
Comparison of Active Constrained Layer Damping by Using
Extension and Shear Mode Piezoceramic Actuators

R. C. BATRA. AND T. S. GENG

Department of Engineering Science and Mechanics, MjC 0219, Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, USA

ABSTRACT: We analyze, numerically by the finite element method, three-dimensional
electromechanical deformations of a thick laminated plate with layers made of aluminum,
a viscoelastic material and a piezoceramic (PZT). Two arrangements of layers are considered.
In one case a central PZT layer is surrounded on both sides by viscoelastic layers and
aluminum layers are on the outside surfaces. The PZT is poled in the longitudinal direction
and an electric field is applied to it in the transverse direction. Thus shearing deformations
of the PZT layer dominate over its extensional deformations. In the second arrangement,
the aluminum layer is in the middle and the PZT layers are on the outside. The poling
direction and the electric field are along the thickness of the PZT layer. Extensional
deformations of the PZT layer are significantly more than its shearing deformations. The
problem formulation incorporates geometric nonlinearities and the constitutive relation
for the PZT includes quadratic terms in the electric field. For each set up of the layers, the
system is excited at its first natural frequency. The enhancement in damping induced by
the actuation of the PZT layers is ascertained, and the optimum thicknesses of the viscoelastic
layers and the PZT layers for maximum damping are determined. The effect of nonlinear
terms in the constitutive relation for the PZT is ascertained. The problem of exciting
the laminated plate simultaneously at the first and the second frequenci~s and annulling these
has been scrutinized. It is found that the energy of electric deformations of the PZT material
is more for the shear mode actuators than that for the extension mode actuators.

Key Words: thick laminated plates, viscoelasticity, piezoelectricity, three-dimensional
deformations, functionally graded viscoelastic layer, finite element solution

INTRODUCTION

S EVERAL investigators (e.g., Plump and Hubbard,
1986; Edberg and Bicos, 1992; Azvine et al., 1994;

Van Nostrand et al., 1994; Baz, 1993; Baz and Ro,
1993a,b, 1995a,b; Shen, 1994) have analyzed active
constrained layer damping (ACLD) treatments for
quickly annulling vibrations of a structure. The energy
dissipated per unit volume of the viscoelastic material is
usually higher in the ACLD treatment than that in the
passive constrained layer damping (PCLD) treatment.
Usually an ACLD treatment consists of a viscoelastic
layer with one face bonded to the host structure and the
other to a piezoceramic (PZT)1 layer. Deformations of
the PZT layer are controlled by applying a suitable
voltage difference across its faces which in turn enhances
shear deformations of the viscoelastic layer. In a PCLD
treatment, there is no actuator to enhance shearing
deformations of the viscoelastic layer either embedded

in the host structure or bonded to its outer surface.
Ideally, the damping treatment should dissipate energy
efficiently but not noticeably alter the dynamic char-
acteristics of the host structure.

We note that Van Nostrand et al. (1994) concluded
that active actions will be degraded by the passive
constraining layer. Bailey et al. (1988) stated that it is
more effective to apply piezoelectric materials directly
on the structure rather than embed a viscoelastic layer
between the two. Liao and Wang (1997a) have shown
that a viscoelastic layer reduces the transmissibility and
hence the direct control authority from the active source
to the host structure. They (1997b) have identified
ranges of viscoelastic material properties which will
provide satisfactory transmissibility of active actions,
and the overall performance will exceed that of purely
passive and active systems.

Previous studies of ACLD treatments have employed
extension mode PZT actuators in which the electric field
and the poling direction are along the thickness of the
PZT layer. The thickness of the PZT changes and the
transverse displacements induced due to the Poisson

"Author to whom correspondence should be addressed.
E-mail: rbatra@vt.edu
'The abbreviation PZT is used to denote a generic piezoceramic rather than a
specific one.
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effect in the PZT increase shear deformations of the assumed to be constant throughout the deformation
viscoelastic layer. Alternatively, one could exploit shear process.
mode deformations of the PZT in which it is pOled

~in a longitudinal direction and the electric field is applied
across it's thicknes.s. ~ote that di.fferent ~iezoelectric FORMULATION OF THE PROBLEM
constants are effective m the extension and m the shear
mode actuation. Shear mode PZTs are commercially A h t. k h f h bl d. d . h. 2. sc ema IC s etc 0 t e pro em stu Ie IS sown

available. Closed-form solutions for shear mode PZT . F. I( ) d (b) F ' I( ) d ' ACLD. , , m Igure a an . Igure a eplcts an
beams were given by Bonselko et at. (1983), They were " ,
t d ' d b S d Zh (1996) d Zh d S treatment with a shear mode PZT actuator and Figures u Ie y un an ang an ang an un , .

, . , I(b) with two extension mode PZT actuators.

(1999) for controlling deformations of a lamInated Th t t I th ' k f h PZT d h I ', e 0 a IC nesses 0 t e an tea ummumstructure. Vel and Batra (200Ia,b) have given exact I ' th t h H be' , " ayers m e wo cases are t e same, owever, cause
solutions for static deformations of sImply supported f th d' ffi . th t ' I ' ,

f h' " 0 e I erences m ever Ica posItions 0 t e two

lamInated structures IncorporatIng shear mode actua- ",',

t H th ' ffi t ' ' ACLD layers and m their material properties, their structuralors. ere we compare elr e ec Iveness m , , ,
t t t ' th th t f t ' d t t A stlffnesses will be different, Thus the same loadrea men s WI a 0 ex ens Ion mo e ac ua ors. s I' d ' II " I ' ' II I ' , t d t b S d Zh (1996) d ' fi d b app Ie at geometnca y slml ar pOInts WI resu t m
porn e ou y un an ang an veri Ie y, , " ,
th I t ' I I t ' f V I d B t (2001 b) different deformations of pOInts m the alumInum

e ana y Ica so u Ions 0 e an a ra a" an . , .,
d t f h d t t ' th t i' th layers. Whereas the electrIc field IS applied m the X3-a van age 0 sear mo e ac ua ors IS a lor e same '. ,t. d f1 t . th ' be d. t ' d d ' direction for both the shear mode and the extensionIP e ec Ion e maximum n mg s ress m uce m 'd PZT t t h I d ' h' " mo e ac ua ors, t ey are po e m t e XI-

them IS less than that m the extension mode actuators, d ' t . , th fi d ' h d ' t ., , Irec Ion m e ormer case an m t e X3- Irec Ion,
Also, they are embedded withIn the structure and hence ' th I tt :, mea er case. ;are not exposed to environmental effects,

Analysis of dynamic problems involving ACLD
treatments requires a mathematical model (i,e., govern-
ing equations, and initial and boundary conditions)
of the system. Such problems have been studied by the (a)
finite element method (e.g., see Van Nostrand et ai,
1994; Baz and Ro, 1993a, 1993b; Shi et ai" 2001) or by
distributed-parameter methods (e.g" see Plump and
Hubbard, 1986; Baz, 1993; Shen, 1994; Azvine et al.,
1994; Baz and Ro, 1993, 1995) which employ shear

I
models of Mead and Markus (1969) and DiTaranto
(1965). Nearly all of these studies are limited to beam
like structures and therefore make kinematic assump- I

tions of the beam theory.
We note that Yu (1995) has used a pseudo variational

principle to derive equations of motion of piezoelectricity ~
and specialized these to a plate. These equations .,

incorporate von Karman's geometric nonlinearities
and employ linear con~titutive relati~ns. :zou and Ba,o (b) 'f' .1

