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Abstract

We analyze the stability of homogeneous simple tensile/compressive deformations of an isotropic heat-conducting

thermoviscoplastic bar by studying the growth of infinitesimal perturbations superimposed upon a homogeneous

deformation. The smallest axial strain at which the superimposed perturbation has a positive initial growth rate is called

the instability strain. Two criteria are used to determine the shear band spacing; (i) the wave number, xm, of the

perturbation that has the maximum initial growth rate gives the spacing, Ls ¼ 2p=xm, between adjacent shear bands, and

(ii) Ls ¼ inf t0X02p=xmðt0Þ where t0 is the time when the homogeneous solution is perturbed. It is found that the geometric

softening/hardening significantly affects the instability strain and the value of Ls. The effect of varying the thermal

conductivity, the strain-rate hardening exponent and the average axial strain rate on Ls has been delineated. It is found

that Ls / ðnominal axial strain rateÞ�0:757. However, for Ls / ðthermal conductivityÞw̄, the value of w̄ strongly depends

upon the strain rate hardening exponent m. No scaling law is found between Ls and the Taylor–Quinney parameter. For

Ls / ðspecific heatÞw, the value of w depends upon the strain-rate hardening exponent m and increases monotonically with

an increase in the value of m.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The simple tension test on a metallic bar is widely used for ascertaining mechanical properties of a material.
If the load is gradually increased from zero, the bar first deforms elastically, then yields and deforms
plastically. At a certain point during the plastic deformations a maximum occurs in the load and the structure
becomes unstable. A further increase in the load necks the specimen and it quickly fractures. Considerè [1]
proposed that the bar becomes unstable at the maximum in the applied load, and successfully described the
competition between strain hardening and the geometric softening caused by the reduction in the cross-
section. Considerè’s criterion gives a reasonably good estimate of the critical strain for the onset of necking
in a bar deformed quasi-statically. Hart [2] proposed an instability criterion based on the growth of an
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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inhomogeneity in a bar and considered the influence of strain-rate sensitivity of the flow stress. Hart’s
approach has been adopted by Jonas and Baudelet [3], who studied the effect of crack and cavity generation
on instability of a tensile bar. Kocks et al. [4] re-examined the development of nonuniformities in tensile
deformations and found that a material may be stable even after Hart’s criterion is met. Ferron [5] studied the
effect of heat generation due to plastic deformations on the instability of a material. Fressengeas and Molinari
[6] used a perturbation method to analyze the instability of plastic flow in a thermoviscoplastic material.

At high strain rates, instability and necking are more complex phenomena than in static case due to inertia,
thermal softening, heat conduction and damage evolution, and material fragmentation is frequently
encountered. Shockey and Erlich [7], and Shockey [8] described an exploding cylinder technique and presented
several observations of metallurgical effects in a steel. This technique eliminates the influence of the loading
geometry, and shear bands are produced in the absence of externally induced stress concentrations. Hence,
nucleation sites are selected by the material and features associated with the load application rather than by
artificial defects introduced in the structure. Furthermore, numerous shear bands occur allowing statistical
descriptions of their numbers and sizes. The expansion of the exploding cylinders was stopped before extensive
fragmentation could occur, thereby allowing shear bands to be observed in various stages of development and
simplifying the recovery procedure for post-test examination. The strain and the strain rate in the specimen
can be varied by changing the explosive mixture and the cylinder thickness. Many well-developed shear bands
were observed in AISI4340 steel, numerous incipient shear bands in a medium carbon RC24 steel, and none in
fine grained RC27 and RC55 tool steels that deformed homogeneously till brittle fracture. Shear bands
nucleated at discrete sites on the inner surface of the cylinder and propagated radially outwards along 45�

planes achieving a semicircular planar geometry. Nesterenko et al. [9] experimentally investigated the shear
band spacing (SBS) in an explosively loaded hollow cylinder with the crack formation impeded by an imposed
hydrostatic pressure. If the length of the cylinder is very large as compared to its inner diameter, the explosive
charge is uniformly distributed along its length and is ignited instantaneously then a plane strain state of
deformation can be assumed to prevail in the cylinder. Xue et al. [10] found that the average strain in shear
bands formed in commercially pure titanium equals 0.55 and the average SBS is 0.53mm; they have also
presented a two-dimensional analysis of this problem.

Grady and Kipp [11], and Grady [12] analyzed simple shearing deformations of a thermally softening
material and derived an expression for the SBS by accounting for momentum diffusion due to unloading
within bands. Bai et al. [13] have deduced an approximate relationship between the shear band thickness and
the SBS. They studied deformation patterns using dimensional analysis and found that two diffusion
processes, namely heat conduction and momentum transfer, are involved. Within the same time scale, the
length scale of heat diffusion is usually much less than that of the momentum transport in metals. The shear
band thickness is controlled by heat diffusion and the SBS by momentum diffusion. This difference in
diffusion rates may govern the pattern of adiabatic shear bands.

