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Abstract

We use Bai’s conservation equation for cracks, and Rice and Tracey’s equation for the growth of a spherical void in an

infinite medium to derive an evolution equation for damage in an anisotropic material. It is then used to delineate the

instability strain in a thin anisotropic sheet deformed in a plane stress state of deformation, and obeying Hill’s yield

criterion. Assuming that strain- and strain-hardening, and thermal and damage softening of the material can be

characterized by a relation similar to that proposed by Batra, the effect of various material parameters, and the anisotropy

of the sheet on the instability strain has been quantified. It is found that only strain hardening and thermal softening

exponents strongly influence the instability strain. The spallation strength, time to spallation, and the fragment size are also

discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic ductile fracture under a general state of stress is believed to be due to the nucleation, coalescence,
and growth of voids; the widely used nucleation and growth (NAG) model has been reviewed by Curran et al.
[1]. Many physically based damage models can be found in Voyiadjis et al. [2]. There is considerable interest in
deriving damage evolution laws from microstructural considerations. Rice and Tracey [3] used a variational
method to derive a growth law of a void in an infinite isotropic perfectly plastic matrix subjected to tractions at
far away boundaries. Subsequently, Gurson [4] analyzed the growth of a void in quasistatic deformations of a
representative volume element of an isotropic perfectly plastic material obeying von Mises yield criterion, and
proposed a yield surface for a porous material whose radius decreases with an increase in porosity.
Engineering materials usually have a large number of microvoids of various sizes. Thus a damage relation
deduced from statistical mechanics is likely to be more relevant as has been done in [5–9] where microscopic
mechanisms have been linked to macroscopic deformations of materials with voids, and a conservation
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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equation has been derived. Wei and Batra [10] combined this conservation law with Rice and Tracey’s [3] work
to derive an evolution equation for damage in an isotropic material. However, many cold worked materials,
such as sheet metals for stamping application usually are anisotropic. Liao et al. [11] analyzed plane stress
deformations of a sheet containing a through-the-thickness hole, and used techniques similar to those
employed by Gurson to propose a plastic potential for a body containing a single spherical void. This was
adopted by Chien et al. [12] for studying, with the finite-element method, three-dimensional (3D) deformations
of a cube containing a spherical void. In these analyses, the anisotropic matrix material was characterized by
Hill’s [13,14] yield criterion that is quadratic in stresses.

Here a statistical damage model of an anisotropic material is derived based on Bai et al.’s conservation
law of microvoids, and the growth rate of a void in a finite anisotropic body. The growth rate of a single
void is derived from the flow potential in anisotropic materials proposed by Liao et al. [11] with Hill’s
quadratic yield condition. The damage evolution law, and the modified Batra–Litonski thermo-viscoplastic
constitutive relation is used to analyze the instability of sheet metals; factors affecting instability are
numerically evaluated.

2. Development of a damage model

2.1. Incremental stress– strain relations

We assume that elastic deformations are negligible as compared to plastic deformations, the material can be
modeled as rigid thermoviscoplastic, and the flow potential of the anisotropic material can be written as

f sij ;sm;f;c
� �

¼ s2 þ Y 2 2f cosh c
3sm
2Y

� �
� 1� f2

� �
¼ 0, (1)

where c ¼ c(F, G, H, L, M, N) is a function of the material anisotropy parameters, f the porosity of a
representative volume element, Y the yield stress, sij the Cauchy stress tensor, sm the mean stress, and s the
equivalent stress defined below by Eq. (4). The associated flow rule is taken to be

d�ij ¼ dl
qf

qsij

, (2)

where dl is the proportionality factor. The strain-rate tensor is defined by

�
�

ij ¼
1

2
ui;j þ uj;i

� �
; i; j ¼ 1; 2; 3, (3)

where ui is the velocity, and a comma followed by index i designates partial derivative with respect to the
rectangular Cartesian coordinate xi. We set either i ¼ 1; 2; 3 or i ¼ x,y,z.

The equivalent stress in an anisotropic material can be written as [13]

s ¼

ffiffiffi
3

2

r
F syy � szz

� �2
þ G szz � sxxð Þ

2
þH sxx � syy

� �2
þ 2Ls2yz þ 2Ms2xz þ 2Ns2xy

F þ G þH

" #1=2
. (4)

Substitutions from Eq. (4) into Eq. (1), and the result into Eq. (2) give

d�xx ¼
3

FþGþH
H sxx � syy

� �
þ G sxx � szzð Þ

	 

þ fcY sinh c 3sm

2Y

� �n o
dl;

d�yy ¼
3

FþGþH
F syy � szz

� �
þH syy � sxx

� �	 

þ fcY sinh c 3sm

2Y

� �n o
dl;

d�zz ¼
3

FþGþH
G szz � sxxð Þ þ F szz � syy

� �	 

þ fcY sinh c 3sm

2Y

� �n o
dl;

d�xy ¼ d�yx ¼
3

FþGþH
Nsxy dl;

d�xz ¼ d�zx ¼
3

FþGþH
Msxz dl;

d�yz ¼ d�zy ¼
3

FþGþH
Lsyz dl;

(5)
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where

�ij ¼ �ji; sij ¼ sji.

