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Abstract: For the case of distinct eigenvalues of the left Cauchy—Green tensor universal relations for a trans-
versely isotropic elastic material are expressed in a compact form. Also, two new universal relations are
derived for an incompressible transversely isotropic elastic material.
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1. INTRODUCTION

A universal relation is an equation that holds for every material in a specified class. Universal
relations are basic tools in the analysis of continuum theories of the mechanical behavior of
materials [1,2].

Recently, Batra [3] adopted the Hayes and Knops [4] approach to derive universal
relations for finite homogeneous and inhomogeneous deformations of a transversely isotropic
elastic material. The first part of this note discusses relationships between results in [3] and
those in [5] and [6]. Moreover, we give additional universal relations for incompressible
transversely isotropic elastic materials which cannot be found by using the Hayes and
Knops method. They are found by employing the universal manifold method of Pucci and
Saccomandi [7,8] which generalizes the Hayes and Knops technique. A brief historical
development of universal relations is given in [7]. For unconstrained transversely isotropic
elastic materials, Rivlin [9] has derived universal relations for three classes of simple shearing
deformations superimposed on a homogeneous deformation.

2. BASIC EQUATIONS AND THE MAIN UNIVERSAL RELATION

The constitutive equation for a transversely isotropic elastic material with the axis of
transverse isotropy along the unit vector n in the current configuration is
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T=y,I+y,B+y;B*+y,n®n+y;(n® Bn+ Bn®n), 1)

where T is the Cauchy stress tensor, I the identity tensor, and B the left Cauchy—Green
strain tensor. The response coefficients y; (i = 1,...,5) are functions of the five principal
invariants I, 15, . . ., I5 defined as

11 = tI'B, 12 = tIB2, 13 = U'B3, 14 =n- Bn,» 15 =n- an. (2)

The tensor product ® between vectors a and b is defined as (a® b)c = (b-c)a for
all vectors c. For an incompressible transversely isotropic elastic material B must satisfy
detB = 1 and y, in (1) is replaced by an arbitrary pressure —p.

When y4 = y5 = 0 in (1) then eigenvectors of B are also eigenvectors of T. For
y2 +13y3 > 0 and y3 < 0, Batra’s [10] theorem implies that eigenvectors of T are also
eigenvectors of B. When the eigenvalues 41, 12 and 12 of B corresponding to eigenvectors
P, q, and r are such that A2 # A2 # A2 all universal relations may be found from the relation

TB - BT =0, o 3)

as has been discussed in detail by Beatty [11]. Isotropic materials are a special case of
transversely isotropic materials. For an isotropic material, y, = y5 = 0 and y,, y, and
y 3 are functions of I;, I, and /5.

Results in [3] for A3 # 43 # A2 may be obtained directly by following the approach of
[5] and [6]. From (1) we get

TB-BT = y,[(n®n)B-B(n®n)]

“)
o+ y5[(m®Bn+Bn®n)B-B(n®Bn+Bn®n).
Because B = B’ we have (n ® n) B = n ® Bn. Thus we write (4) as
TB—BT=y4[n®Bn—Bn®n]+y5[n®B2n—~B2n®n]. N )|

Here we omit the trivial case of n being an eigenvector of B because in this case universal
relations are given by (3). '

Recall that an antisymmetric tensor W corresponds to an axial vector W = u, such
that for any vector v, we have Wv = u X v. Moreover, for vectors a and b, we have the
identity (a® b — b ® a),, = —a x b. Using these, Equation (5) simplifies to

(TB - BT), = —nx (y4sBn+y;B%n). (6)
Therefore the universal relation we are searching for is

(TB - BT), -n =0, ™
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which is Equation (2.16) of [3]. The compact form (7) allows for a more direct comparison
with the results of [5] and [6]. Moreover, whereas for an isotropic material the meaning
of the three general universal relations is the coaxiality between the Cauchy stress and the
left Cauchy—Green strain tensor here the meaning of the only general universal relation is
the orthogonality between the axial vector associated with TB — BT and the axis n of
transverse isotropy. It also provides a way to find the axis of transverse isotropy for these
materials.