(1997) have also considered von Karman's geometrIc 1

nonlinearities, linear constitutive relations and used the
Hamilton principle to derive governing equations for a
thermopiezoelectric shell. On the contrary we study here
three-dimensional deformations of very thick clamped rot
plat~s/beams and account for geometric nonlinearities,
Furthermore, the constitutive relation for the PZT has PointC

second-order terms in the electric field to incorporate
nonlinear dependence of strains upon the electric field
observed by Crawley and Anderson (1990), However,
temperature dependence of the material properties and "
heat generated due to viscous dissipation and the electric All dimensions are in cm

field have not been considered, Thus the temperature is Figure 1. Schematic sketch of the problem studied: (a) ACLD
treatment with a shear mode actuator; (b) ACLD treatment with
extension mode actuators. Unit vectors a and W point in the

2E1ectro Ceramic Diy., Morgan Matroe, Bedford. 08. directions of polarization and the electric field respectively:
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In the Lagrangean description of motion and in the
absence of body forces and distributed charges, equa-
tions governing dynamic deformations of a structure are

Viscoelastic material:

e-(t-s)/~ Eyy(s) ds

(1)

(2)

(3)

(4)

y

(1 + v)
(8)i = 1,2,3, 2,3, +a=

PZT:

pJ = Po,

PoXi = Tia,a,

TiaXj,a = TjaXi,a,

Da.a = 0,

where we have used rectangular Cartesian coordinates Xi
and Xa to describe the position of the same material
particle in the present and the reference configurations
respectively. A superimposed dot indicates the material
time derivative, J = det(xi,a], Fia = Xi,a = 8Xi/8Xa is the
deformation gradient, T is the first Piola-Kirchhoff
(or the nominal or the engineering) stress tensor, a
repeated index implies summation over the range of the
index, p and Po equal mass densities in the present and
the reference configurations respectively, and D is the
electric displacement. Latin and Greek indices signify
components of a tensor with respect to coordinates in
the present and the reference configurations respec-
tively. Equations (1)-(4) express, respectively; the
balance of mass, the balance of linear momentum, the
balance of moment of momentum, and the Maxwell
equation with inertia effects associated with the electric
field neglected. Note that the balance of moment of
momentum is identically satisfied by requiring that the
Cauchy stress tensor, (7, related to T by

S = (2c1/I + c3h + el/3 + 3)..1 If + 2)..3/1h + )..41}

+ )..slll + )..71h + 2Vl/l/3 + v21f + v7113 + V9114

+ V14h/3)a ~ a + (2CV2 + c3/1 + eV3 + 3)..vl + )..3/f

+ 2)..4/. h + )..6111 + )"s/h + 2V3h/3 '+ v41f + vsl13

+ vlol14 + v14/1/3)1

+(C4 +)..s/l +)..6h + vS/3)(a~E. a + a. E~a)

+ 2(cs + )..711 + )..sh + v6/3)E

+,(e3+~/1 +vloh+VII/3)(a~W+W~a)

+3)..9E2 + VI2W~W+ vI3(a~E. W+W. E ~a

+W~E.a+a.E~W),

1t = (2e1/3 + el/l + eV2 + 3JLllf + JLV/3 + vllf

+ 2VV3/1 + v31} + 2V4/3h + vslll + v61h + VI 1114

+ vl4/11va + 2(e2 + JLV3 + v7/1 + vsh)W

+ 2(e3 + v9/1 + vloh + VII/3)E. a

+2V12E .W+ 2V13E2. a; (9)

where
Gij=J' TiaXj,a = J- T;aFja. (~)

Eap = {ua, p + up,a + Uy,auy,p)/2,

Ua = Xib'ia - Xu; (10)

II = a . Ea,

III = a . E2a,
13 = a. W,

I 113 =W.W,

h = trE,
Il2 = tr E2,

114 = a . EW + W . Ea. (11)

be symmetric. Furthermore, once the present positions
Xi of material particles are known, the present mass
density can be computed from Equation (I). Thus we
need to solve Equations (2) and (4) for Xi and the electric
potential. Equations (2) and (4) are to be supplemented
by initial and boundary conditions and constitutive
relations.

We assume that the host structure and the visco-
elastic layer are made of homogeneous and isotropic
materials and the PZT of a homogeneous and
transversely isotropic material with the axis of trans-
verse isotropy coincident with the poling direction. In
terms of the symmetric second Piola-Kirchhoff stress
tensor, SaP' related to the first Piola-Kirchhoff stress
tensor T bv

Here u equals the mechanical displacement of a material
point, E is the Green-St. Venant strain tensor appro-
priate for finite deformations of a body, 8afJ is the
Kronecker delta, a is a unit vector along the poling
direction of the PZT, b 18> c denotes the tensor product
between vectors band c defined as (b 18> c)d = (c . d)b for

every vector d, b. c denotes the inner product between
vectors band c, n is the polarization vector that is
related to the electric displacement D, the electric field
Wand the electric potential 4> through

Tia = Xi,pSaP = FiPSap, (6)

constitutive relations for materials of the three layers are
given below.
Host layer:

1ra = Da 80JXa, iXp,i Wp, Wp = -c/J,p,

where EO is the dielectric permittivity of the free space.
In Equation (7) Y is Young's modulus and v Poisson's

ratio. Equation (7) implies that the material of the host
(7)
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layer is being modeled as neo-Hookean. Equation (8)
signifies that both the shear and the bulk response of the
viscoelastic material have the same relaxation time T and
the Poisson ratio is independent of time. If relaxation
times and/or values of X for the bulk and the shear
moduli are different, then Poisson's ratio of the
viscoelastic material will depend upon time t. Also,
generalization to the case of more than one relaxation
time for the shear and the bulk moduli is fairly straight
forward to implement in the analysis of the problem.
Christensen (1971) has discussed how Equation (8)
relates to nonlinear viscoelastic materials; here we note
that it is analogous to Equation (7). Yu and Batra (2000)
used the analogue of Equation (8) for incompressible
materials to analyze damping induced by a viscoelastic
layer enclosed between two cylinders and undergoing
finite torsional deformations. For the strain history

material, and the multiplying factor for the loss moduli is
xw-rf(l + w2-r2). Thus the maximum value of the loss
moduli and hence of energy dissipated per unit volume of
the viscoelastic material occurs for -r = Ifw. It is not easy
to identify the storage and the loss moduli in the presence
of geometric nonlinearities.

With the definition

l i t
'7aP(t) = -::r -oc e-(t-S)/T EalJ(s) ds, 18)

Equation (8) becomes

Sa8

(19)

E(t) = Eo
, (13)

Equation (8) yields

With lJap interpreted as a pseudo strain and ~aP as a
pseudo strain-rate, constitutive relation (8) represents a
Kelvin material with an isotropic neo-Hookean material
of Young's modulus Y(1 - X) and Poisson's ratio v
connected in parallel with a purely viscous isotropic
material of bulk viscosity vY-r/(1 + v)(l - 2v) and shear

viscosity Y-r/(l + v). We note that for finite deforma-
tions, Eap does not equal the strain rate.

