seek the value x̄m of x̄ for which Z̄
has the maximum value Z̄m; Z̄m and x̄m satisfy Eq. (15) and

dZ̄
dx̄

����
ðZ̄¼Z̄m;x̄¼x̄mÞ

¼ 0: (17)

Eqs. (15) and (17) give

x̄
2

m ¼ Z̄m
ðJ � 1Þ � ð1þ IÞZ̄m

2ðI Z̄m þ 1Þ
: (18)

Since x̄
2

m40; therefore,

0oZ̄mp
J � 1

1þ I
: (19)

Substitution for x̄
2

m from Eq. (18) into Eq. (15) yields

4ð1þ I Z̄mÞðGþ Z̄mÞ ¼ ½ðJ � 1Þ � ð1þ IÞZ̄m�
2: (20)
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Following Bai’s [3] reasoning, the instability condition is

J41þ 2
ffiffiffiffi
G
p

(21)

or

bs0P0

rcQ0

41þ 2
bkP0_�

0

rc2Q0

� �1=2
: (22)

For locally adiabatic deformations, k ¼ 0; and the instability criterion (22) simplifies to

bs0P0

rcQ0

41: (23)

Thus the material becomes unstable when the softening due to heating exceeds its strain
hardening. Even though the strain-rate hardening does not explicitly appear in the instability
criterion (22) or (23) it influences s0; P0 and Q0: In the presence of heat conduction, higher values
of _�0 delay the onset of instability.
Batra and Chen [12] and Wei and Batra [15] have shown that the instability criterion (23) is

equivalent to the Considerè [13] criterion which for the simple shearing problem reduces to s
being maximum at the instant the material becomes unstable.
4. Shear band spacing

Wright and Ockendon [16] have proposed that the spacing, Ls; between two adjacent shear
bands is given by

Ls ¼ 2p=x̄mðt0Þ; (24)

where x̄mðt0Þ is the wavenumber, in units of 1/length, corresponding to the maximum growth rate
Z̄m of perturbations at time t0 of the homogeneous solution S0ðtÞ of Eqs. (3) and (8). Z̄m and x̄m
satisfy (18). Numerical experiments of Batra [26], Batra and Kim [27], and Kwon and Batra [28]
tend to support this hypothesis for simple materials but not for strain-rate gradient-dependent
materials. They disturbed the homogeneous solution by introducing a finite size temperature
perturbation with multiple cusps and numerically solved the resulting nonlinear problem. Kwon
and Batra [28] found that, for simple materials an ASB formed at each trough in the cosine wave
in the specimen deformed at an average strain-rate _e0 of 500 s�1 but at each crest when _e0 ¼
50; 000 s�1: For strain-rate gradient-dependent materials with material characteristic length equal
to 0.5% of the specimen thickness, an ASB formed at each of the two bounding surfaces when the
shearing speed was prescribed to give _e0 ¼ 500 s�1; and multiple ASBs formed at each crest when
_e0 ¼ 50; 000 s�1: These authors considered finite size perturbations satisfying boundary conditions
in a specimen of thickness h. They did not investigate the dependence of results upon the finite
element mesh. Numerical results presented in [12,19,21] reveal that the wavelength of the
perturbation corresponding to the maximum growth rate depends upon the strain level of the
perturbed homogeneous deformation.
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From Eqs. (15) and (17), or alternatively from Eq. (18) we get

a4Z̄2m þ a5Z̄m þ a6 ¼ 0; (25)

where

a4 ¼ 1þ I ; a5 ¼ 2I x̄
2
þ ð1� JÞ; a6 ¼ 2x̄

2
: (26)

Eqs. (15) and (25) when solved simultaneously for Z̄m and x̄m give

Z̄m ¼
a6ða1a4 � a5Þ � a24x̄

4

a4ða2a4 � a6Þ � a5ða1a4 � a5Þ
;

¼
x̄
2
fð1� IÞ2x̄

2
þ 2Gð1þ IÞ � 2ð1� JÞg

�Ið1� IÞ2x̄
4
þ 2x̄

2
½2Ið1� JÞ � ð1þ IÞð1þ IGÞ� þ ð1� JÞ½ð1� JÞ � Gð1þ IÞ�

: ð27Þ

Upon substitution from Eq. (27) into Eq. (25) we obtain

b2x̄
4

m þ b3x̄
2

m þ b4 ¼ 0; (28)

where

b2 ¼ ð1� IÞ2½1þ IJ�;

b3 ¼ 2½2Ið1� JÞ2 � ð1þ IÞð1� JÞð3þ IGÞ þ 2ðGð1þ I2Þ þ 2Þ�;

b4 ¼ ð4G� ð1� JÞ2Þ½Gð1þ IÞ � ð1� JÞ�: ð29Þ

A positive root of Eq. (28) is

x̄
2

m ¼
�b3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 � 4b2b4

q
2b2

: (30)

