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Abstract: We adopt Hayes and Knops's approach and derive universal relations for finite deformations of a
transversely isotropic elastic material. Explicit universal relations are obtained for homogeneous deformations
corresponding to triaxial stretches, simple shear, and simultaneous shear and extension. Universal relations
are also derived for five families of nonhomogeneous deformations.

1. INTRODUcnON

Truesdell and Noll [1, section 54] and Beatty [2] have lucidly stated the importance of
universal relations for finite deformations of isotropic elastic materials; the same remarks
apply to transversely isotropic elastic materials. Beatty [2, 3] has derived a class of universal
relations for constrained and unconstrained isotropic elastic materials. Pucci and Saccomandi
[4], have given a general approach for finding universal relations in continuum mechanics.
Saccomandi and Vianello [5] have given a variational characterization of the universal
relations for hemitropic materials. They have proved that the class of transversely hemitropic
hyperelastic bodies is characterized by the condition that the inner product between SC - CS

and W N vanishes for all deformations of the body; S is the second Piola-Kirchhoff stress
tensor, C the right Cauchy-Green tensor and W N the skew-symmetric tensor associated
with the unit vector N which points along the axis of transverse isotropy. Here we adopt
the approach employed by Hayes and Knops [6] for deriving universal relations for isotropic
elastic materials and use it to deduce universal relations for transversely isotropic elastic
materials. The general relations so obtained are applied to three classes, namely triaxial
extension, simple shear and simultaneous shear and extension, of homogeneous deformations
to get explicit universal relations for these deformations. We note that homogeneous
deformations can be produced by the action of surface tractions alone in every homogeneous
elastic body; Ericksen [7] proved that these are the only deformations that can be produced in
every isotropic compressible elastic body. We also derive universal relations for five families
of nonhomogeneous deformations which, according to Ericksen [8], can be produced in every
isotropic incompressible hyperelastic body by the action of surface tractions alone.

Universal relations given here are properties of the constitutive relation for a transversely
isotropic elastic material. They are valid for both static and dynamic deformations, and
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whether or not body forces are required to produce the envisaged deformations. Some of these
are easily verifiable experimentally. Universal relations for nonhomogeneous deformations
hold pointwise and will require local measurements.

2. UNIVERSAL RELATIONS

The constitutive relation in tenDs of the Cauchy stress tensor T and the left Cauchy-Green
strain tensor B for a transversely isotropic elastic material with the axis of transverse isotropy
along the unit vector n in the present configuration is (e.g. see [9})

T = )'11 + )'2B + )'3B2 + )'4n@ n + )'5(n@Bn+Bn@n)

Here the response functions Y 1, Y 2
h,I2,... ,Is defined as

, y 5 are functions of the five principal invariants

/2 = tr(B2), 13 = tr(B3), n.B2n.II = tr(B) 14 = n . Bn, 15

The tensor product, a@ b, between vectors a and b is defined as (a@ b)c = (b. c)a
for every vector c, and a . b equals the inner product between vectors a and b. For an
incompressible transversely isotropic elastic material, y 1 in (2.1) is replaced by an arbitrary
pressure -p, and B must satisfy detB = 1.

Equation (2.1) implies that ifn is an eigenvector (or proper or principal vector) of B, then
it is also an eigenvector of T. Also, the other two eigenvectors of B which are perpendicular
to n are also eigenvectors ofT. If any two eigenvalues ofB are equal, then the corresponding
eigenvalues of T are also equal only if the eigenvector of B corresponding to the distinct
eigenvalue is parallel to n. However, if n is not an eigenvector of B, then an eigenvector of
B is not an eigenvector ofT. For

}'2 +11}'3 > 0, )'3 ~ 0, y 4 = Y 5 = 0,

it follows from Batra's [10] theorem that eigenvectors of T and B coincide and if two
eigenvalues of T are equal, then the corresponding two eigenvalues of B are also equal.
Note that the response functions y 1, Y 2, . . . , y 5 while satisfying (2.2) may still depend upon
n through their dependence on the principal invariants 14 and 15.