Equation (18) implies that lJap satisfies the ordinary
differential equation

-rqaf! + llaf! = Eaf!. (20)

Second-order constitutive relations (9) for the piezo-
electric material were derived by Yang and Batra (1995)
and contain terms quadratic in the electric field Wand
the strain tensor E. In these equations Ct,C2,...,et,e2,...,
At,A2... and Vt,V2... are material parameters. There is
not sufficient test data available to evaluate all of these
material parameters. Batra and Liang (1997) have
shown that for an unconstrained PZT nonzero values
of Ct,C2,C3,c4,CS,et,e2,e3,Et,E2,V4 and Vt2 yield a mate-
rial response that is close to the one observed
experimentally by Crawley and Anderson (1990).
Tiersten (1975) has considered third order terms in W
and obtained a better agreement between the computed
and the observed axial strain versus the applied electric
field. Furthermore, the permittivity EO of the free space
is usually quite small so that Equation (12)t is simplified
to ]l'= D. Accordingly, Equations (9) simplify to

Thus the stress eventually relaxes to (1 - X) times that in
a neo-Hookean material with Young's modulus Y and
Poisson's ratio v.

For infinitesimal sinusoidal deformations with the
strain history

EaP(t) = E~p sio(IJt, IE~IJI « (15)

Equation (8) gives

where

(17)tan 8 = (xw.)/(l + .2w2 - x).

Thus the phase shift, 0, between the applied infinitesimal
sinusoidal strain history and the induced stress history
depends upon the frequency W, the relaxation time.
and the factor X. Also, the amplitude of each component
of stress is smaller than (1 + J!)1/2 times that in a
Hookean material of Young's modulus Yand Poisson's
ratio v. Each component of stress exhibits the same phase
shift with respect to its value in the corresponding
Hookean material for which X = O. The storage bulk and
shear moduli of the viscoelastic material equal (1-
X/(l + .2w2» times those for the corresponding elastic

SaP = (2c,/, + c3h + e,/3)aaap

+ (2C2h + c3/, + e2/3 + v41})8aP

+ c4(aaEpyay + apEayay) + 2csEaP

+ e3(aaWp + apWa) + V'2WaWp,

-Da = (28,/3 + ell, + e2/2 + 2V4/2/3)aa

+ 282 Wa + 2e3Ea8a8 + 2V'2Ea8 W 8. (21)
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For an extension mode actuator poled in the
x3-direction and the electric field also applied in the
x3-direction,

where As = 2(cl + C2 + C3 + C4 + cs).
Equations (23) and (25), written for specific choices of

the electric field and the polarization directions, reveal
that piezoelectric moduli el, e2, e3, V4 and VI2 affect
stresses induced in the extension mode actuator by the
electric field W but only e3 and VI2 cause stresses in the

(22)aa = 83a, Wa = W83a,

and Equations (21) reduce to

SII

S22

S33

S23

S31

SI2

D1

D2

D3

- 2(C2 + CS) 2C2 2C2 + C3 0 0 0 I e2

I
, 2C2 2(C2 + CS) 2C2 + C3 0 0 0: e2

C3 + 2C2 C3 + 2C2 Ae 0 0 0 I Be
I

0 0 0 C4/2 + Cs 0 0 I 0
I

0 0 0 0 C4/2 + Cs 0 I 0
I0 0 0 0 0 Cs I 0

- - -0- - - - - -0- - - - - 0 - - - - 0 - - - - :.~ - - -0-1--2~2E~3

I
0 0 0 -e3 0 0 I -2V12E23

I
- -e2 -e2 -Be 0 0 0 I -Ce

Ell

E22

E33

2E23

2E31

2EI2

W

V4

+w2= x

-
0

(23)

where shear mode actuator. Also for our choice of directions
of the polarization vector a and the electric field W,
terms quadratic in the electric field do not appear
in expressions for shear stresses. If the polarization
vector a were not aligned along one of the coordinate
axes, then an electric field in the thickness direction
will induce both normal and shear stresses in the PZT
and the actuation effect for the same electric field may be
enhanced. Vidoli and Batra (2000, 2001) have explored
such possibilities and found optimum orientations of

Ae = 2(cl + c2 + c3 + c4 + cS), Be = el + e2 + 2e3.

Ce = 2(v4Eyy + v12E33) + 2(sl + sv,

When the PZT actuator acts in shear mode with

Oa = h'la. Wa = Wh'3a. (24)

Equations (21) become

811

822

833

823

831

812

-D1

-D2

-D3

As 2C2 + C3 2C2 + C3 0 0 0 I 0
I2C2 + C3 2(C2 + cs) 2C2 0 0 0 I 0

2C2 + C3 2C2 2(C2 + cs) 0 0 0: 0

0 0 0 Cs 0 0 I 0
I

0 0 0 0 C4/2 + Cs 0 I e3
I0 0 0 0 0 C4/2 + Cs I 0(;I-+-e;+ 2e~)- - - ;2- - - - -~- - - '0 - - -0 - - - - 0 - - i - -2;1;~3--

0 0 0 0 0 e3 I 2vl2E23
I

0 0 0 0 e3 0 I 2(E:2 + vl2E33)

=

Ell

E22

E33

2E23

2E31

2E12
---

W

0

0

Vl2

0

0

0

+w2x (25)

---
0

V4

V4

+
0

0

0

V12
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rigidly clamped, and a time harmonic tangential traction
is applied only to the host structure at the edge XI = L.
That is

U; = 0 on the surface XI = XI = 0,
T;I = 0 on the surface XI = L of the PZT

and the viscoelastic layer,

T;I = -(Po sinwt)o;3 on the surface

XI = L of the host structure.

For times t ~ 0, we assume that all material points of
the structure are at rest and have null displacements.
Thus the lower limit of integration in Equation (8) is zero.

Because of the time harmonic load applied, the
response of the structure will be periodic after initial
transients have died out. We note that no such
assumption is made in the analysis of the problem and
deformation fields as a function of time are computed
numerically by the finite element method. During one
cycle of deformation, energy input into the structure is
given by

Ein = 12Jr/w dt[l (-Po sin wt)u3dA -
1 CPD3dA

Ah Ap

(28)

Here Ah is the surface of the host structure where
tangential tractions (27)3 are prescribed, and Ap surfaces
X3 = constant of the PZT layers where the electric
potential is applied. Work done by internal stresses in
the viscoelastic layer during a cycle of deformation can
be computed from

the direction of the polarization vector of a PZT beam
and a rod. Vel and Batra (2001) studied cylindrical
bending deformations of an extension-shear bimorph
with the axis of polarization inclined at an angle a with
the vertical axis. For PZT -5A, they found that the
maximum tip deflection is realized in a combined
extension-shear bimorph at a ~ 20° for span-to-thick-
ness ratio of 10 and at a ~ 28° when the ratio is 5.
We note that even when electric potential difference
is applied uniformly to the top and the bottom
surfaces of the PZT layer, an electric field may also
be induced in XI and X2 directions by the direct
piezoelectric effect. Such possibilities are incorporated
in the three-dimensional analysis of the problem
presented herein.

Batra (2000) has modeled finite deformations of
isotropic elastic materials by four frame-indifferent
constitutive relations that express a stress tensor as
a linear function of an appropriate strain tensor.
He found that for large simple shearing or simple
extensional deformations, Equation (7) predicts a stiffen-
ing behavior in the sense that the nominal stress required
to deform the body increases with an increase in the
magnitude of the corresponding strain. A similar result
was proved by Batra and Yu (1999) for incompressible
viscoelastic materials modeled by Equation (8) with the
term multiplying Eyy(t) replaced by a hydrostatic
pressure that cannot be determined from the history of
the deformation. For the present problem, strains
induced in structural elements are not large enough for
the stiffening effects to playa noticeable role.