We now use the universal manifold method [7] to prove that (7) is the only universal
relation. We consider a universal solution and the corresponding strain B, and fix a point X
in the reference configuration. Introduce an 11-dimensional space S with coordinates

1-:{7-1’7-277-3’7-4775’7-6}1 ‘7={71a72a73,)’4,75},
where
1= T, T2 = Thg, T3 = Tag, T4 = Tna, Ts = Taz, T6 = Taa.

In this space (1) represents a linear homogeneous manifold V of dimension three parametrized
by y. This manifold may be projected in the subspace S*(7) of S on the manifold II (V)
whose dimension & equals the rank of the matrix

1 0 0 1 0 1
By By Biz By Bz Bsg
Bh, B, B}, B} B B

nd mny mng n: neng  nd
By Bz Bz Bax By Bss

; 8

where B = n ® Bn + Bn ® n, and B,?j are components of the tensor B2. The universal
manifold II (V) is linear and homogeneous and may be represented by a set of linear
homogeneous equations (the universal relations). The number of these equations is 6 — k.
Since the rank of the matrix (8) is 5, therefore we have only one universal relation.

The rank of the matrix (8) may be lower (i.e. k < 5) because either A? = A2 for i # j
or n is an eigenvector of B. In these cases new universal relations are pos51b1e and these
can be found by the Hayes and Knops method. However, universal relations that are valid
when the structure of the space S changes cannot be found by the Hayes and Knops approach.
This holds for special deformations that introduce a relationship among the y; or for a special
class of materials, e.g. constrained materials. On the other hand, universal relations may be
a powerful tool to understand quantitatively the significance of a constitutive parameter. For
example, let us consider a transversely isotropic material with y5 = 0. For this class of
materials a new universal relation, namely

(TB-BT),-Bn=0, ©)

is valid because the structure of S has changed. If experimental data for a transversely
isotropic elastic material do not satisfy (9), then clearly y 5 # 0.
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3. INCOMPRESSIBLE TRANSVERSELY ISOTROPIC MATERIALS

For an incompressible transversely isotropic material, y, in Equation (1) is replaced by an
arbitrary pressure —p. To show that for these materials additional universal relations can be
found, we deduce them for a homogeneous deformation and a nonhomogeneous deformation;
universal relations may be found for other isochoric deformations.

3.1. Simple Shear
We consider the simple shear deformation

x=X+KY, y=Y, z=1Z, 10
of a block bounded by the pair of surfaces X = +X;, ¥ = +Y; and Z = +Z; in the reference
configuration, and the axis n of transverse isotropy in the XZ (or xz) plane. Here (x,y, z) are

the current rectangular Cartesian coordinates of the material point initially at (X, ¥,Z) in a
common Cartesian frame ¢ = {O; i, j,k} . A straightforward calculation gives

(TB - BT),, = K{T5i — (KT15s+ T23)j + (KT12 + Toa — T11) k} . (1)
The universal relation (7) becomes
Tiany — (KTy3 + To3) ng + (KT12 + Ty —T11)n3 =0. (12)
To simplify the computations, we set n = cos ai + sin ak and obtain from (12)
Ti3cosa + (KTiz + To2 — Thy)sina = 0. (13)
For the simple shear deformation (10), the referential plane X = Xj is deformed into the
current plane x — Ky = X;. The normal vector to this surface is m = cos 7i — sin 7j where

T = tan~! K is the angle of shiear. The normal traction, NV, and the shear traction, 7', on this
inclined plane are given by

=T11 + K2Ty — 2T15K T=K(T11-T22)—|—T12(1—K2)

N 14 K2 ’ 14 K2

(14)

We now choose the pressure so that the normal traction A/ vanishes on the inclined plane.
That is,

-1
p=(1+K%" [ya+7ys+ (ys+2y5)cos’al. (15)
In this case the structure of the space S has changed because the pressure p cannot be

considered as an independent constitutive parameter; p is related to y; through Equation (15).
In the new space S we introduce coordinates
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T = {71,7.2,7-3’7-4,7-5;7-6}’ ’Y={}’2,)’3774,}’5}, (16)

and the linear homogeneous manifold VV may be projected on to the manifold IT (V) whose
dimension k is given by the rank of the (6 x 4) matrix

1 1 1
B+ Bi2 Bz Bun+ipm Bs But g
2 1 2 2 2 1 2 2 1
Bj, + T B, Biz B+ T By Byt e

cos a 2 cos?a

COS a
ni+ 55 mme mns mp+3SRE mng nd+ S

2cos’a 2cos’a 2cos’a
Bi+5%%* Bz Bz B+ 4P5H* B B+ 9%

a7

Therefore, the following new universal relation not found in [3] exists (because 6 —
= 2):

(K2+2) T22;T11+2COtGT13=0. ’ , (18)

If a different boundary condition were used to find the hydrostatic pressure p, then we would
have obtained a different universal relation.