We first consider homogeneous deformations of a homogeneous body so that the
deformation gradient F, the left Cauchy-Green tensor B = FFT and the Cauchy stress
tensor T are constants within the body. Hence equations of equilibrium with zero body
force are identically satisfied. Without any loss of generality, we use rectangular Cartesian
coordinates with orthonormal basis vectors el, e2 and e3.

Following Hayes and Knops [6], we note that if, for a given deformation, there is a
relationship of the form

aii Tii = 0
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where a is a symmetric second-order tensor independent of the response functions
y 1, Y 2, . . . , y 5, and a repeated index implies summation over the range of the index, then
equation (2.3) will be a universal relation. Hayes and Knops used it to derive universal
relations for an unconstrained isotropic elastic body: Here we use it to find universal relations
for an unconstrained and also for an incompressible transversely isotropic elastic body.

Let A. ~, A. ~ and A. ~ be eigenvalues of B with the corresponding orthonormal eigenvectors
p, q and r. Thus B and B2 have the representations

2 2 2

).lPiPj +).2qi~ +).3rirj,

). tPiPj +). iqi~ +). ~ri rj .
Bij

(B2)ij

(2.41)

(2.4V

We assume that the defonnation gradient F and the left Cauchy-Green tensor B are
given. Substitution from (2.4) into (2.1) and the result into (2.3) gives

-I-

Ylaii +Y2aij().~PiPj +).~qi~ +).~rirj) +Y3aij ().iPiPj +).~qiqj +).~rirj

Y4aijninj +Y5[aij ().~niPjPknk +).~niqjqknk
).~nirjrknk +).~njPiPknk +).~njqiqknk +).~njrirknk)] = o. ~+

In order that equation (2.5) hold for all transversely isotropic elastic materials, it must be
satisfied for all choices of)' 1,)' 2, . . . ,)' 5. Thus

-a..I!

aij (A~PiPj +A~qi~ +A~rirj)

aij (AfpiPj +A~qiqj +A~rirj)

aij ninj
aij [A~(niPj + njPi)Pknk +A~(ni~ + njqi)qknk +A~(nirj + njri)rknk]

In tenDs of the eigenvectors of B, let a have the representation

yrirj +t5(Piq; +Pjqi)+E(qirj +q;ri)+p(riPj +rjpi), (2.7)aij = apiPj + Pqi~

where constants a, p, }' , c)', to and.u are to be detemlined. Equations (2.6) and (2.7) give

a + P + y = 0,

a).~ +P).~ + y).~ = 0,

a).f +P).~ + y).~ = 0,

a(pjnj)2 + p(qjnj)2 + y (rjnj)2 + 2(j (pjnjqj nj) + 2{ (qjnjrj nj)

a).~(pjnj)2 +p).~(qjnj)2 + y).~(rjnj)2 + (j().~ + ).~)(pjnjqjnj)
+ {().~ +).~)(rjnj)~nj +Jl().~ +).~)(pjnj)(rjnj) = o.

+ 2,u(riniPjnj)=O,

0,

0,

0,

0,
O. (2.6)
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We now consider the following three cases:

12 -t. 12 -t. 12.
11.1 ;- 11.2 ;- 11.3'

2 2 2
).1 =).2 # ).3;

( "' ) ,2 ,2' ,2
III A1=tf.2=:"-3(i) (ii)

For case (i), the only solution of equations (2.8)1, (2.8)2 and (2.8)3 is

a=p " = o. (2.10)

Thus equations (2.8)4 and (2.8)5 simplify to

r5(Pini)~nj +E(qini)rjnj +,u(rini)pjnj '=[,9,(2 2 2 2 ~ 2,G .
').,1 +).,2)r5(Pini)Qjnj + ().,2 +).,3)f(rini)~nj + ().,3 +).,1),u(Pini)rjnj = 0.(2.11)

