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In a previous paper on infinitesimal waves in an infinite elastic Cosserat rod [1], we
proposed values for various material parameters, hereafter referred to as KB2. These
parameters were determined by matching the response of the Cosserat rod with that of a
three-dimensional elastic cylinder. Subsequently, we have studied extensional vibrations
in rods of finite length [2]. For a small range of intermediate frequencies, it was found that
a slightly different set of parameters yielded more accurate results. This latter set referred
to as KB 1 is the same as KB2, except that (1;2 of KB 1 is computed with .8 being the first
nonzero root, rather than the second, of (1 - 2v)J1(.8a) = (1 - v).8aJo(.8a). Here, a is the

radius of the rod, v is Poisson's ratio, and In is the Bessel function of order n.
The phase and group speeds of the Pochhammer-Chree solution are commonly plotted

only for the first two or three modes. Figures 1 and 2 depict these speeds for the first nine
modes. We compare the dispersion curves (Figs. 3-8) and group speeds (Figs. 9-11) arising
from the Cosserat theory using KB 1 and KB2, with those from the Pochhammer-Chree
solution. In these figures, results for the Cosserat theory using material parameters GN,
given by Green and Naghdi, and reported in [1], are also included. The nondimensional
wave numbers k and k are defined by k =kaj21f and k =kajd, where k is the wave
number, and d is the first nonzero root of J1 (x) = 0 (see Onoe et al. [3]). Both the phase

speed C and group speed Cg are nondimensionalized by the classical bar wave speed Co and
are denoted by a superimposed hat. All plots have been generated for v = 0.29.

We discuss some of the salient features of these results. First, we note that all the qual-
itative features of the Pochhammer-Chree solution are captured by the Cosserat solution;
the only exception is that the Cosserat solution seems to smear out the rapid variation
of Cg for the two higher modes in a small range of low k. The low-frequency limit of
Pochhammer-Chree solution for the first mode is C = 1. The higher two modes have no
cutoff frequency. In the high-frequency limit, the phase speed of the first mode approaches
the Rayleigh wave speed CR, whereas the second mode tends to the shear wave speed cs.
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Fig. 1. Phase speed C versus wave number k: first nine modes of the Pochhammer-Chree solution.

Fig. 2. Group speed Cg versus wave number k: first nine modes of the Pochhammer-Chree solution.
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Fig. 3. Phase speed C versus wave number k: first mode.
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Fig. 4. Phase speed C versus wave number k: second mode.
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Fig. 5. Phase speed C versus wave number k: third mode.
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Fig. 6. Frequency w versus wave number k: first
mode.

Fig. 7. Frequency cO versus wave number if: sec-
ond mode.
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Fig. 8. Frequency w versus wave number k: third mode.

Fig. 9. Group speed Cg versus wave number k: first mode.

Fig. 10. Group speed Cg versus wave number k: second mode.
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Fig. 11. Group speed Cg versus wave number k: third mode.

The Cosserat solution with coefficients KB 1 has these correct limits, except that the high
frequency limit of the second mode is closer to the dilatational wave speed CD rather than
to cs. The ON coefficients predict a limit of CD. Coefficients KB2 pull this limit closer to
Cs; this was the main reason KB2 was used in [1]. However, an examination of the first
mode curves in Figures 3, 6, and 9 suggest that using KB2 compromises the first mode in-
termediate frequency behavior significantly. Moreover, the natural frequencies of all three
modes of finite-length rods of small length to radius ratio are approximated well when
KB 1 is used, and approximated poorly when KB2 is used. Based on the overall behavior
of the three modes in an infinite rod and on the results of [2], the Cosserat theory using
coefficients KB 1 yields good results for the study of both wave propagation in infinite
circular rods and for vibrations of finite-length rods.

On the basis of the frequency spectra in Figures 3 through 11, we conclude that it is
extremely fruitful to analyze wave propagation in elastic rods using the theory of Cosserat
curves with coefficients KB 1.
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