In the analysis of the problem we assume that the
upper and the lower surfaces of PZT layers are
electroded with electrodes of negligible thickness, and
all bounding surfaces of the viscoelastic layer and the
host structure are electrically insulated. Even though the
viscoelastic layer and the host structure may conduct
electricity, such effects are not considered herein. We
note that Cheng and Batra (2000) have delineated effects
of electrodes on static deformations of a hybrid
laminated composite. The electric potential is prescribed
on the upper and the lower surfaces of the PZT layers,
and surfaces XI = 0, L are electrically insulated.

Continuity conditions at the interfaces between two
dissimilar materials are

127F/lO w=

0

Tiaxo dV 1 21r/a>

l,a =

0dtl" dt[",
SafJEafJ dV,

(29)

where V ve is the region occupied by the viscoelastic layer
in the reference configuration. Since stresses in the
viscoelastic layer have two parts - one in phase and the
other out of phase with the velocity gradients - a part of
the work done W is stored in the body and the rest is
dissipated. For a linear problem involving infinitesimal
deformations, these two parts of stresses can be
identified, e.g., see Equation (16), and the energy
dissipated per cycle per unit volume of the viscoelastic
material is given by

[T;aNa] = 0, [u;] = 0, (26)

where N is an outward unit normal to the surface in the
reference configuration, and [t1 equals the difference in
the values off on the two sides of an interface. Thus the
two adjoining layers are presumed to be perfectly
bonded to each other with surface tractions and dis-
placements continuous across their common interfaces.
The edge XI = XI = 0 of the hybrid laminated plate is

yWdis = 1TXt' -=- [ V 0 0 0 0 ](1 + t'2aJ) 1 + v ~8yy8aa + 8a,88a,8 ,

which equals 21f/w times the strain energy density of an
isotropic elastic body with strains 8~8 and elastic moduli
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conditions. Following Hughes (1987) a weak formula-
tion of these equations can be written as

8;a8;p 1 puavpdQ = 8;a[/aQ,

34)

q1/! dS,
fan-

equal to the loss moduli of the viscoelastic body.
However, when either material or geometric or both
nonlinearities are considered, such an identification is
not readily available. For infinitesimal deformations of
a nearly incompressible viscoelastic body, v ~ 0.5,
e::r ~ 0 and the first term in the bracket on the right-
hand side of Equation (30) is negligible as compared to
the second term. Thus the energy dissipated in the
visoelastic layer is predominently due to its shearing
deformations.

In a freely vibrating structural system composed of
elastic and viscoelastic members, a measure of the energy
dissipated during a cycle of deformation is the relative
decrease in the amplitude of vibrations or the logarithmic
decrement, aiR, defined as (Timoshenko. 1974)

maxI max' [,In = In(u3(i) U3(i+I), 31)

where v and 1/1 are smooth test functions that vanish on
parts of the boundary where essential boundary
conditions and the electric potential are prescribed
respectively. Furthermore Q is the region occupied by
the hybrid structure, (JQt the part of the boundary where
surface tractions .fi(.fi = TiaNa) are prescribed, and (JQc
the part of the boundary where the surface charge density
q (q = DaNa) is specified. For the present problem, q = 0
on (JQc. When v is regarded as a virtual displacement,
then the left-hand side of Equation (34) equals the virtual
work of inertia forces, and the two terms on the right-
hand side represent the virtual work of surface tractions
and internal stresses. For the host structure and the
viscoelastic layer, internal stresses Tia depend upon the
mechanical deformations but for the PZT these also
depend upon the electric field. Substitution for S from
(7}--{9)\ into (6) and the result into (34), and for D or 1T
from (9)2 into (12) and the result into (35) yields coupled
equations for the determination of mechanical displace-
ments u and the electric potential c/Jo As stated earlier,
initial displacements and velocities vanish, and the
pertinent boundary conditions are given in (27) and in
a few lines preceding (27).

The domain Q is discretized into the union of 8-noded
disjoint brick elements Qe and ensuring that each element
is made of a monolithic material. This is easily achieved
by placing nodes on an interface between two dissimilar
materials. Whereas prescribed essential boundary condi-
tions are to be satisfied after equations at the element
level have been assembled, the interface continuity
conditions (26) are satisfied during the assembly of
these equations. Referring the reader to Batra and Liang
(1997) for details, we note that Equations (34) and (35)
yield the following set of coupled nonlinear ordinary
differential-algebraic equations.

where uJDv)x is the maximum displacement of a material
point in the X3-direction during the jth cycle of
deformation. Here we have chosen the X3-direction
since the displacement in this direction is likely to be
maximum. It is clear that in a continuous body the
logarithmic decrement may vary from point to point. A
higher value of the logarithmic decrement implies that
more of the energy stored in a freely vibrating body is
dissipated during each cycle of deformation. This
measure of energy dissipation is valid even when
material and/or geometric nonlinearities are considered.
For a nonlinear problem, the value of BIn may depend
upon the cycle j of deformation. For problems studied
herein, we have set j = 2. Note that BIn compares
amplitudes of two successive oscillations of a system
and does not compare the amplitudes of oscillations
obtained with and without an ACLD treatment.

The effectiveness of activating a PZT in an ACLD
treatment can be measured by either one of the
followin~ two indices:

I, = (32)

f,IO(PZTs activated)
f,IO(PZTs not activated)

I~ 33)

Mii =pxt(t) Fot(u(t), Ii(t), cjJ(t)),Higher positive values of I, and 12 indicate that
actuating the PZT enhances the energy dissipated in
the viscoelastic layer.

pint(u(t), cf>(t» = 0, 37)

where

FINITE ELEMENT FORMULATION OF THE
PROBJ.1'::M pxt

(38'
Fint ~ L. BTFS dQ,As noted earlier, our goal is to find Xi and I/> from

EQuations (2) and (4) subject to the initial and boundary
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where d/l = I" - 1,,-1 and d/2 = 1"+1 - I". For the
hybrid laminated structure being studied, the number
of nodal mechanical displacement degrees of freedom is
considerably more than the number of nodal electric
potentials. The aforestated explicit/implicit technique of
analyzing the problem is computationally more effective
both in terms of the storage and the CPU time
requirements than the purely implicit technique.

Note that the problem is being analyzed in the time
domain rather than the frequency domain.

