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a b s t r a c t

We analyze the processes of thermal softening, melting and subsequent melt lubrication that occur
during the high speed sliding of a metal piece on another metal block. The temperature rise in the slider
arising from both high speed interface friction and from the energy dissipated during plastic deforma-
tions is computed using simple analysis and the finite element method. Subsequently, we propose
a mathematical model for the transient lubrication problem that describes the behavior of the molten
film at the slidererail interface. This model successfully predicts the evolution process of the melt
thickness and the melt front velocity of the liquid film; these predictions agree with the experimentally
observed dynamics of molten film better than those from other existing models.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Contact melting is a basic phase change phenomenon occurring
at the interface between two solid bodies sliding past each other at
a high speed when one of them is heated above its melting
temperature due to either external heat sources or internal
mechanisms such as viscous heating [1]. Recently, Bejan has pre-
sented a comprehensive review of different aspects of contact
melting [2,3]. Contact melting due to high speed sliding plays
a significant role in diverse applications such as water film
formation in ice during sled sliding [4], the interior ballistics
associated with the melting band of a projectile traveling along
a gun barrel [5,6], and the molten film formation in armatureerail
surface [7e9].

Thermal softening and melting during high speed solid metal/
metal friction resulting in melt lubrication are some of the
phenomena that accompany contact-melting processes. Modeling
the physics of high speed metal/metal friction can be very chal-
lenging since coupled thermal, mechanical [10] and sometimes
chemical reactions are involved in this process [11]. Not surpris-
ingly, themelting process and the subsequentmelt lubrication have
been treated separately by researchers working in solid and fluid
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mechanics. While melting and lubrication are indeed two distinct
processes in contact-melting problems, in many applications the
solution of one is required before the other can be studied. For
example, as we demonstrate in this paper, analyzing unsteady
lubrication requires that the emergent time of melting be provided
as an initial condition. Here we study the physics of melting and
lubrication in a contact-melting process in a unified manner. Said
explicitly, we attempt to answer the following question: how does
a solid slider soften and eventually melt during the sliding process?
We consider different sliding mechanisms and account for two
different contributions to the melting of the slider material, and
model the softening and melting of a solid at high speed of sliding.

The second part of the paper focuses on studying the lubrication
following the onset of melting. In most investigations reported in
the literature [1e4,6,8,9], the contact-melting process has been
considered quasi-steady; thus those works are unable to accurately
predict the transient phenomena observed in experimental
systems such as armatureerail sliding [12]. Here a mathematical
model for the transient problem is developed and provides a more
realistic interpretation of experimental results. A similar approach
has been proposed by Yoo [13,14] to investigate the transient
behavior in early stages of gravity-induced contact melting.

This paper is organized as follows. In Section 2, we develop
a simple model using the parabolic heat equation to obtain
a quantitative dependence of the melting time and the distance
traveled by the slider upon the slider speed, material properties,
and the pressure acting on the slider. The finite element method
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Nomenclature

Dimensional variables
A yield strength, Pa
a acceleration, m/s2

B strain hardening strength, Pa
c specific heat, J/(kg K)
C strain-rate hardening coefficient
D distance the slider traveled, m
f friction coefficient
Fn normal force per unit length, N/m
Ff frictional force per unit length, N/m
G pressure gradient, N/m3

hsf latent heat, J/kg
H specimen thickness, m
k thermal conductivity, W/(mK)
L slider length, m
N element number
n exponent shown in Eq. (9)
P pressure, Pa
q heat flux, W/m2

Q flow rate, m2/s
R constant in Eq. (15)
t time, s
Tm, T0 melting and reference temperature, K
U velocity of slider, m/s
Uslip slip velocity, m/s
Ut shearing velocity, m/s
V Melt front velocity, m/s
u; y velocity components along x, y directions, m/s
x, y Cartesian coordinates

Greek symbols
a ¼ k=rc thermal diffusivity, m2/s
b partitioning of energy

r density, kg/m3

d liquid film thickness, m
g strain
_g strain rate
s shear stress
dd; dT thickness of boundary layer
x integral variable, s
m shear modulus, Pa

Subscripts
c a critical state at which steady state is achieved
r rail
s slider
S steady state

Definitions of non-dimensional variables
y y=H
t t _g0
q q r c=s0
k k= r c _g0H

2

r rH2 _g2
0=s0

q q= _g0Hs0
h y=d
f Ft=Fn
t ta=L2

V VL=a
U UL=a
d d=LbV V=VSbt tVS=dSbd d=dS
Be FnL=ma
Ste cðTm � T0Þ=hsf
Stem cmU2=khsf
W cma2=L2khsf ð1þ SteÞ

Solid/solid sliding Molten film formation 

P

Slider

Rail

U
y

x

L

P

Molten Film

δV
U

a b

Fig. 1. Schematics of solid/solid sliding. (a) Solid/solid sliding (b) molten film
formation.
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(FEM) is subsequently used to find an approximate solution of
coupled thermo-mechanical equations which predicts the forma-
tion of the localization layer followed by melting of the material. In
Section 3, equations governing the transient contact melting are
derived with adiabatic thermal condition imposed at the interface
near the rail surface and theoretical predictions are compared with
experimental results. Conclusions of this work are summarized in
Section 4.