The problem of fmding universal relations reduces to that of fmding solutions of equation
(2.3) for all choices of <5, E and,u that satisfy equations (2.11). Alternatively, introducing
Lagrange multipliers Al and A2, the following equation (2.12) must hold for all choices of
<5, E and,u:

2t5Tijpj~ +2ETijqirj +2p,Tijrjpj
Al [t5(pjnj)qj nj + E(qinj)rjnj +p,(rjnj)pjnj]

A2[(A.~ +A.~)t5(pjnj)~nj + (A.~ +A.~)E(rjnj)qjnj
(A.~ +A.~)p,(pjnj)rjnj] = o. (2.12)+

Thus

2TijPi~ - A1Pini~nj - A2()'~ +).~)Piniqjnj

2Tijqirf - A1qinirjnj - A2()'~ +).;)riniqjnj

2Tijripj -A1riniPjnj -A2().~+).~)Pinirjnj

= 0,

~,: 0,
= o. (2.13)

When one of the eigenvectors of B, say p, is parallel to n, then

,
qini = rini =0,

and equations (2.13) yield

TijPiq,. = Tijqirj = Tijripj =0.

Hence p, q and rare eigenvectors of T or eigenvectors of B are also eigenvectors of
T; a property already observed above. In this case, equations (2.15) are the three universal
relations.
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If none of the eigenvectors orB is parallel to ll, thenpjnj # 0, qjnj # 0, rjnj # O. We
can eliminate Aland A2 from equations (2.13) to arrive at the following universal relations:

(2.16)

Substitution from constitutive relation (2.1) into (2.16) reveals that each term equals y 5-
Thus relations (2.16) provide a way to determine Y 5 from the experimental data.

For case (ii) of equations (2.9), the solution of equations (2.81)-{2.83) is

a+fJ o. 0,11

and equations (2.84) and (2.85) reduce to

~

a[(pini)2 - (qini)2] + 2b(Pini)~nj
2f(qknk)rini + 2.u(rini)(pjnj) = 0,

aA.~((Pini)2 - (qini)2) + 2bA.~(qini)pjnj

f(A.~ +A.~)(rini)(qjnj) +.u(A.~ +A.~)(niPi)rjnj = O.+

The analogue of equation (2.12) is

+

aTij (pjPj - qjqj) + 2t5Tijpj~ +2ETij qjrj + 2/.lTij rjpj
Al [a((pjni)2 - (qjni)2) + 2t5(Pinj)(~nj)

2E(qini)(rjnj) + 2/.l(rini)(pjnj)]
A2[a).~((Pini)2 - (qini)2) + 2t5).~(qini)(pjnj)

E().~ +).~)(rini)(~nj) +/.l().~ +).~)(niPj)(rjnj)] = O.

The necessary and sufficient conditions for equation (2.19) to hold for all choices of a,
<5"u and E are

Tij (pjpj - qj~) - Al[(pjnj)2 - (qjnj)2] - A2A.~[(pjnj)2 - (qjnj)2]

Tijpj~ - A1(Pknk)(~nj) - A2A.~(qjnj)(pjnj)

2T ij qjrj - 2Al (qknk )(rjnj) - A2(A. ~ + A.~)(qjnj )(rj nj)

2Tii riPi - 2Al (rknk)( Pinf) - A2(A.~ + A. ~)(nfPf )(rjni)

= 0,

= 0,

= 0,
= 0.(2.20)
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If eigenvector r corresponding to the distinct eigenvalue ). ~ of B is parallel to ll, then
Pint = 0, qtnt = 0, and equations (2.20) give

Tijpjqj = 0, Tij qjrj

Tij (pjPj - qjqj)
0,
o.

T ij riPj = O~-

That is, p, q and rare eigenvectors of T and eigenvalues corresponding to eigenvectors
p and q are equal. However, if eigenvector p corresponding to the repeated eigenvalue J.. 1 is
parallel to n then qjnj = 0, rjnj = 0, and equations (2.20) reduce to

-A1-A2)'~ =0, TijPiqj =0, Tijq;rj 0, T Ii riPj = O.Tij (PiPj - qiqj

That is, p, q and r are eigenvectors of T but eigenvalues of T corresponding to
eigenvectors p and q are not equal for all transversely isotropic elastic materials.

