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ADDENDUM TO «A THEOREM IN THE THEORY
OF INCOMPRESSIBLE NAVIER-STOKES-FOURIER FLUIDS »

R. C. BaTra (*)

Nota presentata dal m.s. Clifford Truesdell
(Adunanza del 21 febbraio 1974)

SunTo. — Riprendendo la considerazione dei tre fluidi coi quali mi oceu-
pavo nel mio lavoro precedente, nel caso di un vaso totalmente riempito da un
fluido, deduco varie limitazioni alla velocitd della dissipazione dell’energia. Di-
mostro anche che 1’energia di un corpo rigido, che & conduttore non-lineare del
calore, & stazionaria e tende (nella norma L?) esponenzialmente verso il suo va-
lore nell’equilibrio.

In this note I obtain estimates of the rate of decay of the energy
for each of the three fluids considered in [1] for the case when the
vessel is completely filled with the fluid. I also show that for a non-
linear heat conductor, the energy approaches exponentially, in I7-norm,
its value in the equilibrium configuration as time ¢—s . To avoid
repetition, I use the notations and the analysis of [1]. The equation
numbers refer to the equations of [1].

5. - v=o0 on JR.

Assume that the vessel is ecompletely filled with the fluid and that
the fluid is homogeneous. Thus the density is uniform throughout the
fluid and, because of the assumption of incompressibility, it has the
same value go for all times. For this case, by Reynolds Transport
Theorem [2, p. 13]

] ~ k] ~

(28) 717{_/ 0 Qdv QOEdeV—_—O.
ARt X(R,t)
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Here I have used the assumption that £ is a function of x only.
Equation (28) states that the potential energy of the fluid remains
constant. For an inhomogeneous fluid, equation (28) need not hold.
Thus for a homogeneous, incompressible Navier-Stokes-Fourier fluid,
we obtain the following from the equation (21) .

(29) B < —4qs {(9 6,)2dV — 2 {,udijdijdv
where
B(t) = f[K(e—eo)=+gov-v]dV

Using the inequalities

H Ea(® 6ydV= | K@©—0) av
(30)

‘ ¢ ' ,
’ diidi; AV = s | 0oV -V dl
’ e q1 Qo .

I strengthen (29) to read
‘]1) E < BE,

where

. { 43 g
ﬁ min ‘1 /\',‘ ' iy Og ;

To obtain (30), I used (12); and (13) and assumed that K, is finite
An integration of (31) results in '

(32) B(@t) < B (0)e#ft

This gives the rate of decay of the energy E for a Navier-Stokes-
Fourier fluid. Note that § depends upon the shear viscosity, the
density, the specific heat, the thermal conductivity of the fluid and
the shape and the size of the vessel. '

So far I have shown that 8 — 6, as t — . That this also implies

e(@) — £(0y) as t—» o0 provided the specific heat is bounded above
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by C, follows from the inequality
e(0) —e(0)] = Cl6 6,

which is a version of the Mean-Value Theorem.

Sometimes the thermomechanical deformations of an incompres-
sible Navier-Stokes-Fourier fluid are assumed to be governed by the
Boussinesq equations. The Boussinesq equations account for the buo-
yancy force but neglect the effect of the viscous dissipation in the
energy equation. Joseph [3] has studied extensively the stability of a
solution of these equations and from his more general results, one can
obtain an estimate of the type (32) for the present problem.

For homogeneous Reiner-Rivlin fluids, when 9;R = 0R and the
inequalities (24) hold, I obtain

(34) B, (t) < E, (0) e—ofawot

where

F,of QL / v-ovdl.