Substitution from Eqs. (30) and ð16Þ2 into (24) gives the shear band spacing for a
thermoviscoplastic material deformed in simple shear. The complexity of the expression makes
it difficult to interpret how various factors influence Ls: However, for negligible strain-rate
hardening or very high strain-rate hardening, Eq. (30) can be simplified.
For a strain-rate independent material, R0 ¼ 0; I ¼ 0; and Eq. (30) with substitutions from

Eq. (29) reduces to

x̄
2

m ¼ �ð1þ 2Gþ 3MÞ þ ð3þMÞðM þ GÞ1=2; (31)

where

M ¼
bs0P0

rcQ0

: (32)

For most materials deformed at high strain rates

G ¼
bkP0_�

0

rc2Q0

¼M
k_�0

cs0
5M; (33)
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in which case Eq. (31) can be approximated by

x̄
2

m ’ �ð1þ 3MÞ þ ð3þMÞ
ffiffiffiffiffiffi
M
p

: (34)

For many materials, bs0=ðrcÞ ’ Oð102Þ; and Mb1: Then x̄m ’M3=4 and

Ls ’ 2pkb�3=4
r
c

	 
1=4 Q0

ðs0P0Þ
3

� �1=4

: (35)

Thus for a non-strain-rate hardening material, Ls � k; Ls � r1=4; Ls � c�1=4; Ls � Q
1=4
0 and

Ls � ðs0P0Þ
�3=4: A higher value of the strain-hardening enlarges the shear band spacing but higher

values of the shear stress and the thermal softening reduce the spacing between adjacent shear
bands. For the constitutive relation used by Molinari [17] and given in the Introduction,

Ls ¼ 2pkb�3=4
r
c

	 
1=4
�

n

m50n
3

� �1=4

ðg0 þ giÞ
�ð5nþ1Þ=4

ðy0Þð�5nþ3Þ=4: (36)

For the constitutive relation

s ¼ s0 1þ
e
ey

� �n ym � y
ym � yr

� �n

; n40

employed by Wright and Batra

Ls ¼ 2pkb�3=4
r
c

	 
1=4 nðym � yrÞ
3

s50n
3ey

� �1=4

1þ
e0

ey

� ��ð5nþ1Þ=4 ym � y0

ym � yr

� �ð�5nþ3Þ=4
: (37)

Here ym and yr are, respectively, the melting temperature of the material and the room
temperature. The strain hardening exponent, n, appears in two terms, one of which implies that Ls

increases with an increase in the value of n but the other has the opposite effect. Thus it is hard to
delineate the effect of n on the shear band spacing from expressions (36) and (37).
For a strongly strain-rate hardening material, R0!1; I !1 and

dZ̄

dx̄
2
¼ �

I Z̄2 þ 2ðI Z̄þ x̄
2
Þ

3Z̄2 þ Ið2Z̄þ x̄
2
Þx̄

2
o0: (38)

That is, the initial growth rate of a perturbation increases with a decrease in the wavelength of the
perturbation. Hence Ls!1 as R0!1:
Expression (35) and that obtained by substituting from Eqs. (30) and ð16Þ2 into Eq. (24) for the

shear band spacing cannot be compared with those of Wright and Ockendon [16] and Grady and
Kipp [17] since they neglected strain hardening effects. Here, the strain-hardening parameter Q0

appears in the denominator in expression (32) for M and cannot be set equal to zero. Whereas
Wright and Ockendon [16] considered strain-rate hardening, expression (35) for the shear band
spacing is for non-strain-rate hardening materials. For such materials, LWO ¼ 0: However, we get
a non-zero value of the shear band spacing. Whereas LWO / k1=4; in expression (35), Ls / k:
Numerical results given in the next section provide an explanation for these differences. The
approximate expressions, given in the Introduction, for the shear band spacing, LBC; derived by
Batra and Chen [12], and Chen and Batra [21] are for locally adiabatic deformations. Molinari
[17] assumed that the strain-hardening parameter is small, expanded different quantities in terms
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of this parameter, and retained terms of degree one in this parameter. We compare below the
presently computed shear band spacing with that obtained from Molinari’s asymptotic solution,
and also delineate the effect of different material parameters on the shear band spacing.
As is done in buckling problems one can account for the specimen thickness, h, by assigning an

integer value to ~m in Eqs. (10) or (11) so that x̄ is closest to x̄m: This value of x̄ will give the shear
band spacing.
5. Computation and discussion of results