Bai [14] considered simple shearing deformations of a thermoviscoplastic body, perturbed the homogeneous
solution of the governing equations, derived equations linear in the amplitude of the perturbation and studied
the stability of the homogeneous solution. He defined a characteristic length scale associated with the
wavelength of the perturbation corresponding to its maximum initial growth rate. Wright and Ockendon [15]
postulated that perturbations growing simultaneously at different sites would never merge, and thus result in
multiple shear bands. Hence, the wavelength of the mode with the maximum initial growth rate corresponds to
the minimum spacing between shear bands. Molinari [16] generalized Wright and Ockendon’s work to strain
hardening materials, and by using an asymptotic expansion technique quantified the effect of the strain
hardening exponent on the minimum SBS, Ls, defined as Ls ¼ inf t0X0ð2p=xmðt0ÞÞ. Here, xm is the wave number
of the perturbation introduced at time t0 that has the maximum initial growth rate at t0. He delineated the
error in the minimum SBS caused by the assumption that the block thickness is infinite. Note that Wright and
Ockendon, and Bai did not find the infimum of 2p=xmðt0Þ. Batra and Chen [17–20] extended Wright and
Ockendon’s and Molinari’s work on SBS to strain-rate gradient-dependent materials deformed in simple
shear, and gave approximate analytical expressions for the critical wavelength for heat-conducting nonpolar
materials and locally adiabatic deformations of strain-rate gradient-dependent materials. It was found that the
material characteristic length and heat conduction play important roles in the SBS. An interesting result
derived by Batra and Chen is that the SBS is finite even in locally adiabatic deformations of strain-rate
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gradient-dependent materials. They have scrutinized the effect of material parameters, microstructural
variables, and different thermoviscoplastic relations on the SBS and the instability strain.

Batra and Wei [21] recently obtained a closed-form expression for the SBS for a strain hardening, strain-rate
hardening and thermally softening thermoviscoplastic material deformed in simple shear. Xue et al. [10] have
shown that the Grady–Kipp [11], the Wright–Ockendon [15] and the Molinari [16] models do not predict well
the SBS in titanium alloys. They proposed that the rate of initiation, the rate of growth and the characteristic
time of interaction between shear bands be considered. The work presented herein shows that the geometric
softening/hardening due to the change in the area of cross-section of a bar deformed in simple tension/
compression has a significant effect on the SBS.

Here we use the perturbation method to find the instability strain and the SBS for a heat-conducting, strain
hardening, strain-rate hardening, and thermally softening material deformed in simple tension/compression.
The softening of the material due to damage evolution and the change in the cross-section is also considered.
A major difference between this work and the earlier ones dealing with simple shearing deformations is the
geometric softening/hardening induced by the change in the cross-sectional area. It is found that in the absence
of heat conduction, the perturbation method and the Considerè criterion give the same value of the instability
strain; this is true even when inertia, thermal softening and damage evolution are considered. The dependence
of the instability strain and the SBS on material parameters is delineated. Scaling laws for the SBS are closely
examined.

2. Governing equations

We study one-dimensional thermomechanical deformations of a homogeneous, isotropic, strain hardening,
strain-rate hardening, thermally softening and damage softening thermoviscoplastic body deformed in simple
tension/compression. Equations describing deformations are

Ar
qv

qt
¼

qðAsÞ
qx

; Arc
qy
qt
¼ bAs

q�
qt
þ l

q
qx

A
qy
qx

� �
,

s ¼ sð�; _�; y;f1;f2; . . . ;fnÞ;
dfi

d�
¼ f iðs; �; _�; y;f1;f2; . . . ;fnÞ; i ¼ 1; 2; . . . ; n. ð1Þ

Here, r is the mass density, v the axial velocity of a material particle, t the time, s the axial Cauchy stress, � the
axial strain, l the thermal conductivity, c the specific heat, y the temperature rise, b the Taylor–Quinney factor
describing the fraction of plastic working converted into heating, and A is the cross-sectional area of the bar.
Usually, 0:85pbp0:95. Elastic deformations have been neglected because they are very small as compared to
the plastic deformations. Eqs. ð1Þ1 and ð1Þ2 express, respectively, the balance of linear momentum and the
balance of internal energy. Eq. ð1Þ3 gives the constitutive relation expressing the flow stress as a function of
strain, strain rate, temperature and internal variables whose evolution is given by Eq. ð1Þ4. Internal variables
fi are associated with various dissipative mechanisms; each fi may be a scalar, a vector or a tensor, and n is a
sufficiently large number to fully characterize the material. An internal variable is nonobservable and is
obtained from an evolution law. Since the treatment of n damage variables is similar to that of one variable,
henceforth we set n ¼ 1 and denote the damage variable by f. Lateral inertia effects which could cause surface
instability have been neglected for simplicity. The system of Eqs. (1) is similar to that employed by Batra and
Kim [22] to analyze simple shearing deformations of a block of varying thickness except that they do not
consider the damage variable f and did not study the stability of solutions and the SBS. Batra and Chen [18]
have delineated the effect of microstructural (or internal) parameters on the SBS in a thermoviscoplastic
material deformed in simple shear.