2. Modeling thermal softening and melting at slider surface

As shown schematically in Fig. 1, a slider is pushed with
a constant pressure P against a rail and moves to the right with (in
general, a time dependent) velocity U(t). Similar configurations
have served as models for studying simple shear [15,16], pressure-
shear [10], and other sliding systems [4,6,8,9]. During sliding the
contact between the slider and the rail is initially solid/solid as
shown in Fig. 1(a). The tangential force due to interface friction acts
on both the slider and the rail and raises their temperatures. If
a shear-induced plastic deformation is also involved in the sliding
process, then plastic dissipation will also contribute to the
temperature rise. During high speed sliding, the temperature rise
due to these contributions can become very high, leading to
melting of the slider [10e12] material. After melting, the thickness
d(t) of the molten film increases with time and approaches a steady
state value sustained by the balance between the heat generated
due to viscous dissipation and that lost via heat conduction, and the
slider moves downward with velocity V(t) due to the imposed
pressure, as shown in Fig. 1(b).

2.1. Heat generation and temperature rise due to interface friction

In this subsection, we analytically analyze the initiation of the
melting process due to the interface friction. Subsequently, we will
consider the effects of plastic dissipation and numerically solve the
problem.



Table 1
Predicted melting time and the corresponding distance traveled for constant
velocity and constant acceleration.

P (MPa) Constant velocity Constant acceleration

tm (ms) Dm (m) tm (ms) Dm (m)

45 0.751 0.6 1.095 0.6
75 0.270 0.216 0.780 0.304
89 0.192 0.154 0.696 0.242
117 0.111 0.089 0.580 0.168
150 0.018 0.054 0.491 0.121
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The calculation of the temperature rise in the slider requires an
estimate of the heat generated when the slider moves over the rail.
Assuming that all of the mechanical working is converted into
heating the slider and the rail, the heat flux q generated at the
metal/metal interface can be written as

q ¼ bsUslip
s ¼ fP

(1)

where s, f, P and Uslip are the shear stress, the coefficient of friction,
the normal pressure between the slider and the rail, and the slip
velocity, respectively. The constant b quantifies the partitioning of
the heat flux between the slider and the rail. Its value found by
equating the temperatures in the rail and the slider at the
slidererail interface (and the total heat flux to q) is given by (e.g. see
Carslaw and Jaeger [17])

b ¼ ks
ffiffiffiffiffi
ar

p
ks

ffiffiffiffiffi
ar

p þ kr
ffiffiffiffiffi
as

p (2)

Here k and a are the thermal conductivities and the thermal
diffusivities, with subscripts s and r representing, respectively, the
slider and the rail. For an aluminum slider on a copper rail, bw 0.29,
i.e., about 29% of the heat generated at the interface due to frictional
effects is transferred to the aluminum slider and nearly 71% into the
copper rail. Using representative experimental data [12],
Pw107e108 MPa, Uslipw102e103 m=s, bfw10�2e10�1, the typical
value of the heat flux is estimated to be q ¼ 107e1010 W=m2.

Herewe assume that the interfacial slip velocity (and hence heat
flux) is known, and compute the temperature rise in the slider as
a function of time and the distance from the slidererail interface
using a one-dimensional transient heat conduction equation with
pertinent initial and boundary conditions. The temperature rise in
the rail can also be computed by solving the corresponding initial
boundary value problem, but is not of interest here. This analysis
gives the temperature at the slidererail interface, which is used to
estimate the time elapsed (and hence the distance traveled by the
slider) before the onset of melting.

For a time-dependent heat flux q(t) arising from a time-
dependent slider velocity, the temperature rise from the initial
uniform temperature can be approximated by [17]

T ¼ 1
k

ffiffiffi
a

p

r Z t

0
qðt � xÞe�

y2

4as dx
s1=2

(3)

At the interface y¼ 0 we have

T jy¼0 ¼ 1
k

ffiffiffi
a

p

r Z t

0
qðt � xÞ dx

s1=2
(4)

In many applications, the slider velocity can be approximated
by the power law [18]

U ¼ atn (5)

where a and n are constants. For n not equal to �1, the distance D
traveled by the slider in time t and obtained by integrating Eq. (5) is
given by D ¼ atnþ1=ðnþ 1Þ. Two special cases are of interest: first,
when n¼ 0, U¼ a and D¼ at; and second, when n¼ 1, U¼ at,
D ¼ at2=2, the acceleration is constant.

For constant velocity (and hence constant heat flux q) we have,

T jy¼0 ¼ 2q
k

ffiffiffiffiffi
at
p

r
(6)

Combining Eqs. (1) and (6) and setting T jy¼0 ¼ Tm0 ¼ Tm � T0,
we can find the time tm when the slider surface touching the rail
melts, and the corresponding distance traveled by the slider Dm:
tm ¼ p

a

 
kTm0

2bfPUslip

!2

(7)

Dm ¼ Usliptm ¼ p

aUslip

�
kTm0

2bfP

�2

(8)

Assuming that the experimental data reported in Ref. [12] is
representative of such problems, we can derive general trends of
tm, Dm dependence upon the pressure P. For P¼ 45 MPa,
Uslip¼ 800 m/s, Dm¼ 0.6 m we obtain tm¼ 0.751 s, and f¼ 0.0286.
Using f¼ 0.0286, the predicted values of tm, Dm for other values of
P are listed in Table 1. The general trend we observe is that both tm,
Dm decrease with an increase in the pressure P.