The incremental volumetric strain can be expressed as

d�u ¼ d�ii ¼ 3fcY sinh c
3sm
2Y

� �
dl ¼

df
1� f

, (6)

and the incremental deviatoric strain as

deij ¼ d�ij � d�u=3
� �

dij . (7)

We substitute in Eq. (7) for deij and dev from Eqs. (5) and (6), and get

dexx ¼
3

F þ G þH
H sxx � syy

� �
þ G sxx � szzð Þ

	 
� �
dl,

deyy ¼
3

F þ G þH
F syy � szz

� �
þH syy � sxx

� �	 
� �
dl,

dezz ¼
3

F þ G þH
G szz � sxxð Þ þ F szz � syy

� �	 
� �
dl,

dexy ¼ deyx ¼ d�xy ¼
3

F þ G þH
Nsxy dl,

dexz ¼ dezx ¼ d�xz ¼
3

F þ G þH
Msxz dl,

deyz ¼ dezy ¼ d�yz ¼
3

F þ G þH
Lsyz dl. ð8Þ

The deviatoric stress tensor is defined by

sij ¼ sij � smdij (9)

and the mean stress sm by

sm ¼ 1
3
sii. (10)

The incremental equivalent strain,d�, is the work-conjugate of the equivalent stress s, i.e.,

sij deij ¼ sd�. (11)

Substitutions from Eqs. (8) and (9) into Eq. (11), and using the definition (4) of the equivalent stress, we
have

dl ¼
d�

2s
(12)

and

d� ¼

ffiffiffi
2

3

r
F G deyy �H dezz

� �2
þ G H dezz � F dexxð Þ

2
þH F dexx � G deyy

� �2
FG þ GH þ FHð Þ

2

"

þ 2
de2xy

N
þ

de2xz

M
þ

de2yz

L

 !#1=2
. ð13Þ

Four special cases are listed below:
(a)
 For f ¼ 0, Eq. (1) reduces to the familiar flow surface for a perfectly plastic non-porous anisotropic solid
[14].
(b)
 For sm ¼ 0, Eq. (1) becomes

s ¼ Y 1� fð Þ. (14)
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Thus the yield strength of the porous material under zero mean stress is degraded by the factor (1�f).

(c)
 For zero equivalent stress ðs ¼ 0Þ, Eq. (1) becomes

sm ¼
2Y

3c

� �
cosh�1 1þ f2

� �
=2f

	 

(15)

which by using the identity

cosh�1 1þ f2
� �

=2f
	 


¼ � ln f (16)

can be written as

sm ¼
2Y

3c

� �
ln

1

f

� �
. (17)

Thus the threshold mean stress for void growth in an anisotropic solid is the same as that for an
isotropic solid; Eq. (17) for an isotropic solid was derived by Carroll and Holt [15]. For a general
anisotropic material, the function c can be determined by employing techniques similar to those of Rice
and Tracey [3], and of Gurson [4]. However, we do not pursue this here, and only consider a normal
anisotropic material for which the function c, proposed by Liao et al. [11], is given by

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2Rþ 1Þ

3ðRþ 1Þ

s
, (18)

where R characterizes the anisotropy of a plastic material [14].

(d)
 For a non-porous isotropic material (f ¼ 0) deformed under a uniaxial state of stress applied along the x-

axis,

sxx ¼
2s
3
; syy ¼ szz ¼ �

s
3
,

d�xx ¼ d�; d�yy ¼ d�zz ¼ �d�=2; d�u ¼ 0. ð19Þ

Thus for a nonporous isotropic material subjected to a uniaxial stress state, d� is simply the component
of the plastic strain in the direction of the uniaxial stress.
2.2. Growth rate of a void

In an anisotropic material, the rate of change of radius, r, of a spherical void is related to the volumetric
strain rate in the material. Substituting from Eqs. (6) and (12) into r

�
=r ¼ f

�

=3f, we get

r
�

r
¼ 1� fð ÞcY sinh c

3sm
2Y

� �
�
�

2s
’

1

2
c sinh c

3sm
2Y

� �
�
�

’
1

4
c exp c

3sm
2Y

� �
�
�

, (20)

where we have tacitly assumed that smX0. The last two expressions in Eq. (20) are valid approximately for
small values of sm since Eq. (14) has been used.