We define the axial strain � as

� ¼ lnðL=L0Þ, (2)

where L0 and L are the undeformed and the deformed lengths of the bar. Following the usual assumption that
plastic deformations are isochoric, an alternative expression for � is

� ¼ lnðA0=AÞ; A ¼ A0 expð��Þ. (3)
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Here we have neglected the effect of damage, if any, on the change in volume. For isochoric deformations of a
homogeneous body the mass density is a constant. Substituting for A from Eq. ð3Þ2 into Eq. ð1Þ1 and
eliminating A0 expð��Þ we get

r
qv

qt
¼

qs
qx
� s

q�
qx

. (4)

Differentiating both sides of Eq. (4) with respect to x and using q�=qt ¼ qv=qx we obtain

r
q2�
qt2
¼

q2s
qx2
�

qs
qx

q�
qx
þ s

q2�
qx2

� �
. (5)

Similarly, the energy balance equation ð1Þ2 can be simplified to

bs
q�
qt
¼ rc

qy
qt
� l

q2y
qx2
�

q�
qx

qy
qx

� �
. (6)

The term in parentheses on the right-hand side of Eq. (5) and the third term on the right-hand side of Eq. (6)
are due to the change in the area of cross-section of the bar.
3. Instability strain derived from the perturbation method

We assume that the bar is of infinite length; thus, admissible perturbations need not satisfy boundary
conditions at the end sections. The analysis presented in this section closely follows Bai’s work [14] on simple
shearing deformations. However, the effect of geometric softening/hardening in the simple tension/
compression of a bar introduces additional terms.

Let S0ðtÞ � ð�0ðtÞ;s0ðtÞ; y0ðtÞ;f0
ðtÞÞ be a solution of Eqs. (5) and (6) corresponding to homogeneous

deformations of the bar, and dSðt0;x; tÞ with jdSðt0;x; tÞj5jSðt0Þj denote an infinitesimal perturbation in
S0ðt0Þ. Perturbations considered are such that S0ðt0Þ þ dSðt0;x; tÞ satisfies Eqs. (5) and (6), and

dS ¼ dS0eixxeZðt�t0Þ, (7)

where dS0 is the amplitude of the perturbation, x the wave number in units of 1/length, and Z equals the
growth rate of the perturbation at time t0. ReðZÞ40 implies that perturbations will grow signifying the
instability of the homogeneous solution at time t0; otherwise it is stable. We assume that perturbations of all
wave numbers are admissible.

Eq. ð1Þ3 implies that

ds ¼ ðQ0 þ ZR0Þd�� P0dyþ Y 0df, (8)

where

P0 ¼ �
qs
qy

����
s¼s0

; Q0 ¼
qs
q�

����
s¼s0

; R0 ¼
qs
q_�

����
s¼s0

; Y 0 ¼
qs
qf

����
s¼s0

. (9)

Thus, P0 equals thermal softening of the material, Q0 its strain hardening, R0 strain-rate hardening, and Y 0 a
thermodynamic force conjugate to the internal variable f. Note that

P0X0; Q0X0 and R0X0. (10)

In terms of nondimensional variables

Z̄ ¼
lZ

cQ0

; x̄ ¼
lx

c
ffiffiffiffiffiffiffiffiffi
rQ0

p ; I ¼
cR0

l
; J ¼

bs0P0 � rcðY 0f
0
� s0Þ

rcQ0

,

G ¼
blP0_�0
rc2Q0

; E ¼ 1�
ðY 0f 0

Þ � s0

Q0

; F ¼
blP0_�0s0

rc2Q2
0

,
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where f 0
¼ qf=q�js¼s0 , and _�0 is the nominal axial strain rate, we get the following equation for the

determination of Z̄:

Z̄3 þ ½Gþ ð1þ IÞx̄2�Z̄2 þ ðI x̄2 þ 1� JÞx̄2Z̄þ ðEx̄4 � F x̄2Þ ¼ 0. (11)

The third and fourth terms on the left-hand side of Eq. (11) differ from the third and fourth terms of Eq. (15)
of [21] and account for the differences in results for simple shearing and simple tensile deformations (for
simple shearing deformations, E ¼ 1, F ¼ 0; J ¼ bs0P0=ðrcQ0Þ).

For given values of t0 and x̄, Eq. (11) has three roots; the root with the largest positive real part will make
the homogeneous solution most unstable. For very short wavelengths, x̄!1, Eq. (11) has the solution
Z̄ ¼ �E=I which in the absence of internal variables is negative provided that s0X0. For extremely long
wavelengths, x̄! 0, Z̄! 0 and �G. If Z̄! 0 from above, then the simple tensile deformations are unstable
for perturbations of very long wavelengths, and the growth rate of the perturbed solution decreases with an
increase in the wavelength of perturbations. Thus, the tensile deformation is stable with respect to
disturbances of infinitesimal wavelengths, but may be unstable with respect to disturbances of finite
wavelengths. We seek the wave number x̄m for which Z̄ has the maximum value Z̄m. Thus, Z̄m and x̄m satisfy
Eq. (11) and

dZ̄

dx̄
2

 !�����
ðZ̄¼Z̄m;x̄¼x̄mÞ

¼ 0. (12)

Eqs. (11) and (12) give

4Z̄2mðGþ Z̄mÞðI Z̄m þ EÞ ¼ ½F þ ðJ � 1ÞZ̄m � ðI þ 1ÞZ̄2m�
2. (13)

It should be noted that Z̄m ¼ 0 is not a solution of Eq. (13) while the instability criterion is usually obtained
by setting Z̄m ¼ 0, e.g., see [14].