When none of the eigenvectors ofB is parallel to n and p.n # q'n, then the elimination
of Al and A2 from equations (2.20) gives

~" p .r .IJ I J

pknk

~" q 'p '
IJ I J

qknk p(n(

~== ,
qp;np;
T if (PiPj - qiq;)-

(Pknk)2 - (q£n£)2

For p . n = q . n, the universal relation is

Pi Tij Pj qjTijqjo

If desired, y 5 can be evaluated from the following relation:

P'~" q '
I IJ J

Pknkqtnt
(2.24)

For case (iii) of equation (2.9), equations (2.81}-(2.83) have the solution

a+p+y =0. (2.25)

Thus equations (2.84) and (2.85) yield

a[(p;n;)2 - (rjnj)2] +p[(q;n;)2 - (rjnj)2]

J (p;n; )qj nj + f (q;n; )rj n; + # (r;n; )p; nj

= 0,
= o. (2.26)
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The equation which is analogous to equation (2.12) is

+
aTij (pjpj - rjrj) +pTij (qj~ - rjrj) + b'Tij (pj~ + qjpj)

ETij (qjrj +~rj) +/lTij (riPj +rjpj)
Al [a((pjnj)2 - (rjnj )2) +p((qjnj)2 - (rjnj )2)]

A2[b'(pjnj)qjnj + E (qjnj)rjnj +/l(rinj)pjnj] =0.

The necessary and sufficient conditions for this equation to hold for all choices of lX, p,
t>', E and p, are

Tif (pjPj - rirj) - A1((Pini)2 - (rini)2)
Tij (qiqj - rirj) - A1((qini)2 - (rini)2)

2TijPi~ - A2(Pini)qjnj

2~..q.r. - A2(q.n.)r. n.Y I J I I J :I

2~.. r.p . - A2(r. n ,),n.n .Y I J I I rJ :I

-
'Jr!
=!
=

Since B is a spherical tensor, every vector is an eigenvector of B. We choose three
orthonomlal vectors p, q and r as eigenvectors ofB. When p is parallel to n, thenpjnj = 1,
qinj = 0, rinj = 0, and equations (2.28) reduce to

Tij (pjPj - rjrj) - Al

Tij (qj~ - rjrj)

Tijpj~ = 0, Tij qjrj

0,
0,
0,

=
Tij riPj = O.=

That is, p, q and r are eigenvectors ofT, and eigenvalues corresponding to eigenvectors
q and r are equal, but these differ from the eigenvalue corresponding to the eigenvector p.
The difference between the eigenvalues of T corresponding to eigenvectors p and q is
material dependent and hence not universal. For the case of p not parallel to n and
p . n # q. n # r . n, the elimination of Al and A2 from equations (2.28) yields the

following universal relations:

T Ii (PiPj - qi~ )

(Pk nk)2 - (qtnt)2

TliPi~
(2.301)=

(Pknk) (q£n£)

0,
0,
0,

0,
o.
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Ifp . n = q. n, then the universal relation is

pjTijpj = qjTij ~ (2.30?)

and similar relations hold when q . n = r . n or p . n = r . n. Thus for the choice of basis
vectors p, q, r with p . n = q . n = r . n, a spherical left Cauchy-Green tensor B will

result in a spherical Cauchy stress tensor T for a transversely isotropic elastic material. For
q' n # r . n, Y 5 is given by

(2.31 )}'5

1
A.~ (qknk)2 - (r£n£)2

We note that the universal relations derived above for unconstrained transversely isotropic
elastic materials also apply to incompressible transversely isotropic elastic materials provided
that deformations considered are isochoric.

3. UNIVERSAL RELAllONS FOR SIMPLE DEFORMAllONS

3.1. Controllable homogeneous deformations

We first study three classes of homogeneous deformations. Thus the stress tensor in a
homogeneous transversely isotropic elastic body will be a constant and the balance of
linear momentum without body forces will be identically satisfied. These deformations are
controllable in the sense that they can be produced by the action of surface tractions alone.