The experimentally observed sliding speed reported in Ref. [12]
can be approximated as a linear function of time, i.e., by taking
n¼ 1 in Eq. (5), with the constant acceleration a of 106 m/s2. Then
combining Eqs. (1), (4) and (5) we obtain

Tjy¼0 ¼ 4bfPa
3k

ffiffiffi
a

p

r
t

3
2 (9)

and

tm ¼
�p
a

�1
3
�
3kTm0

4bfPa

�2
3

(10)

Dm ¼ 1
2
at2m ¼ 1

2a1=3

�p
a

�2
3
�
3kTm0

4bfPa

�4
3

(11)

For P¼ 45 MPa, Uslip¼ 800 m/s, Dm¼ 0.6 m, we get tm¼ 1.095 s
and f¼ 0.0259. Using f¼ 0.0259, the computed values of tm, Dm for
other values of the pressure, P, are listed in Table 1. The general
trends of the dependence of tm, Dm upon the pressure are the same
as those for the constant velocity case. However, values of tm, Dm for
the constant acceleration case are larger than those when the
velocity is constant. This is reasonable since less energy is gener-
ated during early stages when the armature speed varies linearly
with time.

2.2. Heating due to coupled interface friction and plastic dissipation

The physics of motion of a slider over a rail is more involved than
that described above in the simple interfacial friction model [11].
A characteristic of high speed sliding is that the friction induced
localized deformations can occur at the interface [10,11]. We note
that deformations of the slider are shear dominated with a signifi-
cant heat flux at the boundaries. Accordingly, we study the simple
shearing deformations of a thermo-elasto-viscoplastic material
with both the tangential velocity and the heat flux prescribed at the
boundaries, and delineate the localization of deformation in the
region adjoining the boundaries. Recently, Batra and Wei [15]
investigated a similar problem by using the FEM, and found that
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the prescribed constant heat flux made deformations inhomoge-
neous and introduced a nucleation site for the deformations to
localize. However, the manner in which the prescribed heat flux
affects the temperature rise (and hence melting) was not
addressed. Additionally, the width of the localized region was not
computed in Ref. [15]; these issues are addressed below.

2.2.1. Formulation of the problem
We study simple shearing deformations of a homogeneous

and isotropic thermo-elasto-viscoplastic body occupying the
domain 0� y�H, and sheared by tangential velocity Ut with the
heat flux q prescribed on the surface y¼ 0. Thus both mechanical
and thermal energies are input into the body through the
boundary. The relation between the slip velocity Uslip, the
tangential velocity Ut, and the velocity U of a slider is
Uslip þ Ut ¼ U. Let the spatial coordinate be normalized by H, the
shear stress by s0, time by H/Ut, and the temperature by T0. In
terms of non-dimensional variables, the body occupies the
domain 0� y� 1.

The governing equations, as well as the initial and the boundary
conditions are listed below.

r
vy

vt
¼ vs

vy
; rc

vT
vt

¼ k
v2T
vy2

þ s _gp; _g ¼ vy

vy
; _g ¼ _geþ _gp

_s ¼ m _ge; _gp ¼ _g0exp
h�

s
ðAþBgnÞð1�Tm

* Þ�1
�.

C
i
; T* ¼ T�T0

Tm�T0

(12)

In Eqs. (12) a superimposed dot indicates the material time
derivative, r is the mass density, y the velocity, s the shear stress,
g the shear strain, _g the shear strain rate, t the time, and T the
present temperature of a material particle. Furthermore, k is the
thermal conductivity, and m the shear modulus of the material of
the slider. Eqs. (12)1 and (12)2 express, respectively, the balance
of linear momentum, and the balance of internal energy. All of
plastic working, given by the second term on the right-hand-side
of Eq. (12)2, is assumed to be converted into heating. Eq. (12)3 is
the definition of strain rate, and Eq. (12)4 implies that the strain
rate is composed of elastic and plastic parts. Eq. (12)5 is Hooke’s
law written in the rate form, and Eq. (12)6 is the Johnson and
Cook [19] thermo-viscoplastic relation. In it _g0 is the reference
strain rate, and Tm and T0 are the fictitious melting temperature
and the reference temperature, respectively; Tm is a curve fitting
parameter rather than the actual melting temperature of the
material. Parameters m, n and C characterize, respectively, the
thermal softening, strain hardening, and strain-rate hardening of
the material. All material parameters are presumed to be
constants for the range of strains, strain rates and temperatures
anticipated to occur in the problem. Table 2 lists values of
material parameters taken from Batra and Kim [16] for the 7039
aluminum; some of these values are a little different from those
used in the preceding analysis. We note that the empirical
JohnsoneCook relation was derived from test data over a limited
range of strains, strain-rates, and temperatures that is consider-
ably less than that anticipated to occur within a localized zone.
Also, for some materials, phase transitions, damage, and melting
may occur in the severely deformed region; these are not
considered in Eqs. (12). Thus, results presented herein are
approximate, give orders of magnitude of different variables, and
help establish general trends.
Table 2
Material parameters used in the JohnsoneCook relation for 7039 Aluminum.

r, kg/m3 c, J/kg �C m, GPa k, W/m �C Tm, �C

2770 875 28 149 604
For initial conditions, we assume

sðy;0Þ ¼ s0; gðy;0Þ ¼ g0z0; _gðy;0Þ ¼ _g; Tðy;0Þ ¼ 0;