Rice and Tracey [3] used the Rayleigh–Ritz method to derive the following relation for isotropic materials:

r
�

r
¼ 0:283 exp

3sm
2Y

� �
�
�

. (21)

For an isotropic material, c ¼ 1 as mentioned by Johnson [16], and the right-hand sides of Eqs. (20) and
(21) are nearly equal. By using a more accurate mathematical treatment Huang et al. [17,18] revisited Rice and
Tracey’s [3] analysis, derived the following expression (22) for r

�
=r; and found that Rice and Tracey’s relation

(21) significantly underestimates the dilatation rate of an isolated void subject to stress fields with moderate to
high triaxiality

r
�

r
¼ 0:427 exp

3sm
2Y

� �
�
�

for sm=YX1,
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r
�

r
¼ 0:427 sm=Y

� �1=4
exp

3sm
2Y

� �
�
�

for 1=3 � sm=Yp1. ð22Þ

We note that the right-hand side of Eq. (22) is 1.7 times that of Eq. (20) and 1.5 times that of Eq. (21).
We will use Eqs. (18) and (20) to study growth of microvoids in anisotropic materials.

2.3. Statistical damage model

Following Bai et al.’s work [6,7] on ideal microcracks, we assume that during an initial stage of damage
development:
(1)
 microvoids are spherical and sparsely distributed, thus the interaction among them is negligible;

(2)
 no new voids nucleate but the volume of existing voids can change; and

(3)
 the growth of a void is governed by macroscopic deformations.
Since voids of all shapes occur in a material, our assumption of voids being spherical necessarily gives us an
approximate expression for the damage.

Both NAG of voids contribute to damage evolution and hence fracture initiation. However, the failure of
ductile materials due to high tensile stresses is generally dominated by the rapid growth of voids (e.g. see [19]).
The mechanisms of nucleation of voids are not clearly understood. Voids usually nucleate due to the
debonding of the matrix from the inclusions and/or cracking of hard inclusions. Also, a microscopic material
heterogeneity, such as structural discontinuities at surfaces, lines or points can generate a stress concentration
and induce void formation. Empirical relations simulating either stress- or strain-controlled nucleation of
voids have often been employed [20]. On the other hand, the growth of existing voids has been well studied,
and is also considered here. The present work can be generalized to incorporate void nucleation once the
mechanism has been better understood and appropriate relations have been established.

For simple and regular micro-voids, a micro-void can be represented by its volume u. We now introduce the
number-density (concentration in physical and phase space) of micro-voids, n ¼ n(u,t), defined as follows. At
time t, the number of micro-voids of volume between u and u+du equals n(u,t) du. Initially, the expansion/
contraction of micro-voids should change the number density n, since the interaction among micro-voids and
their coalescence can be ignored. Thus the volume of voids can be written as

VS ¼

Z 1
0

n u; tð Þudu. (23)

We assume that the number density of voids of volume u changes with time according to the relation [6,7]:

qn

qt
þ

qðn u
�
Þ

qu
¼ 0, (24)

where a superimposed dot indicates the material time derivative. This equation is analogous to the continuity
equation for an incompressible body.

We define a damage variable, Du, by

DS ¼
VS

V
¼

V � Vm

V
; Du

�

X0, (25)

where Vm and V are, respectively, the volume of the matrix and of the representative volume element. Taking
the material time derivative of both sides of Eq. (25) with respect to time t, we get

DS

�

¼
1

V
VS

�

�
DS

V
V
�

. (26)

Thus the rate of damage evolution is due to the rate of change of void volume per unit volume of the body
and also due to the rate of change of volume of the body. Recall that

V
�

¼ Vm

�

þV S

�

¼ V S

�

(27)
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since the matrix material is nearly incompressible, i.e., Vm

�

� 0. Substitution of Eq. (27) into Eq. (26) gives

DS

�

¼
V S

�

V
1�DSð Þ. (28)

Taking the time derivative of both sides of Eq. (23), we obtain

V u
�

¼
q
qt

Z 1
0

n u; tð Þ udu ¼
Z 1
0

n
�
udu ¼ �

Z 1
0

q n u
�

� �
qu

u du ¼
Z 1
0

n u
�
du, (29)

where we have used Eq. (24) and

Z 1
0

qðn uÞ
�

qu
udu ¼ nu u

�
j10 �

Z 1
0

n u
�
du ¼ �

Z 1
0

n u
�
du, (30)

as there are no voids of zero volume and no voids of infinite volume. Thus from the growth law of a single
void, we can use statistical methods to derive the evolution equation of damage.

