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Abstract: The authors study the dispersive nature of propagating extensional waves in an infinitely long elastic
rod within the framework of the linear theory of a Cosserat rod with two directors. The authors also identify
certain material constants in the theory in a manner that is different from those used by others and consequently
show that the resulting theory better captures the high-frequency dynamical behavior of three-dimensional

rod-like bodies.

1. INTRODUCTION

Wavepropagation in lineaI1y elastic rods has been studied extensively. Several authors have
attempted to construct approximate one-dimensional theories in which the governing equa-
tions depend on one spatial variable only. Green [1] has reviewed most of the developments
before 1960; many of the theories included in [1] are developed in a somewhat ad hoc man-
ner. A systematic treatment of a theory of rods using the concept of a Cosserat (or directed)
curve was initiated in the late 1960s; we mention the work of Green and Laws [2]; Cohen
[3]; Green, Laws, and Naghdi [4, 5]; and Green, Naghdi, and Wenner [6, 7]. The purely
kinematical aspects of directed rods were considered earlier by Ericksen and Truesdell
[8]. Naghdi [9] has presented a comprehensive account of the nonlinear theory of Cosserat
curves and its applicability as a model for three-dimensional rod-like bodies. In the context
of directed theories of rods, few articles have addressed wave propagation in quantitative
detail; some exceptions the papers by Antman and Liu [10], Cohen and Whitman [11], and
being Green et al. [4]. Here, we essentially follow the developments contained in [4, 7].

We present a detailed study of wave propagation in the linear extensional theory of an
infinitely long, elastic Cosserat rod. In particular, we discuss the dispersive nature of such
waves and examine the limiting values of phase speeds for low and high frequencies. We
recall that the classical one-dimensional theory of rods predicts only one nondispersive
wave speed and does not account for thickness (or lateral) modes of deformation, let alone
coupling between these and longitudinal modes that exists in a three-dimensional rod-like
body. The importance of thickness modes of deformation for quasi-static contact problems
has been addressed by Naghdi and Rubin [12] and, more recently, for dynamical problems
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by Nordenholz and O'Reilly [13]. These modes are also important in high-frequency dy-
namical problems, and this point has been emphasized for plates by Kane and Mindlin [14].

For linear extensional motions of Cosserat rods, all of the constitutive parameters
entering the theory have been identified by Green et al. [6] and Green and Naghdi [15] by
comparing certain exact solutions in the three-dimensional equilibrium theory of linear
elasticity with those obtained from the rod theory. Consequently, the constitutive equations
are accurate in the low-frequency regime and may not model high-frequency behavior well.
We show here that this is indeed the case and propose that for high-frequency motions,
the constitutive parameters be identified by comparing solutions from the two dynamical
theories. This procedure forces the Cosserat theory to better mimic the high-frequency
behavior of three-dimensional rod-like bodies. Thus, we extend the range of applicability
of the Cosserat theory to the high-frequency regime by using values for some of the
material constants that are different from those given in [6, 15].

This article is organized as follows. In Section 2, after a brief background on the
nonlinear theory of a Cosserat curve, equations relevant to the linear extensional theory
are presented. Section 3 discusses the dispersive behavior of extensional waves in infinite
rods, examines the low- and high-frequency limits of wave speeds, and presents a procedure
to identify one of the constitutive parameters. In Section 4, the frequency of pure thickness
oscillation is used to obtain new values of certain other material constants. In Section 5,
the group speeds associated with various branches of the frequency spectrum are studied.

2. BACKGROUND INFORMATION AND BASIC EQUATIONS

We recall that a Cosserat curve C is a material curve £: embedded in a three-dimensional
Euclidean space, to each point of which is attached deformable vector fields called direc-
tors. We confine attention to the case when only two directors are attached to each point
of £:. Let the material points of £: be identified by the convected coordinate ~ . The motion
of C is specified by the following three sufficiently smooth vector functions that assign a
position r and a pair of directors da (a = 1,2)1 to material points of £: at time t:

dar=f(~,t), da(~, I), [dt,d2,d3] > 0, (1

where d3 = or / o~, and [ " " .] denotes the scalar triple product.