For boundary conditions we take

�kvT=vyð0; tÞ ¼ qðtÞ; �kvT=vyðH; tÞ ¼ 0;
yð0; tÞ ¼ Ut ; yðH; tÞ ¼ 0

The non-dimensional parameters are related to their dimen-
sional (barred) counterparts as follows:

y ¼ y=H; t ¼ t _g0; q ¼ q r c=s0; k ¼ k= r c _g0H
2;

r ¼ rH2 _g20=s0; q ¼ q= _g0Hs0: (13)

2.2.2. Computation and discussion of results
In order to compute results, we set H¼ 3 mm, Ut¼ 3, 15, 30,

150, and 300 m/s. Hence, the block is sheared at a nominal strain-
rate of 103, 5�103, 104, 5�104,105/s. For a¼ 10�5 m2/s,
t ¼ 10�4 � 10�3 s, the thermal diffusion length Ld ¼ 2

ffiffiffiffiffi
at

p
is of

the order of 10�1 mm, and the slab is sufficiently thick to be
considered as semi-infinite. The afore-stated problem is solved
numerically by the FEM, and the coupled nonlinear ordinary
differential equations are integrated with respect to time by using
the subroutine LSODE with MF¼ 22, ATOL¼ 10�7, and RTOL¼ 10�7.
Parameters ATOL and RTOL control, respectively, the absolute and
the relative tolerances in the solution. The FE code [16] has been
modified to incorporate the non-zero heat flux boundary condi-
tion at y¼ 0, and its verification is described in [15]. We used two
FE meshes e one with coordinates of nodes given by

yn ¼ 1�
h
Rþ ðn�1Þ

N

i0:4
; 1 � n � 100

yn ¼ 1� 1
6

�
5þ �n�101

N�100

	

; n � 101

(14)

where R¼ 1.9, 2.51, and 3.14, respectively, for N¼ 300, 400, and
500, and the other with nodal coordinates given by

yn ¼ 1�
�
8

 
n� 1
300

!�0:6
; 1 � n � 31;

yn ¼ 1�
�
n� 1
300

�0:05

; 31 � n � 301:

These two FE meshes gave virtually identical results, and the
results presented below are with the mesh described by Eq. (14)
and N¼ 400; the length of each one of the 400 elements close to
the surface y¼ 0 is 1.25 mm.

For the nominal strain rate of 104 s�1 and seven values of the
heat flux prescribed at y¼ 0, time histories of evolution at y¼ 0 of
(a) the non-dimensional temperature rise, and (b) the non-
dimensional shear stress are plotted in Fig. 2(a), (b). It can be seen
that the initial rate of temperature increase varies with the
prescribed heat flux, followed by an “explosive” increase in
temperature, the occurrence of which is essentially independent of
the prescribed heat flux. However, the time when the steep
temperature rise occurs decreases rapidly with an increase in the
prescribed heat flux. The rapid temperature increase shown in
s0, MPa A, MPa B, MPa C n m

193 193 157 0.01 0.41 1.0



Fig. 2. For seven values of the heat flux prescribed at y¼ 0, time histories at y¼ 0 of (a)
the non-dimensional temperature rise, and (b) the non-dimensional shear stress.

Z. Wei, R.C. Batra / International Journal of Impact Engineering 37 (2010) 1197e1206 1201
Fig. 2(a) is directly related to the dramatic drop in the shear stress
shown in Fig. 2(b) and indeed both are seen to occur concurrently.

Fig. 3 depicts, for heat flux of 108 W/m2 prescribed at y¼ 0, and
a nominal strain rate of 104 s�1, the spatial distribution of (a) the
non-dimensional shear stress, (b) the non-dimensional tempera-
ture, and (c) the shear strain at different times. It is clear that for
t¼ 0.11, 0.25 and 0.49, the shear stress and the shear strain are
uniform over the specimen, with the shear stress gradually
increasing till it peaks. However, the temperature distribution is
non-uniform at all times with the highest temperature occurring at
y¼ 0 and the lowest at y¼ 1. Because of the continuing rise in
temperature difference between the material point at y¼ 0 and
those at y> 0 the deformations are inhomogeneous, and the shear
stress at y¼ 0 peaks first and subsequently drops rapidly as indi-
cated by curves 4 and 5 in Fig. 3(a).

The narrow region of intense plastic deformation and
temperature increase near the surface y ¼ 0 is usually called
a shear band. We note that Cho et al.’s [20] micro-hardness
measurements across an intensely deformed region in a HY-100
steel reveal two characteristic length scales: a well-defined band
width of 20 mm (deformation localization) surrounded by
a 100 mmwide heat diffusion length called the heat affected zone
(HAZ, or thermal localization). If dd denotes the thickness of the
region over which strain g varies rapidly from g(y) to g(0) and dT
the thickness of the region in which T varies dramatically from
T(y) to T(0) we define dd and dT as the locations at which
½gð0Þ � gðyÞ�=½gð0Þ � gð1Þ� ¼ ½Tð0Þ � TðyÞ�=½Tð0Þ � Tð1Þ� ¼ l, where l is
a scaling factor, and 0 < l < 1. We refer to dd and dT as the
deformation boundary layer thickness and the thermal boundary
layer thickness, respectively. Both dd and dT can be found by
measuring strain and temperature profiles in space at a certain
time, at which the stress ratio s=smax at y¼ 0 has dropped to
a preassigned value. This definition, like others used heretofore,
is somewhat arbitrary and not unique, but we use it to help
establish general trends; e.g. also see Ref. [24].