5.1. Comparison of exact shear band spacing with Molinari’s asymptotic solution

We first compare results computed from Eqs. (24) and (30) with those obtained from the
asymptotic expression of Molinari [17] and employ the constitutive relation given in the
Introduction with material parameters assigned following values:

m ¼ 0:019; n ¼ �0:38; m0 ¼ 3:579 GPa;

r ¼ 7800 kg=m3; c ¼ 500J=kgK;

k ¼ 50W=mK; b ¼ 0:9; gi ¼ 0:01;

yi ¼ 300K; _g0 ¼ 104 s�1; n ¼ 0:107: ð39Þ

Recall that Molinari’s asymptotic solution is valid for n51; therefore the present results can be
compared with his only for small values of n. For n ¼ 0:015 and 0.035, the two sets of results are
depicted in Fig. 1. These reveal that if the homogeneous solution corresponding to a larger value
of the shear strain is perturbed then Molinari’s asymptotic solution for the shear band spacing
matches well with the present exact solution. However, the two differ somewhat if the
homogeneous solution at lower values of the shear strain is perturbed. For a shear strain of nearly
1 in an ASB, both techniques predict a shear band spacing of 1.3mm for n ¼ 0:035 and about
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Fig. 1. For n ¼ 0:015 and 0:035; comparison of the shear band spacing computed from the present exact solution with

that obtained from Molinari’s asymptotic solution.
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1.1mm for n ¼ 0:015 which are close to the experimental value of 1mm observed by Nesterenko
et al. [22]. For various values of the strain-hardening exponent n, we have plotted in Fig. 2 the
variation of the relative difference, d; defined by

d ¼ jLM � LBWj=LBW (40)

with the shear strain at the instant of perturbing a homogeneous solution. Here LBW denotes the
shear band spacing computed from the present exact solution. It is clear from these plots that the
difference between the two solutions increases with an increase in the value of the strain-hardening
exponent n, and this difference is more pronounced at lower values of the shear strain.

5.2. Effect of different parameters on shear band spacing

We use the following constitutive relation:

s ¼ s0 1þ
�

�y

� �n

ð1þ b_�Þm
ym � y
ym � y0

� �n

(41)

for studying the effect of different parameters on the shear band spacing. For homogeneous
deformations of a thermoviscoplastic body deformed at a constant strain rate, one needs the
temperature as a function of strain. Prior to perturbing the homogeneous solution, the
temperature is uniform in the body and there is no heat conduction except when the temperature
is assigned at the boundaries. Substituting from Eq. (41) into Eq. (3) and integrating the resulting
equation, we obtain

y ¼ ym � ðym � yrÞ exp �
bs0�yð1þ b_�0Þ

m

rcðym � yrÞðnþ 1Þ
1þ

�

�y

� �nþ1

� 1

" #( )
; n ¼ 1;

y ¼ ym � ðym � yrÞ
1�n
�

bð1� nÞs0�yð1þ b_�0Þ
m

rcðym � yrÞ
n
ð1þ nÞ

1þ
�

�y

� �nþ1

� 1

" #( )1=ð1�nÞ

for na1: ð42Þ
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Fig. 2. For different values of the strain-hardening exponent n, dependence upon the average shear strain of the relative

difference between the shear band spacings computed from the present solution and Molinari’s asymptotic solution.
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Batra and Kim [24] determined values of material parameters appearing in Eq. (41) by solving
an initial–boundary-value problem that closely simulated the experimental setup of Marchand
and Duffy [25] and ensured that the computed stress–strain curve matched well with the test data.
They obtained following values of parameters for HY-100 steel:

s0 ¼ 405MPa; b ¼ 17; 320 s�1; r ¼ 7860 kg=m3; k ¼ 50W=mK; n ¼ 0:107; m ¼ 0:0117;

c ¼ 473 J=kgK; �y ¼ 0:012; b ¼ 0:9; ym ¼ 1500K; y0 ¼ 300K; _�0 ¼ 3300 s�1; n ¼ 1: ð43Þ