3.1.1. Triaxial stretches

Consider a rectangular block made of a transversely isotropic elastic material subjected to
triaxial homogeneous deformations

Xl = bXI, X2 = cX2, Xg = dXg,

where b, c and d are constants. For this deformation

).1 = b, ).3 = d,).2 = c, p=el, q= e2, r = ea-

Let the unit vector p be parallel to D. For b # c # d, equations (2.15) give

T 12 = T 23 = T 31 = 0

as the three universal relations. The constitutive relation (2.1) implies that the eigenvalues
ofT are distinct. For b # c = d, equations (2.21) imply that (3.2) and T22 = T33 are the
universal relations. However, when q rather than p is parallel to ll, then equations (3.2) still
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hold but T 22 need not equal T 33. For b = c = d, we again get (3.2) and for p parallel to n,
T 22 = T 33 also as the universal relations.

Let the axis n of transverse isotropy be not aligned along anyone of the coordinate axes.
For b # c # d, equations (2.16) imply that

~-
n2n3

T31

n3nl

1
c2-b2

1-- d2 - C2
1= b2 - d2

are the three universal relations.
equations (2.23) that

When b = c i d and nl i n2, then it follows from

are the universal relations. For b = c = d and nl # n2 # n3, equations (2.30) imply that the
universal relations are

T23

n2n3

For incompressible transversely isotropic materials, the deformation (3.1) must satisfy
the relation

bcd = 1.

Thus under the conditions stated for equations (3.2), (3.3) and (3.4) and with b, c and d
satisfying (3.6), universal relations (3.2), (3.3), and (3.4) hold for incompressible transversely
isotropic elastic materials.

3.1.2. Simple shear

For simple shear defonnations in the XI-X2 plane,

Xl =Xl + "X2, x; = X2, X3 = X3,

where x is the position of the material particle that occupied place X in the reference
configuration. For the deformation (3.7),
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1+K2
K
0 ~ ]

1C

1
0

B=

1
"2

A.~

11 + 2" 2 + " 1 2
l+-K4

,-2
/1.2 ,

;'3 = 1

).~

(3.8)p,q - r = ea,(2 + !IC 2 =f IC (1+ tIC 2)!)! '

Thus A.~ # A.~ # A.~. When either p or q or r is parallel to ll, then p, q and rare
eigenvectors ofT, and equations (2.15) give

T 13 = T 23 ~ 0, T11 - T22 = 1C T12 (3.9)

as the three well known universal relations which are the same as those for an isotropic
material. For r = n, relations (3.9) are intuitive since the material in the XI-X2 plane is

isotropic. However, when the axis n of transverse isotropy is parallel to either the xl-axis or
the x2-axis, then from equations (2.13) we conclude that

T 13 = 0, T23 = 0, (3.10)

and only (3.91) and (3.9V are the universal relations. For the general case ofn not parallel to
p, q, or r, we obtain from (2.16) the following universal relations for a transversely isotropic
elastic material:

(3.11)

where

-2 2 /1C = 1 + 1C 4. (3.12)

It is implicit in equations (3.11) that terms in the denominator do not vanish. The simple
shear deformation (3.7) is isochoric. Thus universal relations (3.9), (3.10) and (3.11) also
hold for incompressible transversely isotropic elastic materials under the conditions stated
fOT them
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3.1.3. Simultaneous shear and extension

We consider a unifonn shear and extension of a block defmed by

Xl = DXI + EX2, X2 = FX2, X3 = GX3, (3.13)

where D, E, F and G are constants. This deformation is isochoric when DFG =
deformation (3.13),

For the

D2 + E2
EF
0

EF
F2
0 J,lB

2), ~,2 A~ = G2~

p

q =
r =

H2 =
HI =
H2 =

For p, q or r parallel to n, it follows from equations (2.15) that p, q and r are
eigenvectors ofT, and