Even though known imprecisely, orders of magnitude of different material parameters can be estimated.
For example, approximate values of thermophysical parameters for most metals are:

r�103 kg=m3; s0�109 kg=ms2; _��103=s; c�103 J=kgK; l�102W=mK,

P0�10
6 kg=ms2 K; Q0�10

9 kg=ms2. ð14Þ

Hence, F ’ 10�4 and terms involving F play a negligible role and will be disregarded. With F ¼ 0, Z̄m ¼ 0
satisfies Eq. (13), and its largest root is

Z̄m ¼
2½ðI þ 1ÞðJ � 1Þ þ 2ðE þ IGÞ� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½ðI þ 1ÞðJ � 1Þ þ 2ðE þ IGÞ�2 � ½ðJ � 1Þ2 � 4GE�

q
2ðI � 1Þ2

. (15)

The instability criterion obtained by setting Z̄m ¼ 0 is

J ¼ 1þ 2
ffiffiffiffiffiffiffi
GE
p

. (16)

For locally adiabatic deformations, l ¼ 0, and Eq. (16) yields the following instability criterion:

J ¼ 1; or bs0P0 � rcðY 0f
0
� s0Þ ¼ rcQ0. (17)

Eq. (17) states that for locally adiabatic deformations instability occurs when the combined effects of
softening caused by the decrease of cross-section of the bar, damage evolution and heating due to plastic
working overcome work hardening of the material. Eq. (17) is the same as the Considerè’s condition:
ds=d� ¼ s. In the absence of internal variables (i.e. Y 0 ¼ 0) the instability criterion (17) differs from that
ðbs0P0=ðrcQ0Þ ¼ 1Þ in the simple shearing deformations due to the change in the area of cross-section.

4. Shear band spacing

Substitution for Z̄m from Eq. (15) into Eq. (13), and setting F ¼ 0 give

b1x̄
4
m þ b2x̄

2
m þ b3 ¼ 0, (18)
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where

b1 ¼ ðI � 1Þ2½EðI þ 1Þ � Ið1� JÞ�,

b2 ¼ 2f2Ið1� JÞ2 � ðI þ 1Þð1� JÞð3E þ IGÞ þ 2E½GI2 þ Gþ 2E�g,

b3 ¼ ½4GE � ð1� JÞ2�½GðI þ 1Þ � ð1� JÞ�. ð19Þ

A positive root of Eq. (18) is

x̄2m ¼
�b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 � 4b1b3

q
2b1

. (20)

For a strain-rate-independent material, R0 ¼ 0, I ¼ 0, and we get

x̄2m ¼
ð1þNÞ½ð1þNÞ þ ð2Gþ 3MÞ� þ ½3ðN þ 1Þ þM�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ GÞð1þNÞ

p
ð1þNÞ

, (21)

where

M ¼
ðbP0 þ rcÞs0

rcQ0

; N ¼
Y 0f

0

Q0

. (22)

For most materials deformed at high strain rates, G5M, and Eq. (21) reduces to

x̄2m ¼
ð1þNÞ½ð1þNÞ þ 3M� þ ½3ðN þ 1Þ þM�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1þNÞ

p
ð1þNÞ

. (23)

If the effect of internal variables is neglected, then

x̄2m ¼ 1þ 3M þ ð3þMÞ
ffiffiffiffiffiffi
M
p

. (24)

For Mb1,

x̄m ’M3=4 ¼
s0

Q0

1þ
bP0

rc

� �� �3=4
. (25)

According to Wright and Ockendon’s [15] postulate, the wavelength of the dominant instability mode with
the maximum initial growth rate at the prescribed strain or time determines the SBS Ls. That is,

Ls ¼ 2p=xmðt0Þ ’
2pl

c

Q0

r2s03

� �1=4

1þ
bP0

rc

� ��3=4
, (26)

where we have used Eq. (25) and the relationship between x̄ and x. However, Molinari’s definition

Ls ¼ inf
t0X0
ð2p=xmðt0ÞÞ (27)

will give the least possible spacing between adjacent shear bands. Substitution for xm from Eq. (25) into Eq.
(27) gives the SBS for a strain-rate-independent material. For a strain-rate-dependent material Eq. (20) and
either Eq. (26) or Eq. (27) give the SBS.