The velocity v of a material point and the velocities Wa of the directors are defined by

Wa = da, (2)v r.

where a superposed dot indicates material time differentiation. In a fixed reference config-
uration of C, we denote the position vector and directors by R and Da, respectively. Thus,

R = R(~) i>a(~)'Da [D1, D2. D3] > 0, (3)

where Dl = aR/at.,
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The local field equations governing the motion of C are (see [9]):

0,).

an- + Af = A(v + yawa)'
a~

ama

a~
+ Ala - ka = A(yav + yaPwp),

ada
a~

d3 x n + da x ka + x ma = o. (4.4)

Equations (4.1), (4.2), (4.3), and (4.4) represent the conservation of mass and balances
of linear momentum, director momenta, and moment of momentum, respectively. In these
equations, D is the contact force, ma are the contact director forces, ka are the intrinsic
director forces, f is the assigned force, and la are the assigned director forces, all of which
depend on (~, f). Also, A = p(d3 . d3)1/2, where p = p(~, t) is the mass density per unit

length of.c in the present configuration, and the quantities ya and yap are inertia coefficients
that are independent of time. We note that the theory is complete only when the quantities
D, ma, and ka are specified constitutively; we will discuss below the constitutive theory
in the context of linear extensional deformations.

We recall that the field equations (4.1) through (4.4) may be derived from the three-
dimensional balance laws of continuum mechanics under the assumption that the position
r* of a material point is a linear function of the convected coordinates (}a defining the
cross-section of the rod:

r*«(Ja,~, t) = r(~, t) + (Jada(~, f). (5)

The kinetical quantities D, ma, and ka may be identified as weighted integrals of appropri-
ate traction vectors of the three-dimensional theory. The quantities ya, yap, and A can also
be identified with certain weighted integrals (see [6, 9]). We now discuss the linear theory
of an elastic rod that is straight in its reference configuration. Let the rod be referred to a
fixed system of Cartesian coordinates (x, y, z) with associated orthonormal basis vectors
{el, e2, e3}; let the origin be located at the center of the rod and the z-axis directed to the
right so that the vector e3 is along the rod. We note that in the linear theory, the convected
coordinate ~ may be taken to coincide with the Cartesian coordinate z, and the coordinates
(x, y) are used to describe the cross-section of the rod. The directors d 1 and d2 represent
material fibers that in the reference configuration are parallel to el and e2, respectively.
The displacement vector u and director displacement vectors 6; are defined through

D;+6;,r = R + u, di (6)



280 S. KRISHNASWAMY and R. C. BATRA

where R = ze3 and Dj = ej. Equations (5) and (6) imply that the three-dimensional
displacement u*(x, y, z, t) can be represented as

u*(x, y, z, t) = u(z, t) + x6\(z, t) + y62(z, t)

All vector and tensor quantities will be referred to the orthonormal basis {ej}; for example,
/;j = ~jjej and U = Ujej. Following [12], we define the linearized strain measures Yjj and

lCaj by

a8aiKai = az'
1 - -

Yij = 2(fJij + fJji),

We choose the material curve £: to be the line joining centroidal particles of the cross-
sections of the three-dimensional rod-like body; thus, the inertia coefficients ya vanish. In
the linear theory of a rod that is straight in its reference configuration and exhibits certain
material and geometrical symmetries (see [7]), the equations of motion separate into four
groups, and those describing extensional motions in the absence of f and la are2.3

an
az

=AU, (9)

oml
OZ

- k1 = AYl181

am2
aZ

- k2 = AY2282,

where A = Po is the reference mass density per unit length of'c, and4

m2 = m2 . e2,

82 = 8220 U = U3.