3.2. Inflation, Extension and Azimuthal Shearing of an Annular Wedge

Another interesting example is the nonhomogeneous deformation
“r=AR, 6=CO, z=FZ, 19

which is a particular case of the Singh—Pipkin universal deformations with constant
invariants. Here (r, 8, z) are coordinates of a point in the present configuration that occupied
the place (R, ©, Z) in the reference configuration. We assume that the axis of transverse
isotropy is perpendicular to the z-axis. Physical components of the left Cauchy—Green tensor
are given by

A2 0 0
B=| 0 42C? 0 |. (20)
0 0 F?

For an incompressible material constants 4, C and F are related by
A*CF =1. 21
The deformation (19) describes the inflation, extension and azimuthal shearing of an annular

wedge and has been studied in [12]. The universal relation in terms of the physical
components of T and n that can be obtained using the Hayes and Knops method is
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To. (A°C* —F*)n, + T,, (F* =A%) ng + T, (4> — 4°C*)n, = 0. (22)

Here we show that the universal manifold method gives a new universal relation.

For the sake of simplicity we again set n = cosae, + sinaeg, where e,, ey, €, is the
orthonormal basis at a point for the cylindrical coordinates. Therefore, nonzero components
of the Cauchy stress tensor are given by

T, = —p+y24°+ysd*+(y4+2y54°) cos?a,
Tos = —p+pad2CPlyad*Ct+ (y4 + 2y54%C?)sin’a,
: ‘ (23)
T. = —p+yaF?+yF4,
To = (yatys(4®+4°C?))sinacosa.
Moreover, the balance of linear momentum implies that
p = (Trr b T00) 1Og(r/rﬁ) + 2Tr¢90 +P0, (24)

where p, is a constant. The universal relation (22) splits into two trivial universal relations
T, =0, Tp =0 (25)

Obviously (24) is a relationship among the pressure and the constitutive parameters y ;.
However, it does not give a new universal relation because the dimension of the manifold
IT (V) is 2 and the complete set of universal relations is given by (25). New universal relations
may arise, as has been discussed in [3], if eigenvalues of (20) are repeated, but this is not the
only case. Indeed, if we choose the constant p, such that the rank of the matrix corresponding
to (8) and (17) is lowered, then new universal relations may arise. Substituting for p from
(24) in (23) we obtain

Trr +2Tr90 g;=i;'"(Trr ;Tﬂa)log(r/rO) — Do
§+ oAy At (y a+2y 5A2) cos’a, (26)
and
ng +2T,-90 = '—(Trr - T00) log(r/rO) —Po

+  p2d?C?4y3A°C* + (y4 + 2y54°C?) sin’ a. 27
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We now choose

Po = 724°+y34*+ (y 4+2y54%) cos’ a, (28)
and arrive at
T, +2T,40 = (Toy — T, ) log(r/r0), 29)
and |
Too + 27,66 = (Tge — T, )(log(r/ro) +1). - 30)

The new universal relation is

T, +2T,40  log(r/ro)
Too + 2T,00 log(r/ro) +1°

(31

This universal relation also holds for isotropic elastic materials [8]. ’

4. CONCLUDING REMARKS

The Hayes and Knops method is an efficient and simple way to derive universal relations,
but it has two shortcomings. Because it is not coordinate free, some important properties
of universal relations derived from it may not be transparent. This is shown in Section 2,
where we have derived in a direct and coordinate-free form the main universal relation for
transversely isotropic materials. Furthermore, the Hayes and Knops method is not completely
general for constrained materials. The new universal relations (18) and (31) cannot be
deduced by using this method because to find them we need to modify the structure of the
space where we can read the representation formula (1) as a geometric object.
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