Recalling that u ¼ ð4=3Þpr3 and substituting for r
�
from Eq. (20) into Eq. (29),we get

u
�
¼ 3�

1

4
c exp c

3sm
2Y

� �
�
�

u ¼
3

4
c exp c

3sm
2Y

� �
�
�

u (31)

which when combined with Eqs. (28), (29) and (23) gives

DS

�

¼
1

V
VS

�

1�DSð Þ ¼
3

4
c exp c

3sm
2Y

� �
�
�V S

V
1�DSð Þ ¼

3

4
c exp c

3sm
2Y

� �
�
�

DSð1�DSÞ. (32)

Eq. (32) gives the growth rate of damage as a function of the mean stress that is taken to be non-negative,
the yield stress, the equivalent plastic strain rate, the anisotropy parameter and the current state of damage.
For smo0, we set DS

�

¼ 0.
For a two-dimensional (2D) problem the damage variable, Ds, is defined as the surface area of voids divided

by the total area of cross section. For a spherical void of surface area s,

s
�

s
¼

2

3

u
�

u
. (33)

Thus substituting for u
�
=u from Eq. (31) into Eq. (33) we get

Ds

�

¼
1

2
c exp c

3sm
2Y

� �
�̄
�

Dsð1�DsÞ. (34)

Henceforth we omit the subscript s for brevity. When c and sm/Y are independent of �, we can integrate Eq.
(34), and use the initial condition DðtÞjt¼0 ¼ D0 to obtain

D ¼
D0 exp K �̄ð Þ

1�D0ð Þ þD0 exp K �̄ð Þ½ �

K ¼
1

2
c exp c

3sm
2Y

� �
ð35Þ

and

dD

d�̄
¼

D0 1�D0ð Þ exp K �̄ð Þ

1�D0ð Þ þD0 exp K �̄ð Þ½ �
2
. (36)

For macroscopic isochoric deformations, the term (1�D) in Eq. (34) equals one, and we get

D ¼ D0 exp K �̄ð Þ,

dD

d�̄
¼ D0K exp K �̄ð Þ ð37Þ

which was also derived in [10]. Here we use Eqs. (35) and (36).
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We note that by using Bai et al.’s statistical theory and void growth solution, Zhang et al. [21] have
derived a damage evolution equation similar to Eq. (34). However, coefficients in the two equations
differ because of different void growth models used. Zhang et al. [21] also compared predictions from
four available growth models, and found that the void growth relations have the same form for the NAG
[1,22], the Rice and Tracey [3], the Gurson [4], and the Johnson models [17], i.e., _r / r. We recently learned
that the idea of combining Bai et al.’s statistical method with the void growth mechanism had been used
by Feng et al. [23] though their formula differs from Eq. (34) since they employed a different growth
mechanism. Feng et al. [23] derived the growth rate of a void from the balance between the surface
energy a void creates and the plastic work dissipated during void’s expansion. Li and Huang [24] studied a
similar problem by using Bai’s statistical theory, and the NAG model given in [22] for high stress triaxiality
cases.
3. Instability of a thin sheet loaded in biaxial tension

Most sheet metal forming processes involve predominantly tensile strains; thus the maximum achievable
deformation is limited by tensile instability such as necking. In a wide thin sheet, the deformation is initially
uniform, and a plane stress state of deformation prevails. Considère [25] postulated that a structure becomes
unstable at the maximum load, and derived an analytical expression for predicting diffuse necking. Swift [26]
used the same criterion to derive conditions for diffuse necking in an isotropic sheet deformed in a plane stress
state of deformation, and Mellor [27] derived the instability strain for different ratios of principal stresses.
Swift’s approach has been extended to anisotropic materials by Moore and Wallace [28] using Hills’ yield
criterion [14]; here we generalize Moore and Wallace’s work by incorporating the effect of damage evolved
during the deformation process.

Sheet instability and specifically the onset of sheet necking have also been studied by using Hill’s criterion
[29] for localized necking along a direction of zero extension. However, sheets stretched in biaxial tension have
generally no direction of zero extension. Hecker [30] showed that the onset of necking can be represented by
forming limit diagrams (FLDs) developed by Keeler [31]. A FLD is a 2D plot of the maximum and the
minimum principal strains at which necking occurs in a sheet loaded in biaxial tension. Marciniak and
Kuczynski [32] introduced a thickness imperfection, representing effective material inhomogenity rather than
a physical reduction in the thickness, perpendicular to the principal stress direction and derived a condition for
the onset of localized necking. There is an extensive literature on FLDs and several references can be found in
[33].

Here we do not introduce any imperfection in the sheet, adopt Swift’s [26] criterion, and postulate that an
instability ensues in a biaxially loaded sheet when loads in the x1- and the x2-directions approach their extreme
(maximum) values simultaneously and that the biaxial tension is applied through tensile tractions that are
unaffected by local strain increments.

For simplicity, we orient our coordinate axes along the principal stress directions, and adopt the convention
1 ¼ x, 2 ¼ y, 3 ¼ z with the z-axis aligned along the thickness direction. For a plane stress state, the effective
stress can be written as

s ¼ s s1; s2ð Þ, (38)

where s1 and s2 are principal stresses, and Eq. (4) reduces to

s ¼

ffiffiffi
3

2

r
G þHð Þs21 � 2Hs1s2 þ F þHð Þs22

F þ G þH

 �1=2
. (39)