For our system, at different values of s=smax at the point y¼ 0,
Fig. 4 depicts the dependence of dd and dT upon the ratio s=smax and
the parameter l. Increasing l and s=smax is seen to increase both dd
and dT. Moreover, dd is generally less than dT for the same values of
s=smax and l, which agrees with the experimental observation that
the width of the well-defined deformation band is smaller than
that of HAZ. For example, for l ¼ 0:5 and s=smax ¼ 0:95, we obtain
dT ¼ 25 mm, dd ¼ 14 mm. These values of the boundary layer
thickness compare well with the experimentally observed thick-
ness of molten aluminum deposited on copper rail of less than
25 mm by Persad et al. [7]. We note that values of material
parameters for the aluminum used by Persad et al. [7] may be
different from those employed here; nevertheless, the closeness of
the magnitude of the thickness of the molten film to that of the
localized region is very encouraging. It suggests that the molten
film is formed from a localized deformation layer.

2.2.3. Contributions to heating from interface friction and plastic
dissipation

As shown in the preceding sections, the heat flux due to inter-
face friction and plastic dissipation can melt the material. However,
the relative importance of the plastic working and the interface
heating in a coupled thermo-mechanical system is unknown. In
order to clarify this, we assume that the deformations of the slider
near the interface are uniform and occur at a constant strain rate
and at a constant stress level. The estimated temperature rise due
to plastic dissipation is then given by T ¼ s _gt=rc where we have
assumed that the plastic strain rate equals the total strain rate.
Setting the temperature rise equal to that given by Eq. (6) we get
q ¼ s _g

ffiffiffiffiffi
at

p
=2. For typical values of parameters like sw200 MPa,

tw10�4 s, _gw104 s�1, we obtain qw108 W=m2. Thus the contri-
bution of the heat flux at the interface to the temperature rise can
be neglected when q� 108 W/m2, and the heat flux will play equal
or even more prominent role than plastic dissipation when
q> 108 W/m2.

The actual situation is, however, more complex than that
described above since the deformation is far from being uniform at
points near the interface and is also time dependent. For
q ¼ 108 W=m2 and q ¼ 1010 W=m2, respectively, Fig. 5(a), (b)
depicts the temperature rise at y¼ 0 due to the interface heating
only, and the combined effects of the interface heating and the
plastic dissipation in a specimen deformed at a nominal strain rate
104 s�1 obtained by solving the governing equations by the FEM.
For q ¼ 108 W=m2 and for small values of time, the contributions
from the two sources are found to be comparable, and agree with
the result predicted by our simple analysis. For example, the
interface heating induced temperature rise is 32.5 K at time 0.03 ms
while the total temperature rise is 75.4 K. Thus, almost one-half of
the temperature rise is due to the interface heating. However, the
plastic dissipation makes a more dominant contribution to the
temperature rise in the late stage of sliding, e.g., the temperature
rise due to the interface friction heating is 44.1 K at time 0.054 ms
while the total temperature rise is more than 334.6 K. Hence only
about 1/8th of the total temperature rise comes from the interface
heating. The rapid rise in temperature and the concave shape of the
temperature rise vs. time curve are intrinsic characteristics of
the deformation localized into a thin layer. For q ¼ 1010 W=m2, the
temperature rise is controlled by the interface heating at all times,
e.g., at low temperature the two curves cannot be distinguished
from each other implying that the temperature rise is almost totally
due to the interface heating. With the passage of time, the plastic
dissipation begins to contribute to the temperature rise, but still



Fig. 3. For prescribed heat flux of 108 W/m2 at y¼ 0 and nominal strain rate of 104 s�1, the spatial distribution at different times of: (a) the non-dimensional shear stress, (b) the
non-dimensional temperature rise and (c) the shear strain.
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only very little, e.g., the temperature rise due to the interface fric-
tion heating is 338.1 K at time 0.324 ms while the total temperature
rise is 360.6 K, implying that only 6% of the temperature rise is due
to the plastic dissipation. For this case, the analytic solution given
by Eq. (6) provides a good approximation of the temperature rise at
the interface. The convex shape of the temperature rise vs. the
elapsed time curve is the characteristic of the parabolic thermal
phenomenon.

In Ref. [15] we examined the effect of heat flux on the initiation
of localized deformation, and concluded that the prescribed heat
flux acts as a defect and the shear band initiation time depends
upon it. Here, it is found that the heat flux not only perturbs the
Fig. 4. At different values of the shear stress at y¼ 0, dependence of the width of the
thermal and the deformation boundary layers upon the non-dimensional parameter l.
homogeneous deformation but also makes significant contribution
to the temperature rise especially when the heat flux is large and
the nominal strain rate is small. Even though the present model
simplifies considerably the real situation encountered at the sli-
dererail interface, the results shed light on general trends of how
heating due to surface frictional effects and that due to plastic
dissipation affect the temperature rise of a material point and
contribute to the localized deformation near the interface and
possibly to the melting of the material there. However, since effects
of phase transformation and the latent heat required to melt
a material point are not included in the analysis of the problem and
a conventional thermo-viscoplastic constitutive relation has been
used, additional work needs to be done to simulate melting; e.g. see
Ref. [25] wherein effects of phase transformation and the latent
heat required for the phase transformation are considered. It is
shown in Ref. [26] that the post-localization response predicted by
different thermo-viscoplastic constitutive relations varies greatly
even though they have been calibrated against the same test data
during the pre-localization regime. In Ref. [27] the thermo-visco-
plastic response of a material is modeled by a non-Newtonian fluid
whose viscosity varies with the effective strain rate and the
temperature; this constitutive relation considerably simplifies the
analysis.