COMPUTATION AND DISCUSSION OF RESULTS

B is the 9 x 24 matrix relating the deformation gradient
X;, a = Fia to the nodal displacements, the summation in
Equation (38) extends over all elements in the mesh, M
is the mass matrix, u the vector of nodal displacements
in the hybrid structure, pxt is the vector of nodal forces
equivalent to externally applied surface tractions, N is
the matrix of shape functions, and pint is the nodal
charge vector equivalent to the internal polarization.
Note that only piezoelectric elements contribute to pint,
However, all elements contribute to Fint. In order to
avoid computing the integral of the history of the strain
tensor at a material point of a viscoelastic layer, we use
constitutive relation (19) for the viscoelastic layer and
evaluate 11 at each integration point from Equation (20)
which is integrated by the backward difference method.
Integrals over an element, like the one on the right-hand
side of Equation (38)2, are evaluated by using the
2 x 2 x 2 quadrature rule,

Substitution from (19) into (38) and the result into
(36) yields

Mii + K(u)1/ + K(u);, = pxt, (39)

where matrices K and K depend upon the current values
of the displacement u. A possibility is to simultaneously
solve nonlinear Equations (20) and (39). Here Equation
(36) is integrated by the central-difference method,
Equation (20) is integrated at each quadrature point
by the backward-difference method, and the nonlinear
algebraic Equations (37) are solved by the Newton-
Raphson technique. During the solution of the problem,
Fint is evaluated from the known solution at time tn.
Within a time step values of Fint are updated till the
computed successive values of u and c/> at time tn+1 are
within the prescribed tolerance. Since the backward-
difference method is unconditionally stable, the time
step is controlled by the central-difference method which
is explicit and conditionally stable. For a linear problem,
the central-difference method is stable (Hughes, 1987)
provided that ~t S 2/a>rnax where a>rnax is the maximum
frequency of free vibration of the discretized structure.
Within each time step the nonlinear problem is solved by
linearizing it around the solution at time tn. Thus, the
computed solution will be stable if ~t S 2/a>rnax. Here,
we take ~t = 1.8/a>rnax. For a nonlinear problem the
structural stiffness varies with its deformations and
hence a>rnax will be a function of time resulting in uneven
time steps. We employ the following recursive relation
to compute nodal values of mechanical displacements at
successive times:

The finite element code developed by Batra and Liang
(1997) was modified to include the viscoelastic material
behavior. Changes made in the code were verified by
comparing computed results for the forced one-dimen-
sional deformations of a viscoelastic bar with the
analytical solution of the problem. When comparing
the performance of extension mode and shear mode
actuators in ACLD treatments, following values were
assigned to various material parameters. We will find
below the optimum value of the relaxation time t" and
assign to it that value.
Host structure (Aluminum):

E = 70.3 GPa. v = 0.34. Po = 2700 kg/m3;

Viscoelastic laver:

E = 298 MPa. v=O.49, X=O.9, Po=IIO5kgjm'

PZT material

The ratio of Young's modulus for the aluminum and the
instantaneous Young's modulus for the viscoelastic
layer is nearly 300. Young's modulus in the longitudinal
direction for the PZT also equals approximately 300
times the instantaneous Young's modulus for the
viscoelastic layer. Thus for both the extension mode
and the shear mode configurations, a soft viscoelastic
l!1ver i~ ~!lnciwicheci h~tw~~n twn r!lth~r ~tiff l,.vpr~

(40)
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Unless stated otherwise results presented and dis-
cussed below are for V4 = V12 = 0, i.e., without the
consideration of W2 terms in Equation (21).

distributed normal traction of 40 kN/m2 in the central
4% of the surface area of the top surface of the plate.
Due to the symmetry about the two centroidal axes,
only a quarter of the plate was modeled. The top and the
bottom layers were divided into 8-node brick elements
of size I x I x 0.1 cm, and the size of the element in
the middle layer equaled I x I x 0.4 cm. By using
~t = 20 ~s, time history of the vertical displacement
of the centroid of the top surface of the layered plate
was computed for I s which was analyzed by using the
fast Fourier transform (FFT) to compute the natural
frequencies. The variation of the first natural frequency
with fJ is plotted in Figure 2 along with the analytical
solution of Srinivas and Rao (1970), and the natural
frequency obtained from the Kirchhoff plate theory as

Determination of the Fundamental Frequency

We detennine the first natural frequency of the
structure with the goal of exciting it at that frequency
and then annulling its vibrations. The procedure to find
the first natural frequency was validated by finding the
natural frequencies of a simply supported 3-layer lamina-
ted square elastic plate with each layer made of an
orthotropic material; the elastic constants of the top and
the bottom layers were set equal to .8 times those of the
middle layer. The elastic constants of the middle layer are

1 0.23319 0.010776
0.23319 0.543103 0.098276
0.010776 0.098276 0.530172

0 0 0
0 0 0
0 0 0

-
0
0
0

0.26681
0
0

0
0
0
0

0.159914
0

0
0
0
0
0

0.262931

c= I\ofPH

and the mass density of each layer was taken to be
1000 kgjm3. Each side of the plate equaled 10 cm,
and the thickness of the middle layer equaled 0.8 cm and
that of each of the top and the bottom layers equaled
0.1 cm. The plate was excited by applying a uniformly

reported by Srinivas and Rao. For each value of.8, the
computed fundamental frequency exceeds the analytical
one by at most 4%. A finer mesh ( 10 x 10 x 6 elements)
and normal tractions applied to a larger (16%) part of
the surface area did not alter the computed natural
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Figure 2. Comparison of the computed fundamental frequency of free vibration of a simply supported hybrid laminated plate with those obtained
from the analytical solution of three-dimensional elasticity equations, and from the Kirchhoff plate theo(\(
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an increase in the thickness of each of the two
viscoelastic layers from 0.1 to 1.0 cm, the fundamental
frequency of the system decreases from 6.472 to
5.089 kHz for the shear mode configuration but it
decreases from 9.174 to 7.791 kHz for the extension
mode configuration. Note that Young's modulus in the
longitudinal direction for the shear mode PZT is more
than that for the extension mode PZT. Because PZT
layers are farthest from the midsurface for the extension
mode configuration, the effective stiffness of the
extension mode configuration is more than that of the
shear mode configuration. The fundamental frequencies
obtained from the Euler beam theory for the shear mode
and the extension mode configurations equal 18.4 and
15.1 kHz respectively for hVE = 1 cm; however, for
hVE = 0.1 cm, each of these values equals 12.9 kHz. For
2.14 ~ L/H ~ 3, the Euler beam theory is not expected
to give good values of the fundamental frequency.

An increase in the thickness of each of the viscoelastic
lay~rs implies that either the aluminum layers or the
PZT layers are located farther from the midsurface of
the composite plate, and the total thickness of the plate
increases. The Kirchhoff plate theory suggests that the
effective stiffness of the structure will increase and thus
the first natural frequency should increase with an
increase in the thickness of the viscoelastic layer.
However, results reported in Table I are in the opposite
direction. As noted earlier for a plate of aspect ratio 10,
the difference in the first natural frequency computed
from the Kirchhoff plate theory and the analytical one
increases with an increase in the ratio of the moduli of
the layers. Since the instantaneous Young's modulus for
the viscoelastic layer is 1/300 times that of either the
aluminum or the PZT, it is very likely that the vertical
displacements of similarly situated points in the
aluminum and the PZT layers are loosely coupled. In
order to delineate this, we have plotted in Figure 3,
for the shear mode configuration, the time history of
the normalized relative difference in the transverse

frequency. Whereas for a homogeneous orthotropic
plate with .8 = I, the Kirchhoff plate theory gives
acceptable value of the first natural frequency for
the plate of aspect ratio 10, the difference between
the analytical solution and that obtained from the
Kirchhoff plate theory increases noticeably with an
increase in the value of .8. Kirchhoff's plate theory
proposed for a homogeneous plate is not expected to
give good results for composite laminated plates.

The classical laminated plate theory (CLPT) gives the
following expression for the fundamental frequency of a
simply supported rectangular laminated plate of sides a
and b and thickness h.

