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1. Introduction

Shear instabilities in the form of localized narrow bands are often observed in metals
deformed at high strain rates. Zener and Hollomon [1] observed 32.urn wide shear bands during

the punching of a hole in a steel plate. They added that the heating caused by the plastic deforma.

tion of the material made it softer and the material became unstable when this thermal" softening

equalled the combined effects of strain and strain-rate hardening. Recht [2] used this criterion,

i.e., the instability occurs at the peak in the stress-strain curve, to derive values of strain rate
necessary to produce shear strain localization and compared these values for different materials.
Recht neglected the effect of strain-rate hardening. Staker [3] used the same instability criterion
and included the dependence of the flow stress upon strain rate. Assuming parabolic strain and
strain-rate hardening laws, he concluded that important material parameters are the specific heat,
slope of the temperature dependence of the flow stress, and parameters indicating the strain
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hardening capacity of the material. The thermal conductivity, yield strength, and strain-rate sen-

sitivity do not enter in as a first order effect.

Instead of presuming that the material becomes unstable at a stress maximum, Clifton [4]

for quasistatic deformations, and Bai [5] for dynamic deformations studied the growth of in-

finitesimal periodic perturbations superimposed on a body deformed by a finite amount in simple

shear. They used a classical, linear perturbation analysis in which the coefficients in the linear

differential equations for the perturbations were taken to be constants. Molinari [6] and Fressen-

geas and Molinari [7] have developed a relative linear perturbation analysis that accounts, in part,

for the nonsteadiness of the homogeneous solution by linearizing in the relative perturbation

defined as the perturbation divided by the corresponding unperturbed quantity. Anand et. al. [8]

have generalized the linear perturbation analysis of Clifton [4] and Bai [5] for one-dimensional

problems to three- dimensional problems.

Wright and Walter [9] recently used the linear perturbation analysis in which the coeffi-

cients in the linear differential equations for the perturbations are taken to be functions of time.
Here we generalize their results to dipolar materials and confirm the result indicated earlier by
numerical experiments of Wright and Batra [10], and Batra [11], and Batra and Kim [12] that the

consideration of dipolar effects tends to stabilize the infinitesimal perturbations of the homoge-

neous solution. We should add that the stability criteria obtained to date, including the present

one, do not give an idea of the time when the severe localization of the deformation will begin.

2. Governing Equations and Their Homogeneous Solution

In terms of non-dimensional variables, equations governing the thermomechanical deforma-

tions of a visco plastic block undergoing simple shearing and overall adiabatic deformations are

(e.g., see Batra and Kim [12])

O<y<l,P Ii = (s - I a 'y ) , y

O<v<l8=kfJ +sy+10'ii'yy

il=v,yy=V'y'
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1 12 2 .2 2.2 m(S + (1 )2 = (1 - a () ) [1 + b (y + 1 d )2] ,

SV, = v, all.
yy y

These equations for dipolar materials reduce to those for nonpolar materials when 1 is set

equal to zero. Equations (2.1) and (2.2) express, respectively, the balance of linear momentum

and the balance of internal energy. Equations (2.3)1 and (2.3)2 define the plastic strain rate yand

its gradient if in terms of the spatial derivatives of the velocity v of a material particle in the

direction of shearing. Equation (2.4) is the kinetic relation between the shear stress s, the dipolar

stress a, the temperature rise 0, the coefficient of thermal softening a, and the material charac-

teristic length 1. The parameter b equals the characteristic time for the material, and the parame-

ter m signifies the strain-rate sensitivity of the material. Elastic deformations have been neglected,

and all of the plastic working given by (s y + 1 a it) has been assumed to be converted into heat. In

equation (2.1) through (2.5), p is the constant mass density, k is the constant thermal conductivity,

a superimposed dot indicates the material timc derivative, and a comma followed by y signifies

partial differentiation with respect to y.

We presume that overall deformations of the block are adiabatic, the lower surface is at

rest, and the upper surface is assigned a constant velocity of 1.0. Thus

(), (0, t) = 0, (), (1, t) = 0, v (0, t) = 0, v (1, t) = 1, 0' (0, t) = 0, 0' (1, t) = O.

y y

The boundary conditions {2.6)5 and {2.6)6 can be motivated as follows. Assuming that a
material defect or inhomogeneity is located near the center y = 0 of the block, sharp gradients of

the deformation occur only in a small neighborhood of y = O. Therefore, v, yy equals essentially

zero at y = :t; 1. A numerical solution of the problem on the domain - 1 Sy S 1 with boundary

conditions 0' (:t; 1, t) = 0 revealed that 0' (0, t) = O. Here we study the problem on the domain

0 s y S 1 and thus take {2.6)5 and (2.6)6 as the boundary conditions for 0'.

When the initial conditions are uniform, i.e.,

v (y, 0) = y, (J (y, 0) = 0

equations (2.1)-(2.6) have the following simple homogeneous solution
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v = y S - r -ft
, --ea '

-rt
), a=o,

mwhere r = a (1 + b) . Note that for the homogeneous solution, a = v'}y = 0, and the dipolar ef-

fects make no contribution. The solution (2.8) is the same as that given by Wright and Walter [9],
who analyzed shear bands in simple (or nonpolar) materials.

3. Linear Perturbation Analysis

We now assume that the initial temperature is nonuniform, and is given by

1
6 (y,0) = E 11'0 (y), where f 11'0 (y) dy = 1

0

That is, the initial temperature is nearly equal to the reference temperature, and its average

defines a small positive number t. We assume that the solution of (2.1) through (2.6) is of the form

-
S=SH+ES+ , ()=()H+£()+.."