5. Damage evolution equation

From Rice and Tracey’s [22] growth law of a single void in a perfectly plastic media and Bai et al.’s [23,24]
conservation equation for ideal cracks, Wei and Batra [25] derived the following equation for the damage
evolution induced by the growth of existing voids:

_f ¼ 0:566 exp½ðskk=2syÞ�_�fHðskk � 0Þ. (28)

Here, sy approximately equals the flow stress, H is the Heaviside step function, skk ¼ ðs11 þ s22 þ s33Þ, and a
superimposed dot indicates the material time derivative. Eq. (28) implies that the damage grows only when the
hydrostatic stress, skk=3, is tensile; otherwise its value remains unchanged. Higher values of the triaxiality



ARTICLE IN PRESS
R.C. Batra, Z.G. Wei / International Journal of Impact Engineering 34 (2007) 448–463454
factor, ðskk=syÞ, increase the growth rate of damage. On the assumption that skk=sy is nearly constant we can
integrate Eq. (28) to obtain

f ¼ f0 expðk�ÞHðskk � 0Þ; k ¼ 0:566 exp
skk

2sy

� �
, (29)

where f0 is the initial damage. For our problem skk=2sy ¼ 1=2 since deformations prior to the onset of
necking have been considered, and s22 ¼ s33 ¼ 0. Thus, Eq. (29) simplifies to f ¼ f0 expð0:933�Þ Hðskk � 0Þ.

6. Constitutive relation and the related instability criterion

We use the following constitutive relation:

s ¼ s0 1þ
�

�y

� �n

ð1þ b_�Þm
ym � y
ym � yr

� �n

ð1� fÞq (30)

for studying the effect of different parameters on the SBS. Here, m and n are, respectively, the strain- and the
strain-rate hardening exponents; �y and n characterize the strain hardening of the material, b and m its strain-
rate hardening, ym is the melting temperature, yr the room temperature, and n the thermal softening exponent.
The factor ð1� fÞq accounts for material softening due to damage evolution; f ¼ 0 corresponds to the
undamaged material and f ¼ 1 to totally damaged material. Henceforth we assume that the bar is deformed
at a constant axial strain rate _�0. Prior to perturbing the homogeneous solution, the temperature is uniform in
the body, f ¼ 0 and there is no heat conduction. Thus, for homogeneous deformations, we can set k ¼ 0 and
compute the temperature by substituting for s from Eq. (30) into Eq. ð1Þ2, and integrating the resulting
equation. The result is

y ¼ ym � ðym � yrÞ exp �
bs0�yð1þ b_�0Þ

m

rcðym � yrÞðnþ 1Þ
1þ

�

�y

� �nþ1

� 1

" #( )
; n ¼ 1,

y ¼ ym � ðym � yrÞ
1�n
�

bð1� nÞs0�yð1þ b_�0Þ
m

rcðym � yrÞ
n
ð1þ nÞ

1þ
�

�y

� �nþ1

� 1

" #( )1=ð1�nÞ

for na1. ð31Þ

For a bar deformed at a constant axial strain rate, the instability criterion (17) becomes

n

�y þ �
�

n
ym � y

dy
d�
�

q

1� f
df
d�
¼ 1. (32)

Values of dy=d� and df=d� can be obtained from Eqs. (31) and (29), respectively.

7. Results and discussion

During the computation of results, we have assumed that the bar is made of HY-100 steel and assigned
following values to various material parameters:

s0 ¼ 702MPa; n ¼ 0:107; m ¼ 0:0117; r ¼ 7860 kg=m3; c ¼ 473 J=kgK,

�y ¼ 0:007; b ¼ 0:9; _�0 ¼ 1000=s; ym ¼ 1500K; yr ¼ 300K; b ¼ 17 320 s,

l ¼ 49:73W=m2 K; f0 ¼ 0:0; q ¼ 1; n ¼ 1. ð33Þ

Since b_�b1 and m51, therefore ð1þ b_�Þm ’ bm_�m, and m equals the strain-rate hardening exponent. Similarly,
for � ’ 0:1, �=�y ’ 14, ð1þ �=�yÞ

n
’ ð�=�yÞ

n, and n equals the strain hardening exponent. While performing
parametric studies, only one of these parameters is varied. For different values of the axial strain rate, Fig. 1
depicts the axial stress vs. the axial strain curves as computed from Eq. (30). Deformations are assumed to be
locally adiabatic at axial strain rates of 103=s and higher, and isothermal at strain rates of 10�4 and 10�6=s.
For locally adiabatic deformations the temperature rise is computed from Eq. ð31Þ1. The curves in Fig. 1 do
not include the effect of inertia forces. As expected, the axial stress is a monotonically increasing function of
the axial strain for isothermal deformations. However, for locally adiabatic deformations the axial stress peaks
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Fig. 1. Axial stress vs. axial plastic strain curves for axial tensile deformations of a HY-100 steel at various strain rates.
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and the value of this peak stress increases monotonically with an increase in the axial strain rate. The axial
plastic strain corresponding to the peak in the axial stress decreases slowly with an increase in the axial strain
rate.