Since plastic deformations are assumed to be isochoric, de1+de2+de3 ¼ 0, and Eq. (13) can be
approximated by

d�̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

F þ G þH

FG þ FH þ GH

r
F þHð Þde21 þ 2H de1 de2 þ G þHð Þde22
	 
1=2

. (40)
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Here de1 and de2 are incremental strains along the directions of principal stresses s1 and s2. The onset of
instability is characterized by

dF1 ¼
ds1
s1
þ

dA1

A1
¼ 0,

dF2 ¼
ds2
s2
þ

dA2

A2
¼ 0. ð41Þ

With the definitions

�
dA1

A1
¼ d�1; �

dA2

A2
¼ d�2, (42)

we have

ds1 ¼ s1d�1,

ds2 ¼ s2d�2. ð43Þ

We set

a ¼
s2
s1
; g ¼

d�2
d�1
¼

de2

de1
, (44)

where we have neglected the change in volume due to the damage evolved. Thus

ds ¼
qs
qs1
þ ag

qs
qs2

 �
s1 d�1 (45)

which when combined with Eqs. (39) and (40) gives

ds
d�
¼

s
Z

(46)

with

Z ¼

ffiffiffi
2

3

r
F þ G þHð Þ

1=2 G þHð Þ � 2Haþ F þHð Þa2
	 
3=2

F þHð Þ
2a3 �H 2F þHð Þa2 �H 2G þHð Þaþ G þHð Þ

2

¼

ffiffiffi
2

3

r
F þ G þHð Þ

1=2

FG þ FH þ GHð Þ
1=2

F þHð Þ þ 2Hgþ G þHð Þg2
	 
3=2
F þHð Þ þHgþHg2 þ G þHð Þg3

, ð47Þ

a ¼
G þHð ÞgþH

F þH þHg
; g ¼

F þHð Þa�H

G þHð Þ �Ha
.

The instability criterion (46) is similar to that of Moore and Wallace [28], and does not explicitly depend
upon the damage variable. This is due to definitions of incremental strains and the assumption (44) of the
proportional stress and the proportional strain increments.

For a normal anisotropic material

Z ¼

ffiffiffi
2

3

r
Rþ 2ð Þ

1=2 Rþ 1ð Þ � 2Raþ Rþ 1ð Þa2
	 
3=2

Rþ 1ð Þ
2a3 � R Rþ 2ð Þa2 � R Rþ 2ð Þaþ Rþ 1ð Þ

2

¼

ffiffiffi
2

3

r
Rþ 2ð Þ

1=2

2Rþ 1ð Þ
1=2

F þHð Þ þ 2Hgþ G þHð Þg2
	 
3=2

Rþ 1ð Þ þ Rgþ Rg2 þ Rþ 1ð Þg3
ð48Þ

with

a ¼
Rþ 1ð Þgþ R

1þ Rþ Rg
; g ¼

Rþ 1ð Þa� R

Rþ 1ð Þ � Ra
.
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For an isotropic material, R ¼ 1, and Eq. (48) simplifies to

Z ¼
4 1� aþ a2
� �3=2

1� að Þ 4� 7aþ 4a2ð Þ
¼

4 1þ gþ g2
� �3=2ffiffiffi

3
p

1þ gð Þ 2� gþ 2g2ð Þ
, (49)

a ¼
2gþ 1

2þ g
; g ¼

2a� 1

2� a
.

which are the same as those derived by Swift [26]. For uniaxial loading, a ¼ 0, Z ¼ 1, and Considère’s
criterion is recovered.

3.1. Modified Batra– Litonski’s thermo-viscoplastic constitutive relation

Batra [34] generalized Litonski’s relation [35] for simple shearing deformations to that given below by Eq.
(50) in which s, e and �

�
are the equivalent stress, the equivalent strain, and the equivalent strain rate,

respectively, y denotes the present temperature of a material particle, y0 its temperature in the undeformed
reference configuration, and â; �y; b; n and m are material parameters; superimposed bars on s, e and �

�
have

been omitted for simplicity

s ¼ s0 1þ
�

�y

� �n

1þ b �
�

� �m

1� â y� y0ð Þ½ �. (50)

The flow stress s in Eq. (50) should not be confused with the yield stres Y of the ideal rigid-plastic mate-
rial appearing in Eq. (1). Wei and Batra [10] also considered the effect of material damage, and modified
Eq. (50) to

s ¼ s0 1þ
�

�y

� �n

1þ b �
�

� �m ym � y
ym � yr

� �n

1�Dð Þ
q, (51)

where q is a material parameter. Note that terms specifying the dependence of the flow stress upon the
temperature rise are different in Eqs. (50) and (51). In Eq. (51) thermal softening of the material is
characterized by the exponent v, and the constant ym is usually referred to as the melting temperature
of the material. However, it is a curve-fitting parameter and does not, in general, equal the melting
temperature. yr in Eq. (51) equals the room temperature. When D ¼ 0, there is no damage evolved, and when
D ¼ 1 the material has failed completely. The exponent q characterizes the dependence of the flow stress upon
damage.