Because b_�b1 and m51; ð1þ b_�Þm ’ bm_�m; thus m equals the strain-rate hardening exponent.
Similarly for � ’ 0:1; �=�y ’ 10; and ð1þ �=�yÞ

n
’ ð�=�yÞ

n: Fig. 3a–e illustrates the variation of the
shear band spacing, based on Wright and Ockendon’s definition, with the average strain when the
homogeneous solution is perturbed for different values of thermal conductivity, nominal strain
rate, strain- and strain-rate hardening and the thermal softening exponents. For a fixed value of
the initial strain, the shear band spacing increases with an increase in the thermal conductivity, a
decrease in the imposed strain rate, and a decrease in the thermal softening exponent n: The trends
are less clear for the effects of strain hardening and strain rate hardening exponents. Note that a
large value of n enhances the thermal softening effect. For initial shear strain greater than about
1.5, the shear band spacing increases with an increase in the strain-rate hardening exponent m.
However, for the effect of strain-hardening exponent n, a clear trend emerges only when the initial
shear strain exceeds about 3 in which case the shear band spacing decreases with an increase in n.
This is rather unexpected. However, Eq. (37) provides an explanation. For e0X3; 1þ e0=ey ’

ð83:3e0Þ and with an increase in n this term decreases faster than n1=4 resulting in a decrease in the
value of Ls:
In order to elucidate further the variation of the shear band spacing Ls on the strain-hardening

exponent n, we have plotted in Fig. 4a–c Ls vs. n for the Molinari, the Wright–Batra and the
Johnson–Cook viscoplastic relations. Values assigned to different material parameters for the
Wright-Batra relation are given in Eq. (43), for the Molinari relation in his paper, and for the
Johnson–Cook [20] relation are for a typical steel. Whereas Ls increases monotonically with n for
the Molinari relation, it decreases for the other two viscoplastic relations. With an increase in n,
the maximum initial growth rate of the perturbation decreases for the Molinari relation, it
increases for the other two viscoplastic relations. Thus the three viscoplastic relations give
qualitatively different results which is consistent with Batra and Chen’s [12] work who also
scrutinized the Bodner–Partom relation.
Results in the Figures to follow are computed with Molinari’s definition of shear band spacing

and hence do not depend upon the strain when the homogeneous solution is perturbed. Fig. 5a–d
depicts the variation of the shear band spacing with the nominal strain-rate, strain-rate-hardening
exponent, strain-hardening exponent, and the thermal-softening exponent. It is clear that the
shear band spacing monotonically increases with an increase in the strain-rate-hardening
exponent but decreases essentially affinely with an increase in the strain-hardening exponent and
the thermal-softening exponent. The dependence of the shear band spacing upon the nominal
strain rate is discussed in detail below.
In an attempt to exhibit the rather strong coupling between the effects of the strain-rate

hardening exponent m, and the thermal conductivity, we have plotted in Fig. 6a, on a log–log
scale, the variation of the shear band spacing, LBW; with the thermal conductivity for several
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values of m. For m ¼ 0; the shear band spacing is finite as predicted by the Grady–Kipp
expression but not by LWO; LBC and LCB: For a fixed value of thermal conductivity (strain-
hardening exponent), the LBW increases with an increase in m (thermal conductivity). These plots
suggest that

LBW / kw; (44)
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where the value of w depends upon m; this dependence is exhibited in Fig. 6b for two values of the
strain-hardening exponent n. The value of w does not vary much with n. For mX0:0001; w is
almost 0.21 which is close to 0.25 appearing in the expressions for LWO and ~LBC: However, for
0pmp0:0001; w drops sharply from 1:0 at m ¼ 0 to 0:21 at m ¼ 0:0001: Batra and Chen [19]
analyzed shear band spacing in strain-rate gradient-dependent materials. For the material
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behavior modeled by Molinari’s type viscoplastic relation, the shear band spacing ð¼ ð0:76þ
0:0005kÞmm; 10pkp220W=mKÞ increased affinely with an increase in the thermal conductivity
k. However, when the material response was represented by the Wright–Batra relation (41), then
the dependence of the shear band spacing upon k could be represented by Eq. (44); they did not
determine w:
The dependence of the shear band spacing upon the average strain rate, _e0; is exhibited in Fig.