7.1. Instability strain

Fig. 2a–e evinces the dependence of the instability strain, computed from Eq. (32), upon the axial strain-rate
_�0, the strain-rate hardening exponent m, the strain hardening exponent n, the thermal softening exponent n,
and the initial damage f0. The instability strain computed from Eq. (32) is considerably smaller than the strain
at which an adiabatic shear band initiates, e.g., see [26] who studied numerically plane strain tensile
deformations of a thermoviscoplastic body. A bar usually fractures after a shear band has developed. Because
of the log scale along the horizontal axis in Fig. 2a, the instability strain decreases affinely with an increase in
the log (average axial strain rate). However, the rate of decrease is rather small since the instability strain
drops from 8.0% at _�0 ¼ 103=s to 7.9% at _�0 ¼ 106=s. For all practical purposes, it may be taken to equal 8%
for 103=sp_�0p106=s. Similarly, when the strain-rate hardening exponent is increased by a factor of 5, the
instability strain decreases affinely from 8.2% for m ¼ 0:00468 to 7.7% for m ¼ 0:0234. For a similar
proportional increase in the value of the strain hardening exponent n, the instability strain increases from
2.9% to 15.3% or by a factor of �5. Thus, the dependence of the instability strain upon the strain hardening
exponent is much stronger than that on the strain-rate hardening exponent.

Results plotted in Fig. 2d also reveal the effect of the geometric softening. For n ¼ 0, there is no thermal
softening and the instability occurs only due to geometric softening. Thus, the influence of additional softening
due to heating decreases the instability strain from 10% for n ¼ 0 to about 6.7% for n ¼ 2. Note that for an
axial strain of 10%, the temperature rises by about 19K. Results plotted in Fig. 2e suggest that the instability
strain decreases very slowly from 8.0% for f0 ¼ 0 to 7.7% for f0 ¼ 0:04. For f0 ¼ 0, f ¼ 0 and there
is no evolution of damage. Results of Fig. 2a–e agree qualitatively with those for the simple shearing
problem. For plane strain tensile deformations of a steel prismatic body modeled as a thermoviscoplastic
material and deformed at a nominal axial strain rate of 5000/s, Batra and Lear [26] found that the structure
became unstable at axial strains of 4.9% and 4.85% according to the Considerè and the Hart criteria,
respectively.

In order to vividly delineate the effect of geometric softening/hardening, we have plotted in Fig. 2f the
variation of the instability strain with the axial strain rate both with and without the effects of geometric
softening. For each case the strain rate does not affect much the instability strain. It is transparent that the
geometric softening has a significant effect on the instability strain. For an axial strain rate of 103=s the
instability strain decreases from �39:6% in the absence of geometric softening to �8% when geometric
softening effects are considered. To reinforce this effect we have plotted in Fig. 2g the dependence of the
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instability strain upon the thermal softening exponent n for axial compressive deformations. It is found that in
compression the instability occurs at a much higher value of n than that in tension. Even then, the instability
strain for compressive deformations is noticeably higher than that for tensile deformations. For normal values
of n, the instability strain in compression is incredibly large because of the dominant geometric hardening. One
may not observe such high axial compressive strains experimentally because of the presence of material defects
and/or frictional forces between the loading device and the specimen.

7.2. Shear band spacing

7.2.1. SBS according to the Wright– Ockendon criterion

For several values of the uniform axial strain rate, Fig. 3a exhibits the maximum initial growth rate of the
perturbation as a function of the axial strain when the homogeneous solution is perturbed. Recall that the
instability strain equals �0:08 for the simple tensile deformations. The SBS, computed from the Wright and
Ockendon relation (26), i.e., Ls ¼ 2p=xmðt0Þ, is plotted in Fig. 3b. It is clear that for the homogeneous solution
perturbed at the same value of the axial strain the SBS decreases monotonically with an increase in the axial
strain rate. For a fixed axial strain rate, the SBS is essentially unchanged if the homogeneous solution is
perturbed at an axial strain greater than 0.5. If the perturbation is introduced at an axial strain of 0.25, the
SBS equals �26:8; 4:8; 0:86; 0:15 and 0.03mm for _�0 ¼ 101; 102; 103; 104 and 105=s, respectively. Thus, the
SBS strongly depends upon the axial strain rate. These results imply that the SBS / ð_�0Þ

�0:75. We note that for
the simple shearing deformations studied in [21], the SBS / ðnominal shear strain rateÞ�0:787; the exponents
�0:75 and �0:787 for the two types of deformations are close to each other. Results plotted in Fig. 4a,b
illustrate that the initial damage influences the maximum initial growth rate and the SBS only if the
homogeneous solution is perturbed at a rather large value of the axial strain.