During a relatively high strain rate loading process, for example, when �
�
41=s, heat conduction can be

ignored if deformations have not localized into a narrow region generally called an adiabatic shear band.
Batra and Kim [36] and Batra and Lear [37] have shown, through numerical experiments, that the time of
initiation of an adiabatic shear band is virtually unaffected by neglecting effects of heat conduction. However,
heat conduction affects significantly the post-localization response of the material. For locally adiabatic
deformation, the temperature rise can be calculated from

dy
d�
¼

bs
rc

, (52)

where 0obo1 is the Taylor–Quinney factor. Usually, 0.85obo0.95 for metals.
For deformations at a constant strain rate, the constitutive relation (50) can be substituted into Eq. (52),

and the resulting equation can be integrated to arrive at Eq. (53). Eq. (54) gives the derivative of temperature
with respect to the effective plastic strain. In the absence of damage, Eqs. (53) and (54) will give approximate
values of the temperature rise, and its derivative with respect to the effective plastic strain

y ¼ ym � ym � yrð Þ exp �
bs0�y 1þ b �

�
� �m

rc ym � yrð Þ nþ 1ð Þ
1þ

�

�y

� �nþ1

� 1

" #8<
:

9=
; for n ¼ 1, (53a)
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y ¼ ym � ym � yrð Þ
1�n
�

b 1� nð Þs0�y 1þ b �
�

� �m

rc ym � yrð Þ
n nþ 1ð Þ

1þ
�

�y

� �nþ1

� 1

" #8<
:

9=
;

1= 1�nð Þ

for na1, (53b)

dy
d�
¼

bs0 1þ b �
�

� �m

rc
1þ

�

�y

� �n

exp �
bs0�y 1þ b �

�
� �m

rc ym � yrð Þ nþ 1ð Þ
1þ

�

�y

� �nþ1

� 1

" #8<
:

9=
; for n ¼ 1, (54a)

dy
d�
¼

bs0 1þ b �
�

� �m

rc ym � yrð Þ
v 1þ

�

�y

� �n

ym � yrð Þ
1�v
�

b 1� vð Þs0�y 1þ b �
�

� �m

rc ym � yrð Þ
v nþ 1ð Þ

1þ
�

�y

� �nþ1

� 1

" #8<
:

9=
;

v= 1�vð Þ

for na1.

(54b)

For deformations at a constant strain-rate

ds
d�
¼

qs
q�
þ

qs
qy

dy
d�
þ

qs
qD

dD

d�
. (55)

Substituting from Eq. (51) into Eqs. (55) and (46), we get the following instability criterion:

n

�y þ �
�

v

ym � y
dy
d�
�

q

1�D

dD

d�
¼

1

Z
. (56)

The derivatives of damage and temperature with respect to the effective plastic strain are given by Eqs. (36)
and (54), respectively. Since the only unknown in Eq. (56) is the instability strain, the influence of material
parameters upon it can be ascertained.

3.2. Results and discussion

We assume that the sheet is made of HY-100 steel, and list in Table 1 values of material parameters taken
from [38]. Additionally, unless stated otherwise, we set R ¼ 1.0, D0 ¼ 10�5, and s2/s1 ¼ 1. For constant strain
rate and proportional loading conditions, we delineate the effect of material parameters upon the instability
strain by varying only one parameter at a time and keeping values of other parameters unchanged.

For different values of s2/s1p1, Fig. 1 depicts the damage evolution with the axial strain computed from
Eq. (35). After a slow start, the damage grows nearly exponentially, and at a given value of the axial strain, the
damage evolved increases with an increase in s2/s1. For example, when s2/s1 ¼ 1, the accumulated damage
equals 0.3 at an axial strain of 7.7. We note that a material usually fails when the damage is about 0.3.
However, the axial strain of 7.7 is much higher than that encountered in practice for most metals. Reasons for
this discrepancy include the neglect in the mathematical model of several factors such as the generation of new
voids, interaction among existing voids, coalescence of microvoids into a microcrack, and possibly
inappropriate values of some material parameters. As shown below, the damage evolved plays a minor role
when the axial strain in the x-direction is below the critical instability strain of about 0.1.

Fig. 2 exhibits, for different values of the anisotropy parameter R, the dependence upon the stress ratio
s2/s1 of the instability strain in the x-direction. For each value of R considered, the instability strain eI first
decreases, reaches a minimum value and subsequently increases. The value of s2/s1 at which eI attains a
minimum value increases with an increase in the value of R.
Table 1

Values of material properties for the HY-100 steel

s0 n m n r c ey b _� ym yr b q

702MPa 0.107 0.0117 1 7860 kgm�3 473 J kg�1K�1 0.007 0.9 10/s 1500K 300K 17320/s 1
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Fig. 1. For different values of s2/s1, damage evolution with the axial strain.