6c. It suggests that

LBW / ð_e0Þ
�0:787: (45)

The exponent �0:787 is close to �0:75 appearing in LWO and ~LBC but differs from �0:5 in LBC

and LCB: Note that expressions for LBC and LCB are based on the assumption of locally adiabatic
deformations, i.e., k ¼ 0:
For different values of the strain-rate-hardening exponent m, we have plotted on a log–log scale

the dependence of the shear band spacing LBW upon the specific heat c in Fig. 7a. When written as

LBW / cwc ; (46)
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w
c
depends upon m and n. The dependence of w

c
upon m and n is exhibited in Fig. 7b. w

c
¼ 0:274

and 0:258 for ðm; nÞ ¼ ð0:0117; 0:107Þ and ð0:0117; 0:0107Þ; respectively. However, for m ¼ 0 and
n ¼ 0:0107 and 0:107; w

c
¼ �0:596 and �0:509; respectively. Recall that for n ¼ 0; w

c
¼ 0:25 for

LGK; LWO and LM: Results depicted in Fig. 7b reveal that w
c
’ 0:25 only when mX0:1 and

n ¼ 0:0107 or 0:107: Our analysis shows that wc ¼ 0:25 is not valid for very weakly strain-rate-
hardening materials.
For

LBW / bwb ; (47)

Fig. 8a, b evinces the variation of LBW with b for six values of m. It is clear that w
b
’ �0:5 for all

values of m. Other investigators [16,12,21], except Molinari [17], set b ¼ 1 and therefore did not
delineate the influence of b upon the shear band spacing. Results plotted in Fig. 8b reveal that
�0:5pw

b
p� 0:44 for several combinations of the values of m and n, which is close to the value

Molinari [17] obtained.
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The effect of the thermal-softening exponent n upon the shear band spacing is exhibited in Fig.
9a and b. These plots reveal that the shear band spacing decreases monotonically with an increase
in the value of n: When the curve

LBW ¼ A lnðnÞ þ B (48)

is fitted to the plots of Fig. 9a for nX1:5 then following values of A and B are obtained (Table 1).
For the relation

LBW � nwn ; (49)

the plots of Fig. 9b give

w
n
¼
�0:51 for n ¼ 0:0214; 0:75ono5;

�0:44 for n ¼ 0:0428; 1ono5:

�
(50)
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Table 1

Values of A and B in LBW ¼ ðA lnðnÞ þ BÞmm

m/0.0117 0.1 1 2

A(mm) �1.0177 �0.62521 �0.1026

B(mm) 3.8180 2.370 0.4071
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5.3. Remarks

Because of the assumption that wavelengths considered are much smaller than the specimen
thickness h, our results for the computed shear band spacing are valid for specimens at least a few
cm thick. Otherwise only perturbations that vanish where velocity and temperature are prescribed
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should be considered. In particular, shear band spacings computed by relations examined here are
not valid for the experimental setup of Marchand and Duffy [25] since for specimens they tested
h ¼ 2:58mm which is comparable to the computed shear band spacing. However, these analyses
are valid for the explosively loaded cylinders tested by Nesterenko et al. [22].
We note that Batra and Chen [22], and Chen and Batra [29] have considered the effect of

thermoviscoplastic relations and microstructural parameters on the shear band spacing. Batra [30]
has delineated how different material parameters influence the shear band initiation.
6. Conclusions

We have used a perturbation method to analyze the stability of a homogeneous solution of
equations governing coupled thermomechanical simple shearing deformations of a thermo-
viscoplastic body. By setting the shear band spacing equal to the wavelength of the perturbation
having the maximum initial growth rate, we have found a closed-form expression for the shear
band spacing. Results computed from it have been found to compare well with those obtained
from Molinari’s [17] asymptotic solution for small values of the strain-hardening exponent.
It is found that the shear band spacing, LBW; increases monotonically with an increase in the
thermal conductivity k and the strain-rate hardening exponent m but decreases with an increase
in the strain-hardening exponent n. When written as LBW / kw; the value of w decreases from
’ 1:0 at m ¼ 0 to ’ 0:21 at m ¼ 0:0001: w equals 0:23 when m ¼ 0:058: Also, LBW /

(nominal strain rate)�0:787: The dependence of the shear band spacing upon the strain hardening
exponent, the thermal-softening exponent, and the Taylor–Quinney parameter has also been
characterized.
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