M= (D2 +E2 -F2)/EFT13 = 0, T23 = 0, T11 - T22 = MT12; (3.15)

The universal relation (3.15) is independent of G, and is the same as that derived by Beatty
[2] for an isotropic elastic material. Universal relations (3.15) will hold for an incompressible
transversely isotropic elastic material if DFG = 1. When the axis n of transverse isotropy
is parallel to either the X1- or the x2-axis, then (3.151) and (3.152) are the only universal
relations. For the case of n not parallel to p, q or r, the following universal relation follows
from equation (2.16):
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TIIE2F2 + T22(F2 + H2 - D2 - E2)(F2- H2 D2 £2)/4
(EFnl + n2(F2 + H2 - D2 - E2)/2)(EFnl + n2(F2

T12EF(F2 -D2 -:.- E2)/2
+ (EFnl+ n2(F2+H2 - D2 - E2)/2)(EFnl+ n2(F2- H2- D2 - E2)/2)

- H2 - D2 - E2)/2)

,(3.16)

For the sake of brevity, we have not written out the expression corresponding to the
second equality in (2.16).

3.2. Nonhomogeneous deformations

We now consider five families of nonhomogeneous deformations that mayor may not be
controllable in every homogeneous transversely isotropic elastic material. Irrespective of
whether or not special body forces are required to produce these deformations, universal
relations will hold at a point. We use cylindrical coordinates (r, () , z) or spherical coordinates
(r, () ,4» as needed for specifying the deformations; lower-case letters indicate coordinates
of a point in the present configuration and upper-case letters coordinates of the same point
in the reference configuration. The parameters A, B, C, D, E and F are constants; those
appearing in the denominator must not vanish. These families of deformations have been
described in detail by Truesdell and Noll [1, section 57]. Families 1, 2 and 4 are isochoric,
thus these deformations are possible in both compressible and incompressible transversely
isotropic elastic materials. Families 3 and 5 are isochoric only when constants appearing in
them satisfy the constraint det F = 1. Below, we use physical components of Band T.

Family 1: Bending, stretching and shearing of a rectangular block is described by

X3
AB

r= J2AX;, 8 = BX2, - BCX2 (3.17)z=

Thus

r ~ r2
0
0

0 0
B2? -B2Cr

-B2Cr B2C2 + ~
B -

A2j?,)..~

2)..~,3

P

'='

q

s

U2

2
H2.3 (3.18)
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We have denoted eigenvectors of B by p, q and s rather than by p, q and r in order not
to confuse the last one with the radial coordinate r.

When the axis n of transverse isotropy is parallel to er, equations (2.15) imply that p, q
and s are eigenvectors of T, and the universal relations are

8
AB'

Z
X3 = - +

B

ce
AB (3.20)X2 =

From (3.20) we obtain

A2B4R2

0
0
1

R2A2B2

C
R2A2B2

0
C

R2A2B2

1
B2

B
0

1~
21 ~,3

P

A2B4R2

1

-
1

:B2::1::H;
-- R2A2B2

= el,

n -

s =

H2 -

Hi, 3 -

For the axis n of transverse isotropy aligned along the Xl -coordinate axis, universal
relations deduced from equations (2.15) are

T 12 = 0, T13 = 0, (3.21)

Equations (2.16) give the universal relations when n is not parallel to p, q or So
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Family 3: Inflation, bending, torsion, extension and shearing of an annular wedge is
defmed by

r= VAR2 +B, () =C8+DZ, z=E8 +FZ.

The deformation is isochoric if A (CF - DE) = 1. From equation (3.22) we obtain

[ L R2

0

0

0 0

B - r(~ +DF)
E~ F 2
]2+

~

r(~ + D2)

r(~ +DF)

).~
-

2), ~,3

P

q -

2

J:;r2

2
H2,3

-

For the axis n of transverse isotropy aligned along a radial direction, equations (2.15)
give

r2(C2 + D2R2) :::::: (£2 + F2R2)
Tre = 0, Tn = 0, TIJIJ - Tzz = TlJz (3.24)r( CE + DFR2)

as the universal relations. For n not aligned along anyone of the eigenvectors ofB, equations
(2.16) give the universal relations.