In order to clearly delineate the effect of geometric softening on the SBS we also computed results by
neglecting the third term on the right-hand side of Eq. (6) and the term in parentheses on the right-hand side of
Eq. (5). It is equivalent to assuming that the cross-section of the bar is a constant or neglecting lateral
deformations. Eqs. (5) and (6) then reduce to those for a simple shearing problem. Fig. 5a,b exhibits the
maximum initial growth rate of a perturbation and the corresponding SBS computed from Eq. (26). It is clear
that the consideration of geometric softening strongly influences the SBS and the maximum initial growth rate
of perturbation. As expected, with geometric softening perturbations introduced at a small value of the
effective plastic strain grow rapidly. For �0X�0:4, the consideration of geometric softening decreases the SBS
as compared to that without the geometric softening effect. However, in each case the SBS / _��0:760 as should
be evident from the results exhibited in Fig. 5c. Table 1 lists values of the SBS for nominal axial strain rates of
103, 104 and 105=s with and without the effects of geometric softening.
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maximum initial growth rate and (b) the shear band spacing.
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7.2.2. SBS according to the Molinari criterion

Results computed with Molinari’s definition of the SBS do not depend upon the axial strain when the
homogeneous solution is perturbed. Fig. 6a–i exhibits the SBS, Ls, as a function of the axial strain rate _�0, the
thermal conductivity l, the Taylor–Quinney parameter b, the specific heat c, the strain-rate hardening
exponent m, the strain hardening exponent n, and the thermal softening exponent n. The plot in Fig. 6a gives
Ls / _�

�0:757
0 . It is interesting to note that the exponent �0:757 obtained here for strain hardening and

geometrically softening material is very close to the �0:75 obtained in [15,16] for non-strain-hardening
materials deformed in simple shear, and �0:787 obtained in [21] for a strain hardening material deformed in
simple shear.

When the dependence of Ls upon l is written as Ls / lw̄, then we conclude from the plots in Fig. 6b
that w̄ ¼ 0:188; 0:218; 0:233; 0:242 and 0:242 for m=0:0117 ¼ 0:001; 0:01; 0:1; 1:0 and 2:0, respectively.
Thus, for m ¼ 0:0117 and 0:0234, Ls / l0:242 which agrees with l0:25 derived in [15,16,21] for simple shearing
deformations. However, for small values of m=0:0117, w̄ is not a constant but varies between 0.188 and 0.233.
For simple shearing deformations Batra and Wei [21] found that w̄ ’ 0:5 for m ’ 10�6. Thus, the dependence
of Ls upon the thermal conductivity is quite different for simple tensile deformations as compared to that for
simple shearing deformations. We note that the third term on the right-hand side of Eq. (6) involving the
product of thermal conductivity with the spatial gradients of � and y is missing in the simple shearing problem.

From the plot of logðLsÞ vs. b given in Fig. 6c one concludes that there is no scaling law for Ls vs: b; it was
verified by plotting logðLsÞ vs: logðbÞ. Whereas, logðLsÞ decreases slowly with an increase in b for small values
of m, logðLsÞ increases gradually with an increase in b for large values of m. For simple shearing deformations
it was found in [21] that Ls / bwb where �0:5pwbp� 0:44 for several combinations of values of m and n.

Fig. 6d illustrates on a log–log plot the variation of the SBS, Ls, with the specific heat c. When written as
Ls / cŵ, the value of ŵ depends upon the strain-rate hardening exponent m; it increases monotonically with an
increase in the value of m. Furthermore, ŵ is nearly zero for small values of m but is negative for
m=0:0117X0:001. For simple shearing deformations ŵ depends upon m and n, and �0:2pŵp0:3. There
appears to be no scaling law for the dependence of the SBS upon the specific heat.

Results plotted in Fig. 6e reveal that for a fixed value of n=0:107 the SBS increases monotonically with an
increase in the strain-rate hardening exponent m. For n ¼ 0:0107 and 0:107 the SBS increases linearly with m;
the positive intercept of the line with the y-axis is obscured by the scale used to plot Ls. The plots of logðLsÞ vs.
the strain hardening exponent n given in Fig. 6f suggest that logðLsÞ is virtually independent of the strain
hardening exponent n for 0on=0:107o2:5 but the value of logðLsÞ strongly depends upon the strain-rate
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Table 1

Shear band spacing at different strain rates

Strain rate (1/s) Shear band spacing (mm)

with geometric softening without geometric softening

103 1:33 3:720

104 0:233 0:625

105 0:0398 0:100
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hardening exponent m. However, for a larger range of values of n=0:107 between 0 and 5, Ls first increases
with n till n=0:107 ’ 2:5 and then decreases; e.g., see Fig. 6g.

Fig. 6h,i exhibits the dependence of the SBS on the thermal softening exponent n for various values of the
strain and the strain-rate hardening exponents n and m. There is no scaling law between Ls and n. For n close
to 5.0 the SBS seems to be independent of the strain hardening exponent n. However, we can conclude from
the plot of Fig. 6i that for 10�6pmp2� 10�2 the SBS is essentially independent of n.
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In summary, Ls / ð_�0Þ
�0:757 and Ls / lw̄ where w̄ varies with the value of the strain hardening exponent m.