We supplement equations (9), (10), and (11) with the following constitutive equations (see
[2, 3, 12])5:

aun = as8] + a982 + a3az'

881 882ml = Cil°-:a; + CiI7-:a;' 801 802
m2 = (1;17- + (1;11-;-

8z uZ

;}1J au
k2 = a70] + a202 + a9~k1 = alOl + a702 + a8~'

In (12) through (14), the coefficients ai, az, a3, a7, as, a9, alO, all, andal7 are material
constants whose values will be determined later in this section and in Section 4. As will
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be verified subsequently, these constants satify the conditions a3 (aID + a17) # 0, as #
0, a2 + a7 # 0, and aID - al7 # O. We will study only the case when the strain energy
density and the kinetic energy of the rod are invariant under transformations in which dl
replaces d2 (and vice versa) and DI replaces D2 (and vice versa); for details, see [4]. This
invariance property requires that

CliO =ClIIYll = Y22, al {t2, as = a9,

Substitution from (12) through (15) into (9) through (11) results in the following three
second-order partial differential equations for u, 8\, and 82:

(18)

<Xg(O\,z + 02,J + <X3U,zz = AU,

<X\Oo\,zz + <X\702,zz - <X20\ - <X702 - <XgU,z = AY\\~\,

<X\70\,zz + <X\OO2,zz - <X70\ - <X202 - <XgU,z = AY\\~2'

where a comma followed by z indicates partial differentiation with respect to z. If we
further consider only those motions of the rod for which 111 = 112 = 11, for example, as we
might expect a uniform circular rod to deform under certain circumstances, then (17) and
(18) collapse into a single equation

- (CX2 + CX7)O - CXgU,z = AYl18, (19)(a\O + a\7)8.zz

and (16) becomes

2aso.z + a3U.zz = AU.

This special case of the present Cosserat theory is similar to Mindlin and Herrmann's [18]
theory for uniform straight circular rods.

3. WAVES IN AN INFINITE ROD

We express the equations of motion (16) through (18) in terms of director displacement
potentials <I> and '1/ , which satisfy

82 = <I> ,z - 'I/,zcSt = <I>,z + \I/,z'

For motions that are harmonic in time, we may express <1>, \1/, and u as

u(z)e-i(J)/cp(z)e-itJ>t, \I'(z, t) = 1/!(z)e-itJ>t u(z. t)<I>(z, t)

where w is the frequency of oscillation, and i = H.
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Substitution of (21) and (22) into (16), (17), and (18) results in

d2cp(a\O + a\7)";j;:2 + (a2 + a7 - AYW2)cp - agU = 0,

where y = Yll. Henceforth, Y will equal Yll rather than the y-coordinate of a material
point, as used in (7).

By eliminating the variable it from (24) and (25), we obtain the following fourth-order
ordinary differential equation for <p:

where

)"2 + )"2 - {2a~ - a3(a2 + a7 - AYW2) + Aw2(alO + a17)}
~2 ~3- a3(alO + a17)

Following [14], we express (26) as two distinct second-order ordinary differential

equations

d2cp3d2{n.,..2 2

~+~2~2=O,
~ + ~itp3 = 0,

where fP = fP2 + fP3. Also, we rewrite equation (23) in the form

d21/Jd"Z2 + (i1/J = 0,

where

~i = (a7 - a2 + AYW2)
(alO - a17) ,

Thus, the extensional equations (23) through (25) may be equivalently expressed elegantly
in terms of three potential functions !P2, !P3, and 1/1, which are governed by (29)1.2 and

(30).
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Finally, we note that the displacement u and director displacements 81 and 82 are given

by

d d ( + ) -jwtD'z!Pz D'3!P3 e ,

(32)

"1 = dZ(~2 + ~3 + 1/I)e-ifJ)t 82 = -(CP2 + CP3 - ,I')e-iwtdz 'I' u

where

a7) - (alO + aI7)?:JI/as, f3 = 2, 3,
Up

{(AYWZ - ctz

and (32)3 is obtained from (29)1.2 and (24).
Equations (29)1.2 and (30) facilitate the calculation of the three types of waves that

can propagate along the rod. We assume that

1/1 (z) = Aeikz CP2(Z) = Beikz 'P3(Z) = CeikZ

where k is the wave number and A, E, and C are constants. From (34) and (22), we see
that the potentials \Jj and <I> have the familiar propagating wave expressions

(B + C)ei(kZ-/iJt)Aei(kz-wt) , <I>\}1 (Z, t)

Substituting (34) into (29)1.2 and (30), we obtain the following three values for k:

~;ki

From (27), (28), (31), and (36), the wave (or phase) speeds Cl, C2, and C3 are computed to
be

1/22 P q 1 {( q )2 g
}Cl = "i + W - i" P + k2 - f - k2

1/2p q 1 {( q ) 2 g

}"i+w+i P+k2 -/-k2
2

C2

c~

where

a2 + a7

2y
(40)q

a3(alO + al?)

y
f= (41)
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All three wave speeds depend on the wave number; hence, the waves are dispersive. We
now investigate the short and long wavelength limits of the three wave speeds. In the
former case, the wave number k -+ 00 and the three limiting speeds are

aID + al?

AY

CX3

A
/)1/2

alO - al7

AY
(43)

whereas in the latter, k -+ 0, two of the limiting speeds are 00, and the only finite limiting
speed is given by

= ~ [ a3 - 2a2
8

a2 + a7

glimc2 =
k~O (44)

In the special case of the theory when 81 = 82 = 8, equations (19) and (20) may be
expressed in a fonD involving potentials; we do not record these but just write the frequency
equation in the fonD

- C2 ] [ ~ 2a2--!-
).2yk2

.2 o. (45)--(;

It is clear that the special case yields a two-mode theory, whereas the general case gives
a three-mode theory. The limiting values of the two phase speeds in the special case are
given by (42)1,2 for high frequencies. For low frequencies, one of the two limits is infinity,
and the second is given by (44).

We now discuss the specification of the material constants that enter the constitutive
equations (12) through (14). The constants ai, a2, a3. a7. as, and ag-identified by
Green et al. [6] by comparing exact equilibrium solutions from three-dimensional linear
elasticity with corresponding solutions in the Cosserat theory, are given by

EA(l v) EAva} = a2 = a3 = a7 = as = a9(1 + v)(l - 2v)' (I + v)(1 - 2v)'

where E is Young's modulus, v is Poisson's ratio, and A is the cross-sectional area of
the rod. The coefficients alO. all, and al? have been obtained using a similar procedure
(involving an orthotropic rod) by Green and Naghdi [15]. Their results, when specialized
to isotropic rods for which YII = Y22 = Y, yield

0,alO a17
EI

all = 2{~'

where I(=Ay) is the area moment of inertia of the cross-section. We note that for
-1 < v < 0.5, the values of the a's given in (46) and (47) satisfy the conditions noted
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following (14). If the three-dimensional rod has a uniform reference density P;. then
A = Po = p;A. and in view of (47h. the limiting phase speeds in (42h and (43) become
equal so that the high-frequency limits are

E(1 v).' 2 . ' 2
1m CI = 1m C3

k-oo k-oo

2
CS'

2
CD(1 + v)(l - 2v)p~

E

2(1 + v)p;

where Cs and CD are the speeds of propagation of shear and dilatational waves, respectively,
in an unbounded linear elastic body. The low-frequency limit (44) reduces to

E
p~

1. 2
Imclk-..O

2= Cn.

where Co is the speed of propagation of longitudinal waves in the classical one-dimensional
rod theory. The classical theory is a one-mode theory with nondispersive waves; it is a
reasonable model only for low-frequency waves in a slender three-dimensional rod-like
body. The Cosserat theory captures some limited but important three-dimensional ef-
fects; it predicts dispersion and accounts for coupling between longitudinal and thickness
modes of wave propagation while retaining the simplicity of being a one-dimensional

theory.
To ascertain the range of validity of the Cosserat theory, we now compare results with

the corresponding results from the three-dimensional theory. We first recall that in the lat-
ter, the Pochhammer-Chree frequency equation associated with torsionless axisymmetric
waves in a traction-free infinite circular cylinder is (see, e.g., Graff [19])

2a
-I
a

(f32(p2 +k1Ji (aa)Ji (Pa) k2)2 JO(aa)Jt(f3a) -4k2af3Jt(aa)Jo(f3a) = 0,

where a is the radius of the cylinder, a2 = W2 /c~ - k2, {32 = W2 /c~ - k2, and in is the

Bessel function of order n. In the low-frequency limit, the phase speed corresponding to
the first branch approaches Co. For high frequencies, the phase speed of the first branch
approaches the speed CR of Rayleigh waves in a traction-free elastic half-space, indicating
that high-frequency waves are confined to the lateral surface of the cylinder. This speed is
given by the real root 17 of the cubic equation

0,1]3 - 81]2 + (24 16X)17 - 16(1 - X)

where X = (1 - 2v)f(1 - v), and 1]

by the following (see [19, p. 326]):
C2 /C~. An approximate expression for CR is given
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Fig Variation of a10/EI with Poisson's ratio.