( ~D ) 1/2 - 11

-ti22Ph
[ 4 +2 DI2+2D66 2(° )2 D22(0 )4] 1/2 X m m -n +- -n

DI1 b DI1 b

Here DII, D22, DI2 and D66 are the bending rigidities,
and m and n are integers. For a square plate with
ajh = 10, and m = n = I, we get

Whereas the CLPT neglects effects of transverse shear
defonnations and rotary inertia, both the analytical
solution of Srinivas and Rao (1970) and the numerical
solution obtained here account for these effects. The
consideration of shear defonnations and rotary inertia
lowers the fundamental frequency of a plate.

In order to analyze the damping enhanced by
activating the PZTs in an ACLD treatment, we first
find the natural frequencies of the systems exhibited in
Figure I (a) and (b) by using the aforementioned
technique. In each case, a uniform tangential traction
of 2 MPa is applied to the unclamped edge of the
aluminum plate for a short while and then removed.
Due to the symmetry of the problem about the plane
X2 = I cm, only one-half of the problem is studied.
Using L\.t = 0.5 ~s, time history of the transverse
displacement of point C is computed; point C has
coordinates (IS, 1,3.5) for the shear mode configuration
of Figure la and (15,1,0) for the extension mode
configuration of Figure I(b). The fundamental fre-
quency of the system was determined by taking the FFT
of the displacement time history. The dependence of the
fundamental frequency upon the thickness of the
viscoelastic layer is listed in Table I. In computing
these, X in Equation (8) was set equal to 0.0; thus the
energy dissipation in the viscoelastic layers was
neglected. As is clear from the tabulated values, with

Table 1. For different values of the thickness of the
viscoelastic layer, first natural frequency of the systems

shown in Figures 1(a) and (b).

First Natural Frequency (kHz)
Thickness of the
Viscoelastic
Layer (cm)

Shear
Mode PZT

Extension
Mode PZT

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

6.472
5.906
5.655
5.529
5.404
5.341
5.278
5.215
5.152
5.089

9.174
8.734
8.482
8.294
8.168
8.074
7.980
7.917
7.854
7.791
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Table 3. Variation of the logarith-
mic decrement with the relaxation

time of the viscoelastic layer.

Relaxation
Time r

Logarithmic
Decrement 8

O.25/co,
O.5/co,

1/co,

2/(J)1

4/(J)1

0.1918
0.3134

0.3688
0.271
0.1574

The load is applied for 0 ::: t::: 1fjw and equals zero for
t ~ 1fjw. For the extension mode actuators with PZTs
poled in the x3-direction, the voltage applied to the
upper surface of the top PZT layer and the lower surface
of the bottom PZT layer equals the smaller of
4 x 1081ufi V and 5 kV for uf > 0 and the other surfaces
of the PZT layers are grounded. Here uf equals the
transverse displacement of point C (cf. Figure 1) in
meters. For uf < 0, the voltage given by
min{4 x 1081ufl, 5 kV} is applied to the lower surface
of the top PZT layer and the upper surface of the
bottom PZT layer and the other surfaces of the PZT
layers are grounded. Numerical experiments gave the
optimum value of the gain factor to be 4 X 108 Vim. For
the shear mode PZT actuator poled in the xI-direction,
the electric potential applied to its lower surface
equals the minimum of 4 x 1081ufi and 10 kV with the
upper surface grounded when uf > O. For uf < 0, the
lower surface of the PZT is grounded and the voltage
equal to min{4 x 1081ufl, 10kV} is applied to its upper
surface. We note that the electric strength of most
commercially available PZTs is 2 kV /mm, and we are
limiting it to 1 kV /mm. Since the thickness of the PZT
layer is much smaller than its length, a uniform voltage
difference applied to its surfaces X3 = constant will
produce a uniform electric field in the x3-direction.
However, deformations of the PZT layer will also induce
an electric field. Both the direct and the converse
piezoelectric effects are included in the analysis of the
problem.

Table 2. First natural frequency of the system of Figure
1 (a) for different thickness of each viscoelastic layer and

for different values of the shear modulus.

0.1
0.4
0.7
1.0

7.854
6.597
6.220
6.032

9.174
8.294
8.043
7.854

9.927
9.865
9.990
10.053

10.304
11.058
11.750
12.315

displacements of points D (15,1,0) and C (15,1,2.5+
hVE) where hVE is the thickness of the viscoelastic layer.
It is clear that this difference increases with an increase
in hVE. However, the maximum value of this difference
is less than 1.2%. Therefore, the different layers move
together in the vertical direction.

We determined the first natural frequency of the shear
mode configuration for different thicknesses of the
viscoelastic layers by varying their shear modulus from
0.1 to 10 GPa; these results are summarized in Table 2.
It is evident from these values that when the shear
modulus of the viscoelastic layer is nearly one-tenth
(or more) of that of the surrounding layers, then the
computed natural frequencies agree with the trends
predicted by the CLPT.

Analysis of Damping

We now set X = 0.9 and scrutinize damping induced
by the ACLD treatment. In each case, Po = 0.2 MPa and
(J) in Equation (27) equals the first natural frequency of
the system listed in Table I. Because of the nonzero
value of X, the first natural frequency of the composite
plate will be slightly different from that listed in Table I.

DETERMINATION OF THE OPTIMUM VALUE OF
THE RELAXATION TIME

For hVE = 1.0 cm, (J)I = 5.089 kHz and the ACLD
treatment with the shear mode PZT arrangement,
computed values of the logarithmic decrement for
different values of the relaxation time of the viscoelastic
layer are listed in Table 3. Note that no voltage
difference is applied to the major surfaces of the PZT
layer.

Thus, as stated above in lines preceding Equation
(18), energy dissipated in the viscoelastic layer and hence
the logarithmic decrement is maximum when l' = I/(J)\

for the system excited at the fundamental frequency.
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viscoelastic layer are larger for the shear mode PZTs
than those for the extension mode PZTs. Because of
small strains induced, linear strain-displacement rela-
tions and linear constitutive relations should suffice even
for the thick composite plate being studied herein.

DETERMINATION OF THE OPTIMUM
VALUE OF X

With 'f = l/aJ\, we then varied X between 0.9 and 0.5.
Values of the logarithmic decrement so obtained are
listed in Table 4. It is clear from these values that b'ln
decreases monotonically with a decrease in the value
of X. Henceforth we took X = 0.9 and 'f = l/aJ\ for both
the shear mode and the extension mode ACLD
treatments.

Effect of the Thickness of Viscoelastic Layers
Figures 6(a)-(c) evince the variation of the three

measures 11ln, I, and h, of dissipation with the thickness
of each one of the viscoelastic layers. For each value
of the thickness, hVE, of the viscoelastic layer, the
logarithmic decrement for the shear mode actuator is
considerably more than that for the extension mode
actuator. For the extension mode ACLD treatment, llJn
decreases gradually from 0.394 for hVE = 0.1 cm to
0.243 for hVE = 1.0 cm, but for the shear mode ACLD

treatment, llin decreases rapidly from 0.812 to 0.638
when hVE is increased from 0.1 to 0.2cm but from 0.375
to 0.367 when hVE is increased from 0.9 to 1.0cm. This is
because the maximum shear strain induced in the

COMPARISON OF DAMPING INDUCED BY THE
SHEAR MODE AND THE EXTENSION MODE
ACTUATORS

Figures 4(a) and (b) depict for the shear and the
extension mode configurations and hVE = 1 cm the time
history of the transverse deflection of point C with and
without the activation of the PZTs. It is clear that in
each case the transverse deflection of point C decreases
faster when an electric potential difference is applied
across the faces of the PZT layers. Also, the time periods
are shortened by the actuation of the PZTs and the
decrease in the time period is more for the shear mode
than that for the extension mode configurations. For the
same intensity of the tangential traction applied at the
unclamped edge for 0 < t < 1f / W\, the transverse dis-
placement of point C for the shear mode configuration
is more than twice of that for the extension mode
configuration. Because of the difference in the values of
w\ for the two configurations, the impulse imparted to
the shear mode configuration is 1.53 times that given to
the extension mode configuration. Also, values of the
first natural frequency listed in Table 1 suggest that the
effective stiffness of the extension mode configuration is
higher than that of the shear mode one.