-
v=vH+ev+ ., a=aH+ea+

where sn, On, vn and an are given by (2.8) where the subscript H is not indicated, and E is a small

parameter defined by the initial temperature distribution (3.1). We recall that numerical experi-

ments (e.g., see Batra and Kim [12Vindicate that s and a are uniform in y to a high degree of

approximation unless the nominal strain rate is very large. Accordingly, we neglect the inertia

term in the equations of first variation, written below without tildes.

(3.3)O=(s-la,y)'y'

Ll - k Ll l+m r!7 , t - !7, yy + m- S + ffl e, (3.4)

'3.5)
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v - a rt
, --e 0' /1yy r '

where in" = mb/(l + b). Note that these equations lose validity for large times. The pertinent

boundary and initial conditions are

(J , y (0, t) = (J , y (1, t) = 0,v (0, t) = v (1, t) = 0,

C1 (0, t) = C1 (1, t) = 0, () (y, O) = tfo (y)

Integration of (3.5) with respect to y from 0 to 1 and the use of the boundary conditions (3.7)1 and

(3.7}z gives

Integrating (3.3) twice and using the boundary conditions (3.7)5 and (3.7)6 we obtain

1
S - 10', = f (t) , and f sdy = f (t).

y 0

Now integrate (3.4) and use (3.8) to obtain

Hence

-rt-rl , andf(t) = - re

where the last relation follows from (3.11)1' (3.8), and (3.9). Differentiating (3.5) with respect to y,

and substituting for v'Y:)' into (3.6), we obtain

(3.12)Ia = = (s, + r fJ, ).
m y y
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Numerical results (e.g., see Batra and Kim [12] indicate that for small time t,
< < r I °'Y I. Since we are interested in only small times, therefore, we approximate (3.12)

Isoy

by

lr
(1 = m8,y (3.13)

Substitution for f (t) from (3.11) and for C1 from (3.13) into (3.9)1 and the resulting expres-

sion for s into (3.4), yields

+Ie- r l+m -ft
m -=-em .0" = k O'yy

where

k=k+~lr
-2

m
(3.15)

With the decomposition

(fIlm)(J = e (tp (y, t) + If (t),

equation (3.14) may be split into the following two simpler equations

ill = - r 1 + in - r (1 + l/in' 1T 'I -=- e ' ".)

m
1/"1 = k 1/"yy'

The appropriate choices for initial and boundary conditions are

(3.17)tp, (0, t) = tp, (1, t) = 0,

y y

1/' (y, 0) = 1/'0 (y), If (0) = 0

The solution (3.16) and (3.17) is

- r [(1 + m)Im) t
-1,If (t) = e
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and an and can chosen to satisfy the initial conditions. Substitution for 6 into (3.13), and then

using (3:11)2 and (3.9)1' we obtain the following solution of (3.3)-(3.7) which is exact to first order

tnE.

2
+ 0 (e ),

-rtr
s=a(l-ae)e

1 r rtlm
+effie 1/"}'y

I r r 11m

a=£-=-em
?

~3.19)\lI,y + 0 (e-),

2(1 + 11m) + 0 (e ).

film- rt-1() = - [1 - (1 - a e) e
a

+ ee

Thus to first order in e, the consideration of dipolar effects does not influence the evolution of 8,

but does affect the evolution of s, G, and v'Y. The solution variables s, G, v'Y and 8 will grow because

of the positive exponential term.

The nth Fourier component of s, a, v'Y and (J in (3.19) will decay initially if

1+4)r<
(3.20)

m For metals, m < < 1 and (1 + 11m) ~ 11m.where m = mb/(l + b) and r = a (1 + b)

Thus (3.20) becomes

(3.21)

Since the material characteristic length 1 appears on the right-hand side of (3.21), it is clear
that the consideration of dipolar effects has a stabilizing effect on the perturbations. For 1 = 0, the

result (3.21) reduces to that obtained by Wright and Walter [9] for nonpolar materials, as it

should. In dimensional terms, (3.21) becomes
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m+2-m+l
(3.22)< (7ajm + -==-1 + jj Yo)

2 2
a "0) n Jr

1

where the dimensional quantities are indicated by a superimposed bar, Yo is the average strain-

rate, 2H equals the height of the block (or the gauge length) and /Co is the yield stress in a

quasi static reference simple shear test. For nonpolar materials (i.e., I = ~ one can conclude from

equation (3.22) that increase in strength /Co' thermal softening coefficient a, slab height H, or the

nominal strain-rate Yo tend to be destabilizing; and an increase in thermal conductivity K tends to

be stabilizing. For dipolar materials, increase in the thermal conductivity and the material charac-

teristic length are stabilizing and the increase in the slab height is destabilizing. Other parameters

appears on both sides on eqn. (3.22).

With n = 1 the inequality (3.22) gives a criterion for absolute stability which may be used to

determine the threshold value of r 0 below which all Fourier components decay.

4. Conclusions

We have analyzed the stability of the homogeneous solution of equations governing the

simple shearing deformations of a thermally softening viscoplastic block. The approximations,

suggested by the prior numerical solutions of such problems, are that for small times, the flux of

linear momentum is essentially uniform in the spatial variable, and I Soy I < < r I (Joy I where r is

defined in terms of the material variables.it is found that the increase in,the thermal conductivity

and the material characteristic length has a stabilizing effect, and the increase in the slab height

has a destabilizing effect on small perturbations superimposed on the homogeneous solution. The

specific heat does not appear in the stability criterion (3.22)
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