To improve the high-frequency prediction made by the Cosserat theory, we choose the
value of atO (while retaining at? = 0), so that the phase speed in (42h equals cR-that is,

~ 2 * ] 2""C¥IO = /l.YCR = Po CR- (53)

For dynamic problems involving a Cosserat rod, it is preferable to assign alO the value
(53) rather than (47);6 these two values of alO/ EI as a function of the Poisson ratio v are
plotted in Figure 1. The value (53) of alO improves the high-frequency behavior of the
first and third branches but is indifferent to the second since the latter has a limiting phase
speed given by (42h, which is independent ofalO'

It is now appropriate to compare our procedure with that advocated by Rubin [20]
and Naghdi and Rubin [21], although not in the context of elastic rods. Rubin's idea,
when adapted to rods, suggests that the match of the first high-frequency limit be achieved
by assigning a different value to the inertia coefficient y rather than by modifying the
material constant ala. This has the advantage of maintaining a match of static solutions
as well. However, once a value of y is thus fixed, there is no more freedom in the theory
to match the wave speeds of higher branches. The method proposed herein improves the
high-frequency limiting speeds of all three branches, but a match of static solutions is
lost.
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4. PURE THICKNESS OSCILLATIONS

For a circular rod, we observe that the limiting phase speed of the second branch is
Cs from the Pochhammer-Chree equation but is CD in the special case of the Cosserat
theory (see (45) and the paragraph following (45)). A similar situation arises in the theory
of [18], who comment that "this appears to be a defect in the present theory, but perhaps
judgement should be withheld until solutions for finite bars of very short length are studied
in detail" (p. 190). The Mindlin-Herrmann theory has been discussed by Graff [19], who
has remarked that the aforementioned defect cannot be corrected within the framework
of their theory. We now present a procedure within the framework of the Cosserat theory
that partially rectifies this defect. The procedure is motivated by a paper by Deresiewicz
and Mindlin [22], who discuss the determination of Timoshenko's shear coefficient in the
flexural vibrations of beams. While we cannot make the phase speed of the second branch
approach Cs in the high-frequency limit, we demonstrate that it can be improved from CD
to a value closer to Cs by an appropriate choice of the coefficient CX3.

We recall that Green et al. [7] and Green and Naghdi [15] have determined the consti-
tutive constants entering the Cosserat theory of rods on the basis of exact solutions in the
three-dimensional static theory of elasticity (i.e., at zero frequency): Hence, these values
are acceptable for dynamical problems in which the frequencies involved are small. How-
ever, as the frequencies become large, the frequency spectrum changes significantly at a
frequency W when the infinite rod undergoes pure thickness oscillations, that is, oscilla-
tions in the absence of longitudinal displacement of particles on the curve .c. It is therefore
desirable that the value W, as obtained from the Cosserat theory, match that predicted by
the three-dimensional theory. In the latter, a traction-free infinite circular cylinder under-
goes pure radial oscillations at this frequency. With this objective in mind, we calculate
the frequency of pure thickness oscillations in the two theories.

Consider the special case of the Cosserat theory governed by equations (19) and (20).
We set the longitudinal displacement u to be zero and observe that (20) then forces 8 to be
uniform in z. Consequently, 8 depends on time only, and (19) implies that it is governed
by the simple harmonic equation

8+ a2 + a78 0.