Family 4: Inflation or eversion of a sector of a spherical shell is given by the deformation
field

\, 1

r = (:!::R3 +A)3 () ::1::8, cf> = <P. (3.25)

For the defornlation (3.25), the physical components orB are

~
R2'
(~+F2) + ~ (* +D2) :f:H,
er,
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[ R4 -;4'"

B= ~

0
r2
R2
0 i ]R2

If the axis n of transverse isotropy is parallel to er, then we conclude from equations
(2.21) that

Tre = Trl/> = Tel/> = 0, T 88 = T t/>t/>

However, if n is parallel to either e/J or etj>, then only the fIrst three relations in (3.27)
hold. When n is not parallel to er, e/J or etj>, then we conclude from equations (2.23) that

Trci>

nci>

T{Jr
-,
n{J

TlJcI>
(Tthth ~ TI/I/)

, ,., .,
-

~ 2 2 ~-'.L.~)
nOnt{> nt{> - nO

are the universal relations. Implicit in (3.28) is the assumption that n(J =I nt{>.

Family 5: Inflation, bending, extension and azimuthal shearing of an annular wedge is
defined by

Rr = AR, () = B log D + C8, z = FZ. (3.29)

For this defonnation to be isochoric, A2CF~ 1. The left Cauchy-Green tensor for the
defonnation (3.29) is

A2 ~
R 0

82 C2r2
jl2+R2[iB 0 (3.30)

F20

Thus

p =

q =

s =

). ~,2

).;

-
1;'2

2
A2B2

+4H2 :=' -
R2

H;,2 (3.31 )-



R.C. BATRA

For the case ofn aligned along either p or q or ez, we conclude from equation (2.15)

1 - B2 - C2

B
Tzr = 0: Tz8 = 0, Trr Tee = Tre (3.32)

When n is not parallel to p, q or s, then universal relations can be derived from equations
(2.16).

4. REMARKS

The constitutive relation (2.1) is written in terms of the Cauchy stress tensor T and the
left Cauchy-Green tensor B. One could write a similar relation between the second Piola-
Kirchhoff stress tensor S, the right Cauchy-Green tensor C = FTF and the unit vector N
along the direction of transverse isotropy in the reference configuration. Universal relations
similar to the ones derived above can be deduced in terms of the components of S, and
eigenvalues and eigenvectors of C. .

Even though we have derived explicit forms of universal relations for simple
deformations, universal relations (2.15), (2.16), (2.23) and (2.29) etc are applicable for any
deformation. These relations, being characteristic of the constitutive relation (2.1), are also
applicable to transversely isotropic fluids for which equation (2.1) applies with B replaced
by the strain-rate tensor D. Then in equations (2.15), (2.16), (2.23) and (2.29) etc, A~, A~ and
A ~ equal eigenvalues ofD, i.e., they are stretchings rather than squares of stretches. Whereas
stretches are positive, stretchings need not be positive. However, the positiveness of stretches
was not used in the derivation of the universal relations.
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NOTE ADDED IN PROOF

When I presented this work in the Symposium honoring Professor Millard E Beatty at the
14th U.S. National Congress of Theoretical and Applied Mechanics, Blacksburg, June 23-
28,2002, Dr. P: Saccomandi kindly told me that R.S. Rivlin [11] had recently given universal
relations for transversely isotropic elastic materials. Dt: Saccomandi was kind enough to
send me a copy of Rivlin's papet: In the terminology of this paper, Rivlin assumed that
ni = t5i3, solved five out of six equations (2.1) for}'l, }'2,..., }'5, and substituted for them in
the remaining equation to obtain a universal relation. He gave explicit universal relations for
three classes of simple shearing deformations superposed on a homogeneous deformation.
The approach adopted here is different from but equivalent to Rivlin's. We have studied
general deformations, and given explicit universal relations for several deformation fields.