While there are no direct experimental results on the localized
deformation zones, there are some indirect results with which we
can compare predictions from the present mathematical model. For
example, at the center of the slider surface where electrical erosion
trails off rapidly andmechanical wear begins to dominate,Watt and
Stefani [21] found that the thickness of the damaged region is of the
order of tens of micrometers, which agrees well with the thickness
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of the region of the localized deformation predicted herein. More
experimental research is needed to fully comprehend details of the
deformation mechanisms prevalent at the slidererail interface.

3. Post-melting: lubrication model

In Section 2, the temperature rise in the slider has been found.
However, once the slider surface contacting the rail melts, the solid/
solid contact is replaced by the liquid/solid contact. At the solid/
liquid interface no-slip condition is assumed while the solid/solid
contact is dominated by slipping. The liquid generated at the melt
front is squeezed out fromunder the solid due to the pressure in the
liquid film exerted by the external force. We develop below
a simple lubrication theory to study the transient behavior of the
molten film, such as the thickness d(t) of the lubrication layer and
the melt front velocity V(t).

3.1. Formulation of the problem

We assume that a thin molten film at the sliding interface is
sustained by the intense viscous dissipation, and adopt
assumptions commonly used in the lubrication theory. That is, the
length of the film is assumed to be much greater than its thickness,
the flow is laminar, the fluid is incompressible, the difference in the
mass densities of the solid and the melt is negligible, and the
bottom surface of the film is thermally insulated.

The physical system considered in this work is depicted sche-
matically in Fig. 1(b). The leakage of the melt through the sides is
ignored for simplicity, thus wemodel this process as a 2-D problem.
The rectangular Cartesian coordinate system (x, y) is attached to the
front plane of the melting material and to the horizontal plane
formed by the rail surface. The momentum equation for the fluid
along the x-direction is

dP
dx

¼ m
v2u
vy2

(15)

Integrating Eq. (15) twice with respect to y and using the
velocity boundary condition u¼ 0 at y¼ d, and u¼U at y¼ 0, we get

uðx; yÞ ¼ 1
2m

dP
dx

yðy� dÞ þ U
�
1� y

d

�
(16)

where we have assumed that dP/dx is independent of y. The volume
rate Q of the liquid flowing along the x-direction through the film is
given by

Q ¼
Z dðxÞ

0
udy ¼ 1

12m

�
�dP
dx

�
d3 þ 1

2
Ud (17)

Integrating the mass conservation equation ðvu=vxÞ þ ðvy=vyÞ ¼ 0
along the y-direction using velocity boundary conditions y ¼ 0 at
y¼ d, and y ¼ �V at y¼ 0 yields

dQ=dx ¼ �V (18)

where V is the downward velocity of the armature. Combining
Eqs. (17) and (18) results in a differential equation for the pressure
gradient, which upon integration and using boundary conditions at
the edge of the film, P¼ 0 at x¼ 0 and x¼ L, yields

PðxÞ ¼ 6mV

d3
xðL� xÞ (19)

Integrating along the liquid film, Eq. (19) gives

Fn ¼
Z L

0
PðxÞdx ¼ mV

�
L
d

�3
(20)

The temperature distribution in the liquid film is then obtained
by solving the following simplified energy equation and the adia-
batic thermal condition at y¼ 0.

k
v2T
vy2

þ m

�
vu
vy

�2

¼ 0 (21)

Combining this equation with the longitudinal velocity distri-
bution, integrating twice with respect to y, and applying the
boundary condition T¼ Tm at y¼ d and vT=vy ¼ 0 at y¼ 0, we
obtain [1] (note that the thickness of the melted layer is used as
input to this problem):

T � Tm ¼ m

k

"
G2d4

24m2
ð1� hÞ

�
2h3 � 2h2 þ hþ 1

�
� Gd2U

6m
ð1� hÞ2ð2hþ 1Þ þ U2

2

�
1� h2

�#
(22)

where GðxÞ ¼ �dP=dx and h ¼ y=d.
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The energy balance at the melting front requires that

�k
vT
vy

j
y¼d

¼ r
h
hsf þ cðTm � T0Þ

i�
V þ dd

dt

�
(23)

where hsf is the latent heat of fusion, c is the specific heat of the
solid material, and Tm, T0 are the melting and the reference
temperatures of the solid body, respectively. The heat sources
contribute to the latent energy required for the phase change to
occur from the solid to the liquid and the energy needed to raise the
temperature from T0 to Tm. The term in the parentheses on the
right-hand-side of Eq. (23) represents the unsteady melting rate
and it equals the sum of the solid descending velocity and the
growth rate of the film thickness.

Substituting for T from Eq. (22) into Eq. (23) we get

m

d

"
G2d4

12m2
þ U2

#
z
m

d
U2 (24)

For a typical molten aluminum dw10�5; mw10�3;

Uw103; Gw108, we have ðG2d4=12m2Þ=ðU2Þw10�5e10�4, and
hence one can neglect the first term in the bracket on the left hand
side of Eq. (24).

In order to gain further insight into the characteristic parame-
ters pertinent to the present system, the governing equations are
non-dimensionalized. Using definitions listed in the Nomenclature,
Eqs. (20), (23) and (24) can be written as

V � Bed3 ¼ 0
�
V þ dd

dt

�
d ¼ Stem

1þ Ste
(25)

where Be ¼ FnL=ma is the Bejan number [3]; Ste ¼ cðTm � T0Þ=hsf is
the Stefan number and Stem ¼ cmU2=khsf for viscous heating [3].