AY

Hence, the circular frequency of pure thickness oscillations is given by

a2 + a7

)..y
-2
W

In the three-dimensional theory, the equation governing pure radial oscillations of an
infinitely long circular cylinder of radius a is obtained by assuming that the displacement
u is of the form

u = U(r)eiiiJle..
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where r is the radial polar coordinate and er is the associated unit vector. Substituting (56)
into the equations of motion yields the one nontrivial equation

-2W

C~
r2U" + rU' + -1 u o.

where a prime denotes differentiation with respect to r. For a traction-free lateral sur-
face, the only nontrivial boundary condition to be satisfied is the vanishing of the radial
stress

p;c~U' +'t'rrlr=a =0. (58)

The solution of (57), which is bounded at r 0, is given by

-2
(IJ

~
/32VCr) AJo({3r),

The boundary condition (58) requires that

xJi(fJa) = fJaJO(fJa), (60)

whose roots yield frequencies of pure radial oscillations. By matching the frequency
generated from the second nonzero root with the expression (55), we determine a2 + a7.
The choice of the second root, rather than the first one, will be justified shortly. The
variation of a2 + a7, determined with v, is plotted in Figure 2. In the same figure, we also
plot a2 + a7, as determined by (46h.2' We note that for v = 0.29, the value of a2 + a7
from (46h.2 equals 1.846 EA but is 9.589 EA from the procedure just described.

We recall that the low-frequency limit (44) reduces to the Pochhammer-Chree pre-
diction when a2 and a7 are assigned the values (46)1.2. However, the new prescription for
a2 +a7 will affect this low-frequency limit; we now remedy this problem. Besides a2 +a7,
the phase speed in (44) depends on a3 and as. We now demand that (44) still reduce to
c5 = E j p~ with the new value of a2 + a7 by an appropriate choice of either a3 or as. There

is a compelling reason to modify a3 because if we retain a3 as in (46h, the high-frequency
limiting speed (42h of the second branch in the special case of the Cosserat theory reduces
to CD (see (48h), while the Pochhammer-Chree equation predicts a limiting speed Cs. This
defect was mentioned above. So, we retain as as in (46h, use the new value of a2 + a7, and
choose a3 so that the expression in (44) reduces to c5 = Ejp;. Fortunately, this choice
of a3 helps remedy the defect, as we shall see in the next paragraph. Figure 3 depicts the
variation of a3 thus obtained with v and also that of a3 computed from (46h. We note
that for v = 0.29, (46)1 and the present procedure respectively yield a3 = 1.060 EA and
a3 = 1.310 EA.

Our prescription of a3 first entailed a modification of a2 + a7; the value of the latter
is influenced by the roots of (60). Since a3 affects the phase speed of the second mode
of the special case of the Cosserat theory (see (42h), we match a2 + a7 from the second
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Fig. 2. Variation of «(12 + (17) / EA with Poisson's ratio v (a) for 0 ~ v ~ 0.4, and (b) for 0.4 ~ v ~ 0.49.

Fig. 3. Variation of CX3/ EA with Poisson's ratio v (a) for 0 ~ v ~ 0.4, and (b) for 0.4 ~ v ~ 0.49.
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Fig. 4. Variation of fX2/EA with Poisson's ratio v (a) for 0 ~ v ~ 0.4, and (b) for 0.4 ~ v ~ 0.49.

root of (60), which corresponds to the second branch of (50). This procedure does not
determine a2 and a7 separately. To accomplish this, we will need to seek solutions of
other three-dimensional dynamical problems and compare those with the solutions of the
corresponding problems in the Cosserat theory, in which the effects of a2 and a7 arise
independently. We do not pursue this here but remark that we may retain the value of
either a2 or a7 given in (46h,2 and use the present procedure to determine the other. The
dispersion relation (39) suggests that we should choose a7 from (46h. To see this, we first
stipulate that for all values of k, the wave speed in (39) be real. A condition sufficient to
ensure real wave speeds is that the strain energy density function be positive definite (see
[4]), and this implies that8

a2 - a7 :?:. O. (61

It can also be demonstrated that for C¥2, given by (46)1, C¥7 obtained by the present procedure
violates (61). Hence, we choose C¥7 as in (46h and determine C¥2 from the procedure
described just following (60). We plot in Figure 4 the variation of C¥2 thus determined with
v and compare it to the value in (46h.