Fig. 2. For different values of the anisotropy parameter R, dependence of the instability strain upon s2/s1.
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Results plotted in Fig. 2 also show that initially the instability strain decreases with an increase in the
triaxiality ratio. For R ¼ 1 and small values of s2/s1 (e.g., s2/s1o0.2), a ¼ eminor/emajoro0 and eI is a
decreasing function of s2/s1 which is consistent with that predicted by the Müschenborn and Sonne criterion
[39] eI ¼ emajor(4(1+a+a2)/3)1/2 of necking in a sheet. Here eminor and emajor are, respectively, the minor and
the major strains (or the minimum and the maximum principal strains, respectively) at a point. However, for
large values of s2/s1, a40, and the instability strain increases with an increase in s2/s1 which agrees with
results plotted in Fig. 2.

The dependence upon the initial damage D0 of the instability strain, and the corresponding damage DI at
the onset of instability normalized by the initial damage is shown in Fig. 3. The instability strain decreases
from 0.081 to 0.0775 when the initial damage is increased from 0 to 0.05. The variations of the instability
strain and the damage at the onset of instability with the normal anisotropy factor R, the strain rate in the x-
direction, and material parameters m, n and n are depicted in Figs. 4–7 and 8, respectively. It is evident that
only the strain hardening exponent n, and the thermal softening exponent n significantly affect the instability
strain. Thus values of these parameters need to be determined more accurately than those of other parameters
to ascertain a reliable value of the instability strain. Whereas the instability strain increases with an increase in
n, it decreases with an increase in n.

Experimental work of Fyfe and Rajendran [40] and finite-element simulations by Tuğcu [41] have shown
that the ductility of a material increases with an increase in the inertia effects. Batra [42] and Batra and Lear
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Fig. 3. Dependence upon the initial damage D0 of the instability strain and the corresponding damage ratio DI/D0
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Fig. 4. Dependence upon the normal anisotropy factor R of the instability strain and the corresponding damage ratio DI/D0.
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Fig. 5. Dependence upon the strain rate in the x-direction of the instability strain and the corresponding damage ratio DI/D0.
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[37] concluded through numerical experiments that the strain at which an adiabatic shear band initiates
increases with an increase in the applied nominal strain rate or equivalently with an increase in the inertia
effects. For a microporous material Wu et al. [43] found that inertia effect is small in the early stages of void
growth and it strongly depends upon the initial size of the void. However, under extremely high loading rates
inertia effects first impede void growth but eventually promote void growth. Rajendran and Fyfe [44] analyzed
the expansion of a ring under different strain rates and concluded that an increase in inertia effects enhanced
the ductility of material of the ring.

Most studies on instability of sheets employ the Marciniak–Kuczynski criterion to delineate sheet necking.
Ghosh [45], Brunet and Morestin [46] and Campos et al. [47] have studied the sheet metal forming of strain-
and strain-rate hardening materials obeying a power-law-type relation, and found that the strain hardening
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Fig. 6. Dependence upon the strain-rate hardening exponent, m, of the instability strain and the corresponding damage ratio DI/D0.
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Fig. 8. Dependence upon the thermal softening exponent, n, of the instability strain and the corresponding damage ratio DI/D0.
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exponent strongly influences sheet necking. The instability strain increases with an increase in the value of the
strain hardening exponent.

It is rather difficult to compare the computed instability strain with that either found experimentally or by
other theories. Goto et al. [48] have accounted for the effect of anisotropy in HY100 steel and have developed
a plasticity theory based on slip systems but ignoring the effect of damage and did not compute the instability
strain.

The instability strain given by Eq. (43) usually corresponds to the peak in the effective stress–the effective
strain curve. Numerical experiments analyzing 1D, 2D and 3D [27,36,49] transient problems for
thermoelastoviscoplastic materials have shown that the effective plastic strain at the initiation of an adiabatic
shear band is much higher than that at which the effective stress peaks; for a given material the difference
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between the two is a function of the effective plastic strain rate, the thermal softening characteristics,
and the rate of damage evolution. The effective plastic strain at failure is generally a little higher than
that at the initiation of an adiabatic shear band. For 11 materials Batra and Lear [37] have listed in
Table 3 of their paper the instability strain and the strain at the initiation of an adiabatic shear band; the
ratio between the strain at the initiation of an adiabatic shear band and that at the onset of an instability
varies from a low of 2.25 for copper to a high of 93 for a tungsten heavy alloy. We note that the strain
at the initiation of an adiabatic shear band depends upon the size, type, and number of defects in the
body.

4. Possible extension to spallation

Another important application of a damage model is to study spallation [1]. The influence of plastic
anisotropy on spallation has not been investigated. However, the effect of material anisotropy should not be
underestimated. As pointed out by Grady, the mode of deformation depends on the degree of anisotropy in
the strain field [50]. It is common to compare the simulated rear-surface velocity with that observed
experimentally, and then estimate the spallation strength, and the spallation time [22,23,51]. The simulation
usually requires sophisticated computer codes.