The steady state solution is recovered if we set dd=dt ¼ 0 in
Eq. (23) in which case we get

d S ¼
�

Stem
Beð1þ SteÞ

�1
4

VS ¼ B
1
4
e

�
Stem

1þ Ste

�3
4

(26)

In terms of dimensional variables we have

dS ¼ m
1
2U

1
2L

3
4n

Fnr½hsf þ cðTm � T0Þ�
o1

4

VS ¼ F
1
4
nm

1
2U

3
2n

rL½hsf þ cðTm � T0Þ�
o3

4

(27)

Eq. (27)2 is identical to the expression derived by Stiffler [6] and
has also been used in [8,9] for analyzing the armatureerail system.
Similar scaling laws for the molten material thickness and melt
front velocity have been obtained by Bejan [3]. For the slider
melting studied here, the sensible heat cðTm � T0Þ accompanying
the temperature rise is either comparable to or greater than the
latent heat of phase change which occurs at a constant tempera-
ture. For example, using values of parameters listed in Table 3, we
have cðTm � T0Þ=hsf ¼ 1:764.

When the applied slider velocity U is a constant, the unsteady
Eq. (25) can be simplified further by using normalized variables
listed in the Nomenclature. Eqs. (25)1 and (25)2 reduce to

bV � bd3 ¼ 0

 bV þ dbd
dbt
!bd ¼ 1 (28)
Table 3
Material parameters used in the analysis of the post-lubrication process.

r¼ 2485 kg/m3; k¼ 83.7 W/(mK); c¼ 1084 J/(kg K); m¼ 0.0045 Pa;

hsf¼ 378000 J/(kg); Tm¼ 908 K; T0¼ 293 K; L¼ 0.0155 m
and eliminating bV from Eq. (28) gives the following simple first-
order differential equation for bd.
dbd2
dbt ¼ 2

�
1� bd4� (29)

Solving Eqs. (28) and (29) with the initial condition bdð0Þ ¼ 0
results in

bd �bt� ¼ tanh
1
2

�
2bt� bV�bt� ¼ tanh

3
2

�
2bt� (30)

Eq. (30) is the same as that derived in Ref. [13] for the solution of
the unsteady problem describing gravity-induced melting on a flat
plate. It is found that, in contrast with the results for the steady
state problem, both the thickness and the velocity increase first
rapidly from zero, and after a certain time period, both approach
the steady state value of 1. If we chose bdC ¼ 0:99 as the criterion for
the steady state to have reached then the corresponding timebtC ¼ 1:15. For P¼ 75 MPa and U¼ 1000 m/s, tC¼ 0.58 ms and
DC¼ 0.58 m for bdC ¼ 0:99. We note that the length of the rail used
in experiments is about 2 m [12], and this strongly suggests the
importance of incorporating transient effects in the description of the
dynamics of an armatureerail system. Furthermore, since the
velocity is assumed to be constant, the dimensional critical time
and distance can be written as

tC ¼ Z
P1=2U

; DC ¼ UtC ¼ Z
P1=2

(31)

where Z¼ ð1=4Þlnðð1þbd2CÞ=ð1�bd2CÞÞðL3Þ=ðaÞfr½hsf þcðTm�T0Þ�g1=2.
It is interesting to note that once the normalized critical thickness
dC has been chosen, the distance DC is independent of the velocity U
while tC is a decreasing function of U. Both tC and, DC are inversely
proportional to P1=2 and are independent of the viscosity m.

In many applications, such as electromagnetic launching, the
speed of armature varies with time. In this case, there is no general
analytic solution of Eq. (25). Thus we rewrite Eq. (25)2 as

dd
2

dt
¼ 2

h
WU2ðtÞ � Bed4

i
(32)

where W ¼ ððCma2Þ=ðkhsf L2ð1þ SteÞÞÞ is a new non-dimensional
quantity. Eq. (32) can be numerically solved provided that Uð�tÞ is
known. Here we use the fourth order RungeeKutta method [22] to
solve this equation with dð0Þ ¼ 0. An important feature of our
model is its ability to predict the transient response that occurs
during high speed sliding, such as the armature launch process.

3.2. Comparison with experimental results

The melting and the loss of aluminum armature in a rail gun
system is a common phenomenon that has been confirmed by
a thin layer of aluminum deposited on the copper rail surface [7].
The following two mechanisms of this melting have been postu-
lated: skin effect due to the Joule heating and wear mechanisms
due to viscous heating [23]. Using tungsten pins embedded in the
surface of an armature Stefani and Parker [12] experimentally
showed that both mechanisms are important in wearing out
armatures. They also measured purely mechanical (frictional and
viscous) wear when the sliders were electrically insulated from the
driving current. They thus showed that the viscous heating is
the dominant wear mechanism at high velocities (>1000 m/s).
Kothmann and Stefani [8] studied the lubrication of molten film
using Stiffler’s model [6]. Subsequently Merrill and Stefani [9]
included the effect of turbulence in their model. However, in
both models the agreement between the predictions and the
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experimental results is only satisfactory. Despite these efforts,
details of the liquid film formation are not yet fully understood.
Here we compare the experimental data with predictions from the
present model for the transient problem.