In Figures 5(a) and (b) we have plotted the deformed
shapes at times t = 635 and 1935 JlS respectively of the

composite plate for the shear mode PZTs, and in
Figure 5(c) and (d) at t = 410 and 1245 JlS for the
extension mode PZTs. In each case displacements have
been magnified by 1000 to clearly show the deforma-
tions of the viscoelastic layer. The times correspond to
the instants of the first and the second maximum
upward vertical displacements of point C. In each of
the corresponding figures, shearing deformations of the

Time (ms)

Table 4. Variation of the
logarithmic decrement with the

factor X in the constitutive relation
for the viscoelastic material.-

8'nx

0.9
0.8
0.7
0.6

0.5

0.3688
0.3198
0.2736
0.2296
0.1875

- - y ~ ,y
Time (ms)

Figure 4. Time histories of the transverse displacement of point C
with and without the application of an electric potential difference
across the faces of the PZT layers: (a) shear mode configuration;
(b) extension mode configuration.
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each case, the transverse shear strain monotonically
increases from its lowest value in the element abutting the
clamped edge to the maximum value near the midspan
and stays uniform from there till the free edge of the
plate. Also, the maximum transverse shear strain induced
in the viscoelastic layer is largest for the thinnest layer.
For the shear mode actuator, the maximum value of the
transverse shear strain for hVE = 0.1 cm is 2.3 times that
for hVE =0.4cm; for hVE = 0.1 cm, the maximum trans-
verse shear strain equals 0.28%. Thus the energy dis-
sipated per unit volume will be highest for hVE = 0.1 cm.
Since the volume of the viscoelastic material is directly
proportional to hVE, the total energy dissipated per cycle
of vibration need not be maximum for hVE = 0.1 cm.

Effect of the Thickness of PZT Layers
We take hvE = 0.3 cm and study the effect on damping

of the thickness of the PZT layers. For the extension
mode actuator configuration, the fundamental natural
frequency for hpzT = 0.1, 0.2, 0.3, 0.4 and 0.5 cm was
found to be 9.479. 9.236. 8.985. 8.734 and 8.482lcHz

viscoelastic layer decreases rapidly when hVE is increased
from 0.1 to 0.2 cm but slowly for subsequent increase in
the values of hVE; it will be verified below. We recall that
t51n does not indicate the improvement in damping
caused by the activation of the PZTs but values of /1 and
/2 signify this effect. Whereas /1 has a simple interpreta-
tion, /2 does not. Both for the shear and the extension
mode actuators, /1 decreases monotonically with an
increase in the thickness of each viscoelastic layer. For
each one of the ten values of hVE considered, /1 for the
shear mode PZT actuator is higher than that for the
extension mode PZT actuator. Thus shear mode PZTs
are more effective in enhancing the shearing deforma-
tions of the viscoelastic layer which in turn increase the
energy dissipation and the damping of vibrations of
the system. However, /2 attains a maximum value for
hVE ~ 0.3 cm for both the extension mode and the
shear mode ACLD treatment.

We have plotted in Figures 7(a) and (b) the longi-
tudinal variation of the transverse shear strain in the
viscoelastic layer for hVE = 0.1, 0.4, 0.7 and 1.0 cm. In
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Figure 7. For four values of the thickness of the viscoelastic layers,
variation of the transverse shear strain, E13, on the midsurface of a
viscoelastic layer: (a) shear mode actuators; (b) extension mode
actuators.

6.005, 5.843, 5.718 and 5.655 kHz. As stated earlier, in
each case the system was excited by tangential tractions
whose frequency equals the natural frequency of the
system. The dependence of the three measures of energy
dissipation or damping, llln, II and h, upon the thickness
of the PZT layer is exhibited in Figure 8(a)-(c) for the
shear mode and the extension mode actuators. The
electric energy input into the PZTs is different in each
case. For the shear mode actuator, the logarithmic
decrement has the maximum value for hPZT ~ 0.85 cm,
but for the extension mode configuration, the maximum
value of llin occurs for hPZT > 1 cm. However, for the
same thickness of the PZT layers, the logarithmic
decrement is higher for the shear mode configuration
than that for the extension mode one. Whereas the index
II for the shear mode configuration increases mono-
tonically and quite rapidly with an increase in the
thickness of the PZT layer, for the extension mode
configuration it attains a maximum value for hPZT ~ 0.8
cm. The thickness of the PZT layer has a minimal

respectively. Recalling that the thickness of the shear
mode PZT actuator is twice that of each of the extension
mode actuators, the corresponding natural frequency
for the shear mode PZT set-up was found to be 6.220,
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Effect of the Aspect Ratio of the Plate
We now explore if an ACLD treatment works

equally well for plates of different aspect ratios
(s=length of plate/thickness of plate). We set hvE
= 0.3 cm and hpzT = 0.4 cm for the extension mode
PZTs and vary the aspect ratio by fixing the thickness
of each layer and changing its length. For the shear
mode configuration, the number of uniform finite
elements used to model the aluminum, the PZT and the
viscoelastic layer equaled 9, I and I in the XI, X2 and
X3 directions respectively for s = 3 and 10. For the
extension mode configuration, the aluminum layer was
divided into 2 elements in the X3 direction. For s = 20
and 30, the number of elements in the longitudinal
direction in each of the layers was increased to 18 and
27 respectively for both set-ups. For the shear and the
extension mode configurations, the fundamental
frequency for the four aspect ratios is listed in Table 5.
For large aspect ratios, the fundamental frequency is
inversely proportional to the aspect ratio as predicted
by the Kirchhoff plate theory. For the four aspect
ratios, the three measures of damping are also listed in
Table 5. Values of II which probably are a better
indicator of the effect of activating the PZTs on the
enhancement in damping suggest that extension mode
actuators perform better than the shear mode ones for
each of the four aspect ratios.

Effect of the Poling Direction of the Shear Mode PZT
In order to quantify the deterioration in the damping

caused by the misorientation of the poling direction a
for the shear mode PZT, we ascertained the effect of
changing a in the XI-X3 plane. Let a make an angle eo
counterclockwise from the xI-axis, i.e., a = (cos e, 0,
sin e). Material properties of the PZT wi th respect to the
global axes are obtained from Equations (21). For seven
values of e, Table 6 lists the computed fundamental
frequencies and the three measures of damping.
Whereas the logarithmic damping is unaffected by the
change in e, values of II and 12 decrease as e increases.
Both II and 12 drop by about 10% when poling direction
is inclined at 15° instead of 0° to the xI-axis. Thus it is
important that the shear mode PZT be poled correctly
for optimum performance.

We did not perform a similar study for the extension
mode PZT.