Except for the dependence of the SBS upon the nominal axial strain rate, the dependence of Ls upon other
material parameters for simple tensile deformations is quite different from that for simple shearing
deformations.
7.2.3. Comparison with experimental data

There is no experimental data available on SBS in simple tension. However, recalling that the effective
plastic strain rate in a shear band is �105=s, values of SBS found herein are of the same order of magnitude as
those determined experimentally by Xue et al. [10] in explosively loaded cylinders.
7.2.4. Remarks

It is interesting to note that the exponent of the dependence of the SBS on the nominal strain rate is
�� 0:75 both for simple shear and simple tensile deformations. It thus appears that the exponent is an
intrinsic characteristic of the SBS, and is essentially independent of the state of stress.

For the problem studied herein there are two characteristic length scales: one due to heat conduction/
diffusion, and other due to viscosity or momentum diffusion. The former equals ðtl=rcÞ1=2 and the latter
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ðð1=r_�Þ ðqs=q_�ÞÞ1=2. For the constitutive relation (30), the thermal length varies as _�m
0 and the viscous length as

m_�ðm=2Þ�10 . It thus appears that the viscous length determines the SBS.
Numerical experiments of Batra [27], Batra and Kim [28], and Kwon and Batra [29] tend to support the SBS

postulate (26) for simple materials but not for strain-rate gradient-dependent materials. They perturbed the
homogeneous solution by introducing a finite size temperature perturbation with multiple cusps and
numerically solved the resulting nonlinear problem. Kwon and Batra [29] found that, for simple materials an
ASB formed at each trough in the cosine wave in the specimen deformed at an average strain-rate _�0 of 500/s
but at each crest for _�0 ¼ 50 000=s. For strain-rate gradient-dependent materials, an ASB formed at each of the
two bounding surfaces for _�0 ¼ 500=s, and multiple ASBs formed at each crest when _�0 ¼ 50 000=s. These
authors considered finite perturbations that satisfied boundary conditions, and did not investigate the
dependence of the SBS upon the finite element mesh used. As noted by Batra [27] there are several length
scales in strain-rate gradient-dependent materials; their effect on the SBS has not been delineated.

Batra and Liu [30] have analyzed the initiation and development of ASBs in plane strain compression of a
thermoviscoplastic body of square cross-section. They assumed deformations to be symmetric about the
horizontal and the vertical centroidal axes and introduced two perturbations at points located on the vertical
centroidal axis that were equidistant on either side of the horizontal centroidal axes. It is hard to find the SBS
from the computed shear band pattern.

Batra and Love [31] have recently analyzed the initiation and development of ASBs in a particulate
composite comprised of tungsten particulates in a NiFe matrix. Thermophysical parameters of each material
were considered in the analysis. Thus, there are numerous sources to make the deformation inhomogeneous.
Even though more than one ASB formed in plane strain tension/compression and axisymmetric tensile
deformations, the SBS could not be computed.

We note that the SBS based on perturbation analysis equals characteristic distance between nuclei of ASBs,
and not the distance between well-developed ASBs; the difference in self-organization of these two different
objects is discussed in [10]. The perturbation analysis gives a lower bound for the SBS.

The present work illustrates the effect of geometric softening/hardening on the SBS, and is useful for
analyzing the effects of combined shear and tensile/compressive loading, as well as for studying the effect of
softening induced due to damage.
8. Conclusions

We have delineated the effect of geometric softening/hardening on the instability strain and the shear
band spacing in axial tensile/compressive deformations of a bar made of an isotropic heat-conducting
thermoviscoplastic material. It is found that geometric softening significantly affects the instability strain and
the shear band spacing; both decrease noticeably when the reduction in the area of cross-section is considered.
The instability strain is affected very little by the damage evolution since the instability strain is only �8% and
the damage evolved at the instant of instability is negligible. Out of various material parameters only thermal
softening and strain hardening exponents have a noticeable effect on the instability strain. Increasing the
strain-rate hardening exponent from 5� 10�5 to 1 increases the shear band spacing from �10�3 to �1mm.
Enhancing the thermal conductivity from 5 to 500W/mK raises the shear band spacing from �0:76 to
�2:3mm. Both for simple shear and simple tensile deformations the shear band spacing is proportional to the
ðnominal strain rateÞ�0:757; thus, the exponent �0:757 is independent of the overall stress state. However,
other aspects of the scaling law found for simple shearing and simple tensile deformations are quite different.
It implies that results obtained for simple shearing deformations cannot be simply carried over to simple
tensile/compressive deformations.
Acknowledgements

This work was partially supported by the NSF grant CMS0002849, the ONR grants N00014-98-1-0300 and
N00014-03-MP-2-0131, the ARO grant DAAD19-01-1-0657 and the AFOSR MURI to Georgia Institute of
Technology with a subcontract to Virginia Polytechnic Institute and State University. Z. G. Wei’s work was



ARTICLE IN PRESS
R.C. Batra, Z.G. Wei / International Journal of Impact Engineering 34 (2007) 448–463 463
also partially supported by the Chinese NSF grant 10002017. Views expressed in the paper are those of
authors and not of funding agencies.
References
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