(34) gives the rate of decay of the kinetic energy in a purely mechan-
ical problem for homogeneous Reiner-Rivlin fluids. For homogeneous
incompressible fluids of second grade, the equation (25), in view of
(26) and (28), becomes '

(35) _E.z (t) = 2 ‘ fe it a:dl ,

B, () = —%’—v-v—l— a,tnp] av

Recalling (30); and (26)s, I have
B,@® = yBQ
and hence

(36) By (t) < B, (0) e—rt
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where
Loy Oy ! "/:(7‘

The equation (36) gives the rate of decay of the kinetic energy and
the viscous dissipation for a homogeneous incompressible fluid of
second grade.

It seems worth mentioning that the analysis for the thermo-
mechanical problem given in detail for Navier-Stokes-Fourier fluids
can easily be carried over to heat condueting Reiner-Rivlin fluids and
heat conducting incompressible fluids of second grade. Also the requi-
rement (12), can be relaxed to the weaker condition

k
(87) 9‘,[ o 0,:0:dV = const./ 6, 6,1 4V

without affecting the analysis.

6. - Non-Linear Heat Conductor.

For a stationary, rigid, inhomogeneous and anisotropic nonlinear
heat conductor, the only relevant balance law is the energy equation

(38) & isi

In (38), for the sake of simplicity, I have taken the source'term to
be zero. Assume that for the heat eonductor

g e (X,t)y=1¢(0,0,:,X),
(39) (q(x,t)=q(9,6,i,X),

n (X, =19(0,0,;,X),
where 7 is the specific entropy. Substitution of (39);2 into (38) gives
an equation for the determination of the temperature 6. If we require

that every solution of (38) and (39),» satisfy the Clausius-Duhem
inequality

b+ (L) =0,
we obtain [4]
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| e(xvt) s(eix):
\n(x,o 70, X)

;-de o9y

(40) 36 ° 30
q(x)t).= q(evevivx)v
| i 6,i < 0.

In what follows I shall take (40)124 as the constitutive relations for
g, n and q and assume that g satisfies the inequality

(41) [Q‘G—‘z"qukife,ie,idv

where %, is a positive constant. If g is given by (2);, then (41) is equi-
valent to (37).

Proceeding as 1 did in seetion 3 for the thermomechanical pro-
blem, I now obtain instead of (21) the following

(42) H< 6H
where
H(@t) | KO, H—6)ydV

and
iy 4y
K Km0, It 1 Hlx 5,

according as the alternative (@) or (b) in (12)¢ holds. Here Ky

su c(0,X)

o,)? 6
Note that one can obtain (42) from (29) by setting v = © .
An integration of (42) gives '

and I assume K, is finite.

(43) H(t) < H(0)e %
It follows from (33), (12), and (43) that

2
f H (0) e,

[1:0) e@P av <
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Hence for a non-linear heat conductor, a weak solution of (38) and
(40)1,2, under the boundary conditions (10)34 exhibits the behaviour

‘ I
s 8 — 0, exponentially as ¢ — o
(44)

2 e(0) » £(6,) exponentially as ¢ — o

provided (12),, (41), (12)s, and

c(0,X) = C and < Kn,

¢(6,X)
0 .

hold. I obtained a similar result for a linear heat conduector in [5].
Note that § in (43) depends upon the shape of the body and on the
bounds of b, the specific heat and the thermal conduectivity.

Acknowledgement: This work was supported by the National Research Coun-
cil of Canada through Grant No. A4363.

REFERENCES

[1] Batea R. C, A Theorem in the Theory of Incompressible Navier-Stokes-
Fourier Fluids. Istituto Lombardo (Rend. Se.), A 107, 699-714, 1973,

[2] TroMPsON P. A., Compressible-Fluid Dynamics. McGraw-Hill Book Company,
New York ete. 1972.

[38] JosEpr D. D., On the Stability of the Boussinesq Equations. Arch. Rat’l
Mech. Anal., 20, 59-71, 1965.

[4] TrusspELL C., 4 First Course in Rational Continuum Mechanics (in press).

{57 Batea R. C,, On the Fading Memory of Initial Conditions. Quart. Appl. Math.,
31 2A7-371. 1973.