Energy of Electrical Deformations
Figure 9 exhibits the time history of the energy, Eel, of

electric deformations for the shear mode and the
extension mod~ ACLD treatments with hVE = 1.0 cm
and hPZT = 1.0 cm. Eel is defined as

influence on /2 for the extension mode configuration but
affects noticeably the value of /2 for the shear mode
configuration. For the shear mode configuration, the
maximum value of /2 occurs for hPZT ~ 0.8 cm.

Eel = {
}QpZl

DiWidQ
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Table 5. Variation of the three measures of damping with the aspect ratio.

Measures of Damping

Table 6. For the shear mode PIT, dependence upon the
poling direction of the fundamental frequency and the

three measures of damping.

Table 7. Effect of relaxation time on the simultaneous
damping of the first two modes.

Measure /1 of

DampingMeasures of Damping
Relaxation
Time T (Jls)Frequency (kHz) 11 12

Poling
Angle eo

0
15
30
45
60
75
90

8 Mode 1 Mode 2

0.4818
0.8909
0.9682
0.9682

0.369
0.369
0.367
0.367
0.368
0.369
0.370

0.128
0.099
0.053
0.008
-0.019
-0.025
-0.019

0.092
0.08
0.025

-0.014
-0.035
-0.051
-0.033

5.089
5.119
5.129
5.134
5.128
5.117
5.111

0.6406
0.3815
0.1644
0.1315

TI = 1/CIJI

T2 = 1/~

T3 = 1/aJOd

T4 = 1/CL14

mode configuration than that for the extension mode
configuration. Also, flat portions of the curve for the
shear mode PZTs suggest that the prescribed limiting
value of the potential difference and hence of the electric
field was required. Since the maximum bending stress
induced in the shear mode PZT is considerably lower
than that in the extension mode PZT, the former is
expected to have larger service life.
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Figure 9. Time history of the energy of electric deformations for
the shear mode and the extension mode ACLD treatments;
hVE = 1.0 cm, hpZT = 1.0 cm.

where QpZT is the region occupied by the PZT. Since a
unifonn electric potential is applied across the major
surfaces, X3 = constant, of the PZTs, only W3 and D3
have significant values; computed values of WI and Wz
were found to be several orders of magnitude lower than
those of W3. Recall that the time periods of the two
configurations are different. Larger values of the energy
of electric defonnations for the shear mode PZTs
suggest that the potential difference imposed across
the major faces of the PZT layers is higher for the shear

Simultaneous Damping of First Two Frequencies by
Using a Functionally Graded Viscoelastic Layer

Whereas in the section, "Determination of the
Fundamental Frequency" we assessed the effect of vary-
ing the relaxation time 1" on the logarithmic decrement
for the fundamental mode of vibration of the structure,
here we examine if the first two modes can be damped
out simultaneously. The structure was excited as
described in "Analysis of Damping" and the amplitudes
of vibrations of the first two modes were found by using
the FFT technique both with and without (i.e., X = 0)
modeling damping caused by the viscoelastic layer. For
the undamped structure, the relative amplitude of the
first mode of vibration equaled 8 times that of the
second mode. These results, summarized in Table 7,
suggest that 1" = 1/C1J1 is most effective in damping out
the first mode of vibration. However, 1" = 1/C1J2, 1/C1J3 or
1/C1J4 damps out better the second mode of vibration.
For anyone of these three values of 1", the first mode of
vibration is not damped out quickly.

A possibility for damping out simultaneously the first
two modes of vibration is to use a functionally graded
viscoelastic layer with material properties varying
continuously through the thickness. An approximate
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way to model a functionally graded layer is to consider it
made of several layers of different homogeneous
materials. Here, each one of the two viscoelastic layers
was divided into four sublayers; when moving in the
x3-direction these are numbered as I, 2, 3 and 4 for the
bottom layer and 4, 3, 2 and I for the top layer. For six
different assignments of the relaxation times to these
sublayers, we list in Table 8 computed values of the
measure /\ of damping for the first two modes of
vibration. The entries in the first column and the last
row of Table 8 imply that the material of the sublayer I
had relaxation time 1"\, that of sublayer 2 had relaxation
time 1"2 etc. It is clear from these results that the rate of
damping of the second mode of vibration is virtually
unaffected by the relaxation time assigned to each of the
sublayers. Since the amplitude of the first mode of
vibration is 8 times that of the second mode, it may be

desirable to use homogeneous viscoelastic layers with
relaxation time t" = l/wl. However, the arrangement of
the second row of Table 8 doubles the values of II for
the second mode of vibration while lowering it only
about 15% for the first mode. This may be more
effective in damping out quickly the total energy of a
structure.

Effect of Material Nonlinearities in the Constitutive
Relation for the PZT

We now investigate the effect of assigning values
listed in (43) to material parameters V4 and VI2 in the
constitutive relation (21) for the PZT. For each one of
the ten values of the thickness of the viscoelastic
layer listed in Table 1 and for the shear mode and
the extension mode configurations, it was found that the
value of the index II was nearly the same as that for the
case when V4 = VI2 = O. For the shear mode configura-
tion, the index I I was computed by considering
transv~rse displacements of a point on the free edge of
the PZT layer rather than that of a point on the
aluminum layer. Figure 10 compares deformed shapes
of the portion of the plate near the unclamped edge
when V4 and VI2 are nonzero with those for V4 = VI2 = O.
Displacements have been magnified 100 times to clearly
show the deformations. It is clear that for the extension
mode configuration, the transverse shear strain in the
viscoelastic layer is noticeable. The deformed shape for
the shear mode configuration cannot be compared with
the corresponding deformed shape for the extension
mode configuration since the maximum deformations of

Table 8. Simultaneous damping out of the first two
modes of vibration with a functionally graded viscoelas-

tic layer.
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Figure 10. Deformed shapes of the laminated hybrid plate: (a) and (b) for the shear mode configuration with zero and nonzero values of V4 and
V12: (c) and (d) for the extension mode configuration with zero and nonzero values of V4 and V12.
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the viscoelastic layer may not occur at the instants
deformed shapes are plotted in Figure 10.

results in the maximum value of the index II of energy
dissipation is the same for the two set-ups. Both
arrangements result in the largest value of II for a
plate of aspect ratio 10. When each viscoelastic layer
was divided into four sublayers and values of the
relaxation moduli of the sublayers were changed
between 0.1 and 0.4 times their instantaneous values,
the value of the logarithmic decrement was essentially
unaffected. With the objective of simultaneously damp-
ing out quickly the first two modes of vibration, each of
these four sublayers was assigned a relaxation time
equal to the reciprocal of the first four frequencies.
These numerical experiments reveal that subdividing
each viscoelastic layer into two sublayers and assigning
relaxation times equal to the reciprocal of the first two
frequencies to these sublayers will damp out rapidly the
first two modes of vibration.

Remarks

One can improve the agreement between experimental
and computed results by incorporating more terms
involving different relaxation times on the right-hand
side of the constitutive relation (8) for the viscoelastic
layer. The consideration of each additional relaxation
time will add an equation like (20) and thus increase the
computational effort required to analyze the problem.
One can economize on the computational effort by
integrating Equation (20) only at the centroid of an
element thereby tacitly assuming that 'lap is uniform
over the element. This approximation is quite reason-
able for a fine mesh. This generalization, though straight
forward, has not been implemented in the code yet.
Another extension of the work is to incorporate the
effect of heat produced by electric and viscous dissipa-
tion on the temperature rise and the dependence of
material moduli upon the temperature. These effects will
be reported in a future study.
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