We note that spall evolution in 1020 steel under multiaxial loading has been studied by Randers-Pherson
and Rajendran [52]. Campagne et al. [53] have simulated spallation in HY-100 conical targets but it is hard to
compare the two sets of results.

Here we use Grady’s idea, and focus on analyzing the influence of anisotropy of a plastic material on

spallation. Assume that the energy-limited spall gives the ductile spall strength Ps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rc20W c

q
, the spall or the

fracture time, ts ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W c

.
rc20�
�2

r
, and the fragment size s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8W c

.
r�
�2

r
. Note that all three are increasing

functions of the critical dissipated work Wc. If the material mass density r, wave speed c0, and the strain rate �
�

are constants, then values of Ps, ts and s depend only on the dissipated plastic work. Grady estimated

W c ¼ Ŷ�c, where Ŷ is material’s strength, ec a critical strain at which the void growth becomes unstable,
namely, voids begin to coalesce. Grady [50] used ec ¼ 0.15, or the critical porosity of 0.162 for all materials he
studied. Seaman et al. [54] suggest that copper specimens fail when the porosity equals 0.3. However, for an
anisotropic material the critical damage criterion should be direction dependent.

We first check whether or not Consideré’s criterion can be used to calculate ec. We assume that Eq. (56) also
gives the critical strain at the onset of spallation. We recall that Consideré’s condition was initially proposed
for uniaxial stress loading, while here the material at the sheet center is in a state of hydrostatic tension. For
high mean tensile stresses, the damage Eq. (34) is not applicable. From simple geometric and mass
conservation considerations we can deduce that

D ¼ 1� e�� (57)

which is equivalent to dD=d� ¼ e�� ¼ ð1�DÞ or dD=dt ¼ e�� �
�
¼ 1�Dð Þ �

�
. Eq. (57) is the same as that used

by Batra and Jaber [38] when the nucleation and coalescence of voids is neglected.

We note that in Eq. (56) 1
ym�y

dy
d�

.
q

1�D
dD
d� ¼

1
7
� 1

5
for material parameters given in Table 1. The effect of

damage in Eq. (57) is larger than that in Eq. (34). Thus neglecting the term related to thermal softening does
not change the general trend of the instability strain but makes the physical meaning more clear. From Eqs.
(51), (56) and (57), we get the following expression for the instability strain:

�c ¼
Zðn� �yÞ � �y

Z þ 1
, (58)

where Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ððRþ 2Þ=ðRþ 1ÞÞ

p
since for uniaxial loading a ¼ 0. However, ec is negative for Zo1.5

meaning that the system is always unstable for the range of parameters used. The consideration of the
thermal softening effect will decrease the instability strain. Thus Consideré’s criterion can not be used to
determine �c.
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Fig. 9. Dependence of the critical strain, ec, upon the stress decrease, K̂ ¼ s=sm.
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Batra and Kim [55] used the stress drop s=smax ¼ K̂ as a criterion for the initiation of localized
deformation. We note that spallation may also be viewed as a deformation and damage localization event.
Here smax and emax are the maximum stress and the maximum strain, respectively, determined by setting
ds/de ¼ 0. Using the constitutive relation (51), ignoring the temperature and the strain rate effects, and using
Eq. (57), we get

�max ¼ n� �y (59)

and the critical strain ec can be determined from

�c þ �y
� �n

e��c ¼ K̂nn e� n��yð Þ. (60)

As depicted in Fig. 9 ec is a decreasing function of K̂ . For the criterion used by Grady [50], ec ¼ 0.15, and we
get K̂ ¼ 0:89. In Batra and Kim [55], values of K̂ equal to 0.8, 0.90, and 0.95 have been used as the localization
criterion. The plastic work dissipated is given by W c ¼

R �c
0 sd�. Once Wc is known, the spall strength, the time

to fracture, and the fragment size can be calculated by using Grady’s [50] relations.

5. Remarks

The present work illuminates which material parameters noticeably affect the instability strain during plane
stress deformations of a thin sheet. The assumption that initially spherical voids grow as spheres during plastic
deformations of an anisotropic material has simplified the analysis. However, in reality spheres become
ellipsoids even when the state of stress is hydrostatic. For example, recent experiments [56] show that the shape
of a void not only depends on the initial metallurgical structure of materials but also on the material
anisotropy and loading conditions. The ratio of principal axes of elongated voids is found to be as large as 50.
Thus, both anisotropic damage evolution and material anisotropy should be considered simultaneously in
future works.

6. Conclusions

We have derived an expression for damage growth in an anisotropic material, and used it to analyze the
stability of a thin sheet under a plane state of stress. It is assumed that the sheet becomes unstable when axial
loads in the two principal directions at a point simultaneously reach their peak values. For the material of the
sheet exhibiting strain and strain rate hardening, and thermal and damage softening, it is found that the strain
hardening and thermal softening exponents strongly influence the axial strain when the sheet becomes
unstable. The spallation of anisotropic materials is briefly discussed.
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