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ADDENDUM TO «A THEOREM IN THE THEORY

OF INCOMPRESSIBLE NA VIER-STOKE,S-F'QURIER FLillDS»

R. O. BATRA (*)

Nota presentata dal m. B. (llifford Truesdell
(AdunaJlza del 21 febbraio 1974)

SUNTO. - Riprendendo la eonsiderazione dei tre fluidi coi quali mi occu-
pavo nel mio lavoro precedente, nel caBo di un vaso totalmente riempito da un
fluido, deduco varie limitazioni alIa velocita della dissipazione dell 'energia. Di-
mostro aJlche cihe I 'energia di un corpo rigido, che e conduttore non-lineare del
calore, e stazionaria e tende (nella norma Y) esponenrialmente verso il suo va-
lore nell 'equilibrio.

In this note I obtain estimates of the rate of decay of the e:nergy
for each of the three fluids considered in [lJ for the case vvhen the
vessel is completely filled vvith the fluid. I also shovv that for a non-
linear heat conductor, the energy ap'proaches exponentially, in I?-norm,
its value in the equilibrium configuration M time t ~ 00. To avoid
repetition, I use the notations and the analysis of [1]. The equation
numbers re.fer 110 the equations of [1].

5. . v = 0 on aR.

A&Sume that the vessel is completely filled with the fluid and that
the fluid is homogeneous. Thus the density is unif<mn throughout the
fluid and, because of the assumption of incompressibility, it has the
same value ()() for all times. For thi.. case, by Reynolds Transport
Theorem [2, p. 15]

d . d .
~j e.QdV

X(R,t)

(28) = o.eo ~ j .Q d V

X(R.t)

(*) Department of Engineering M~anies, University of Missouri, Rolla,
Mo. 65401.
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Here I have used the a.ssumption that .Q is a function of x only.
Equation (28) stat~ that the potential energy of the fluid remains
constant. For an inhomogeneous fluid, equation (28) need not hold.
Thus for a homogeneous, incompressible Navier-Stoke&-Fourier fluid,
we obtain the following from the equation (21) .

eo)! d V - 2 (f1, dij dij d V(29) E :s - qa r (0

where

E(t);== [[K(9-9o)l+eoV'V]dV

Using the inequalities

K CO - 00)2 d V\ J Km (0 00)2 d V ~

(30)
fLdij dij dV ~

Cs

qi eo .

I strengthen (29) to read

.sJf),'31 \ E~

where

Km

.8 mm

To obtain (30), I used (12)3 and (.13) and assumed that Km is finite
An integration of (31) results in

E (t) ~ E (0) e-pt(32)

This gives the rate of decay of the energy E for a Navier-Stokes-

Fourier fluid. Note that II' depends upon the shear viscosity, the

density, the specific heat, the thermal conductivity of the fluid 8Jld
the shape 8Jld the size of the v~l.

L"
So far I have shown that fJ -+ ()o as t -+ 00. That this also implies
L"

e(O) -+ e«()o) as t -+ 00 provided the specific heat is bounded above
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by C, follows from the inequality

18 (0) - 8 (00)1 s: c to
£Jol

which is a version of the Mean- Value Theorem.
Sometimes the thermomechanical deformations of an incompres-

sible Navier-Stokes-Fourier fluid are assumed to be governed by the
Boussinesq equations. The Boussinesq equations account for the buo-
yancy force but neglect the effect of the viscous dissipation in the
energy equation. Joseph (3] has studied extensively the stability of a
solution of these equations and from his more general results, one can
obtain an estimate of the type (32) for the presen,t problem.

For homogeneous Reiner-Rivlin fluids, when aiR = aR and the
inequalities (24) hold, I obtain

(34) E{ (t) :$: E{ (0) e-(2a/qleo)t

where

(34) gives the rate of decay of the kinetic energy in a purely mechan-
ical problem for homogeneous Reiner-Rivlin fluids. For 'homogeneous
incompr~ible fluids of seCOiIld grade, the equation (25), in view of
(26) and (28), becomes

(35) E2 (t) :::

.!.!!-
2

v . v + lXi tr dE] d VJJJ2 (t) ==

Recalling (30b and (26)2, I have

r ]j]2 (t)E2 (t) ~

and hence

(36) E2 (t) .s E2 (0) e-yt
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where

Y. == mm

The equation (36) gives the rate of decay of the kinetic energy and
the V~oUB dissipation for a homogeneous incompressible fluid of
second grade.

It seems worth me:nti()ning that the analysis for the thermo-
mechanical problem given in detail for Navier-Stokes-F()urier fluids
can easily be carried ()ver to heat conducting Reiner-Rivlin fluids and
heat conducting incompressible fluids of secood grade. Als() the requi-
rement (12)4 can be relaxed t() the weaker condition

(37) 00 f * 0,; 0,; d V ~ const. f 0,; 0,; d V

without affooting the analysis.

6. - Non-Linear Heat Conductor.

For a stationa,ry, rigid, inhomogeneous and anisotropic nonlinear
heat conductor, the only relevant balance law is the energy equation

(38) E qi,i

In (38), for the sake of simplicity, I have taken the source term to
be z~ro. Assume that for the heat conductor

(39)

e (X,t) = e (O,O,i,X),

q(X,t) = q(O,O,i,X),

'IJ (X,t) = 'IJ (O.,O,i,X),

where 1] is the specific entropy. Substitution of (39)1.2 into (38) gives
an equation for tile detennination of the temperature (J. If we require
that every solution of (38) and (39.)1.2 satisfy the Clausius-Duhem

inequality
ql
(J1]+ :::: 0,

we obtain [4J
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s (X , t)

rJ (X , t)

dB = R

e (0, X) ,

1] (0 , X)

J1]
(40) Je -J8'

q(X,t) = q(O,fJ,i,X),

qi fJ ,i :s; O.

In what follows I shall take (40)1,2,4 aB the co'nstitutive relations for
E, f} and q and assume that q satisfies the inequality

r -~ ~ v ~ ki r 8, i 8, i d V(41)
(}2

where k1 is a positive constant. If q is given by (2)3, then (41) is equi-
valent to (37).

Pl'OOeeding as I did in seciion 3 for the thermomechanical pro-
blem, I now obtain instead of (21) the following

H;s(42) ')H

where

H(t) K (8 (. , t) - 8o)! d V

and

lJ

oocording as the alternative «(1,) or (b) in (12)6 holds, Here Km
c (8, X) d I K . f ' ,= SUP 8 an aMume m 18 mIte.

II,!
Note that one C8J1 obtain (42) from (29) by setting v == 0 .
Jln integration of (42) gives

H (t) :s H (0) e-~t(43)

It follows from (33), (12)4 8Jld (43) that

02

C&
e(Oo) 12 dV ~ H (0) e-dt,
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Hence for a non-linear heat conductor, a weak solution of (38) and
(40h.4, under the boundary conditions (10)3.4 e:x:hibits thEl behaviour

,,"

9 -+ 00 exponentially as t ~ 00
(44)

( B (0) ~ t: (00) exponentially as t ~ 00

prOlVided (1.2k, (41), (12)6, and

c (0, X)
0

c (0, X) ~ 0 and ~ Km,

hold. I obtained a similar result for a linear heat conductor in [5].
Note that () in (43) depends upon the shape of the body 8AIld OIl the
bounds of b, the s~ific heat and the thermal conductivity.
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