Fig. 6 shows Stefani and Parker’s [12] experimentally obtained
relation between the melt front velocity and the slider velocity for
purely mechanical heating. These data confirm that there is
a threshold velocity, around 800 m/s, for the onset of a liquid film.
Below this threshold velocity the interface is believed to be solid-
on-solid contact, and above this threshold velocity a layer of liquid
aluminum replaces the solid-on-solid contact. As discussed above,
transient effects may be important in these cases, especially during
the initial liquid film formation process. Thus the solution of the
transient problem provides an improved interpretation of the
experimental phenomenon and uncovers new physics that
the solution of the steady state problem does not provide. From
results exhibited in Fig. 6 we estimate threshold velocities to be
800, 975, 775, 800 and 650 m/s, respectively, for pressure equal to
45, 75, 89, 117 and 150 MPa.

To reveal a possible scaling law like that appearing in Eq. (28),
we plot on a logelog scale computed values of physical parameters
such as the slider velocity, the thickness and the melt velocity. We
assume that U ¼ at with a ¼ 106 m=s2 [12] and bdð0Þ ¼ dð0Þ ¼ 0
at the threshold velocity. Values of material and geometric
parameters, loads and the approximate threshold velocity, taken
from Ref. [12], are listed in Table 3. Results plotted in Fig. 7 show
that the thickness of molten film grows rapidly after reaching the
threshold velocity, and shortly afterwards the curves correspond to
the solution of the steady state problem and obey the scaling law
dwU1=2 as predicted by Eq. (27)1.

The predicted relations between the melt front velocity and the
slider velocity, and between the melt front velocity and the applied
pressure on a logelog plot are exhibited in Fig. 8(a), (b) along with
the experimental data. As for the results shown in Fig. 7, we
conclude from the results plotted in Fig. 8 that the melt front
velocity grows dramatically first when the slider velocity reaches
the threshold velocity and subsequently it approaches the steady
state value obeying the scaling law VwU3=2 as given by Eq. (27)2.
The experimental data are consistently higher than the model
predictions with differences between the two sets of data being
smaller during the transient deformations than those during the
steady state deformations. However, the two sets of data agree
qualitatively with each other. The experimental data near the
threshold velocity is not currently available.

Results displayed in Fig. 8(b) reveal that experimental values of
the pressure are consistently higher than those obtained from the
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solution of the transient problem. The slope of each one of these
curves computed by using linear regression fit to the test data
equals about 1. However, the slope of a straight line fitted to values
obtained from the solution of the transient problem is 0.25 indi-
cating the existence of the scaling relation V ¼ P1=4, which is the
same as the solution listed in Eq. (27)2 of the steady state problem.
One exception is that the slope of the straight line passing through
the predicted values at pressure ranging between 45 MPa and
89 MPa and at the slider velocity of 875 m/s equals 0.76 (this is
due to transients effects), which is close to that observed
experimentally.
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The mathematical model for the transient problem describes
well the scaling law between the melt front velocity and the slider
velocity but it only provides a partial interpretation of the melt
front velocityepressure relation; possible reasons for this are still
unknown. We note that effects such as resolidification and turbu-
lence have been considered in Ref. [8,9]. Another possible
contributor may be the elastovisocoplastic behavior of solid
materials as mentioned in Ref. [9]. At higher pressures, the
contribution of material strength may play an important role.

In summary, this paper provides a simple model of the contact-
melting process. However, the melting and the lubrication
processes in a real armatureerail are quite complex. A complete
description of the rich phenomena encountered at high speed
sliding such as electromagnetic launching, Lorentz force, Joule
heating, chemical reactions, and electro-migration should be
considered. Furthermore, the governing equations used here
include the simplified lubrication equation inwhich the inertia and
convective effects are ignored. This simplification of the complete
transient governing equations is appropriate for use in conven-
tional tribology but its applicability needs to be examined in more
detail for the high speed sliding.
4. Conclusions

We have provided a simple model for the analysis of the solid/
solid contact, solid/liquid contact melting and subsequent coating
of the rail by a liquid film, and have found the melt time and the
corresponding distance traveled by the slider by assuming that the
temperature rise is due to high speed interface friction and heat
conduction. Simple scaling laws for both the melting time and the
corresponding distance traveled have been derivedwhen either the
slider velocity or its acceleration is constant. These estimates have
been refined by also considering the energy dissipated due to
plastic deformations of the slider, and solving the resulting coupled
thermo-mechanical problem by the finite element method. It is
found that two boundary layers e one encompassing high strains
and the other elevated temperatures e form near the slidererail
interface. The thickness of the thermal boundary layer is generally
larger than that of the deformation boundary layer, and both are of
the order of 10 mm. The boundary layer is likely a precursor to the
formation of the molten film in the coupled thermo-mechanical
system. Large values of the heat flux at the slidererail interface
generated due to high speed friction contribute more to the
temperature rise than the energy dissipated due to plastic working.

The analysis of the steady state problem based on the lubrica-
tion theory provides only a first-order approximation of the
melting process. However, as illustrated in the paper, the solution
of the transient problem reveals that it is hard to achieve the steady
state in a real system. The experimental data collected in a process
dominated by purely mechanical heating can be described well by
the solution of the transient problem, especially the scaling law of
velocity dependence. The solution of the transient problem can
only partially address the experimentally observed dependence of
the slider velocity upon the pressure. Thus other mechanisms
which are sensitive to the applied pressure such as the shear
strength of a solid material near its melting temperature ought to
be included in the model.
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