We close this section with the observation that although we have compared the limiting
wave speeds of all branches of the Cosserat theory with those of the three-dimensional
theory, we have not addressed their modes of deformation. We note that equations (32h.2.3
may be used to calculate these modes.
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Fig. 5. Dispersion curves for the three branches.

S. DISPERSION: PHASE SPEEDS AND GROUP SPEEDS

For Poisson's ratio to equal 0.29, Figure 5 depicts the variation of the nondimensional
wave speed c = C / Co with the nondimensional wave number k = ka /27r for a circular rod
of radius a for each of the branches given by (37), (38), and (39), computed with the new
values of alO, a2, and a3 and also with their values given by (46) and (47).

The two dispersion curves do not differ significantly for v = 0.29. However, when the
new values of a10. a? and a~ differ noticeably from those given by (46) and (47). the two
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Fig. 6. Variation of nondimensional group speed with nondimensional wave number for three
branches.

dispersion curves might be further apart. From a theoretical viewpoint, the present values
are desirable as they approach the correct Pochhammer-Chree limits for both low and high
frequencies. Bancroft [24] and Davies [25] have discussed the exact dispersion curves.
Our results compare well with the analytical results for the two higher branches. For the
first mode, at intermediate frequencies, the present results are slightly worse possibly due
to the present choice of a2. We recall that we could only fix the sum a2 + a7, we then
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chose to retain C¥7 in (46)2 to determine C¥2' It may be more desirable to obtain C¥7 from the
exact solution of another dynamical problem.

In dispersive media, the group speed C g represents the speed of propagation of a wave
packet consisting of waves whose wavelengths are close to a certain fixed value. Also, it
is the speed at which energy is transmitted in such media. Recalling that

dc

dk'
Cg = C + k

we compute the group speeds for each of the three branches of the spectrum to be

Cgl = Cl + (a7 - av

AYClk2

(64)

We plot the variation of the nondimensional group speed C g = C g / Co with the nondimen-

sional wavenumber k = ka/27f in Figure 6 for the three branches (63) through (65); Davies
[25] plots the group speeds of the first two branches calculated from the Pochhammer-
Chree equation. Our result for the first branch agrees well with the exact result. However,
for a small range of low frequencies for the second branch, the Cosserat theory appears
to smear out the variation depicted in [25]. We suspect that it is also the case for the third
branch, although the exact Cg curve is not plotted in [25].

For noncircular geometries, exact results are intractable, while the Cosserat theory
is capable of generating explicit expressions for wave speeds as well as group speeds.
We recognize that the latter theory represents an approximation of the three-dimensional
behavior of rod-like bodies but does provide a powerful theoretical tool for the analysis
of wave propagation in such bodies.

NOTES

1. Unless stated otherwise, Greek subscripts and superscripts range from 1 to 2, and Latin ones range from
1 to 3.

2. The vanishing of rand lu corresponds to the absence of both body forces and tractions on the lateral
~ul-face in the three-dimensional rod-like bodv.
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3. For a discussion of invariance requirements under superposed rigid motions of a Cosserat rod undergoing
infinitesimal deformations, the reader is referred to Green, Naghdi, and Wenner [7] and O'Reilly and
Thrcotte [16].

4. When Cartesian coordinates are used, no distinction need be made between superscripts and subscripts,
and repeated subscripts imply summation over the range of indices.

5. A recent paper by Green and Naghdi [17] contains several illuminating remarks on constitutive coefficients
for elastic rods and shells.

6. The situation here is similar to a corresponding situation in the shear deformation theory of plate bending,
in which Reissner's shear correction factor is 5/6, whereas Mindlin's is 1£2/12.

7. In a recent paper, Rubin [23] presents a different procedure to identify a material constant in the context
of the linear flexural theory of Cosserat rods. Once again, this procedure is based on a comparison with
static three-dimensional solutions.

8. In the notation of Green, Laws, and Naghdi [4]. we only need consider an isothermal deformation in
which Yll = -Y22, Yij = 0 (i ,= j) and Kai = 0 to obtain this result.
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