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Decay of the kinetic and the thermal energy

of compressible viscous fluids

by

R. C. BATRA *

ABSTRACT. - We consider a heat conducting compressible viscous fluid at rest in a
rigid container and show that the thermal and the kinetic energy of arbitrary distur-
bances of the rest state eventually decays.

REsuME. - On considere un fluide compressible, visqueux et conducteur de la
chaleur au repos dans un reservoir rigide. On montre que l'energie thermique et cine-
tique de perturbations arbitraires est amortie.

. Introduction

In [lJ, [2J I extended Kampe de Feriet's [3J result concerning the
decay of the energy of incompressible viscous fluids filling a closed rigid
container to heat conducting incompressible viscous fluids and also to
the case when the fluid does not fill the vessel. Here I study the corres-
ponding problem for heat conducting compressible Navier-Stokes fluids
and show that the thermal and the kinetic energy of arbitrary disturbances
of the rest state eventually decays.

It would seem that for the mechanical problem, one should be able to
obtain decay rate of the kinetic energy from the analysis of Shahinpoor
and Ahmadi [4J. However, these authors make an assumption which
for Navier-Stokes fluids implies that after a certain time, the rate at which
body forces do work balances the rate of work done by the hydrostatic
pressure. I do not make any such assumption and obtain a slightly
weaker result.
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2. Formulation of the problem

Assume that the fluid when at rest occupies a bounded region R with
a boundary 8R which is smooth enough to apply the divergence theorem,
the Poincare inequality [5] and the Kom inequality [5]. The density p,
the temperature e and the components of velocity Vi satisfy the system of

equations

(1)

(2)

(3)

P'+ p v. .=0'.' ,

PVi = tii,i-pO,i'

pS= -qi,i+tiiV(i,J>'

with
<p = <p(p, 9), 8 = 8(p, 9),

<p = 8-119,
t.. = - pO..+AVk ko..+ 21IV ( . .)IJ IJ ,IJ r I, J '

q. = -%9 iI , ,
1

V(i,j) == 2(Vi,J+Vj,J.

11 = 11 (p, 9),

(4)

In (1)-(4) cp, E, 11 denote, respectively, the specific free energy, the specific
internal energy and the specific entropy of the fluid. .0. is the potential
of the body forces and is assumed to be a non-negative bounded function
of the position only. The pressure p, the shear viscosity ~, the bulk
viscosity A and the thermal conductivity x are, in general, functions of p
and 9. We have employed the conventional indical notation so that repeated
subscripts imply summation over the range 1, 2, 3. Moreover a comma
followed by a subscript i denotes partial differentiation with respect to
the space variable Xi and a superposed dot indicates material time differen-
tiation. Assume that the initial disturbances are such that the classical
solution of (1)-(4) exists subject to these initial conditions and the following
boundary conditions

Vi = 0 on X(a1R, f),
tijllj = - Polli on X(a~ R, f),

8 =80 onx(a2R,t),
qilli = b(8, 80)(8-80) on X(a2R, f),

(5)
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Here 01 R and a~ R are complementary subsets of aR, 1; (a1 R, t) is the
present configuration of a1 R at time t and 1li is the ith component of
an outward directed unit normal to aR. The boundary condition (5)2
states that the part 1; (a~ R, t) of the boundary of the fluid is subjected
to a uniform hydrostatic pressure Po. For the case when the rigid container
is completely filled with the viscous fluid and the fluid adheres to the walls,
a~ R would be zero. I assume that b !?; 0 is a bounded function of 8
and 80. The thermodynamical restrictions imposed by the Clausius-
Duhem inequality are

(6)
o<p

11=--, ae
3A+2~ ~ O.

Following Ericksen [6J I introduce a finite Taylor expansion in the
temperature for cp, obtaining thereby

£-9011 = "'(p)+K(9-90)2

~~29* '(8) \j1 (p) == cp (p, 90),

Here c is the specific heat and e* is a value of the temperature between e
and eo. Using (4) and (6), one can verify that

(8-eo~) =(9)

Taking the inner product of (2) with Vi' substituting for i from (3) into
the right-hand side of (9), integrating these equations over R, adding the
respective sides of these equations and then simplifying by use of the
divergence theorem, (1), (4), (5), and (7), we obtain

. .
E1+E2 = -

JOURNAL DE MECANIQUE



500 R. C. BATRA

where

, E1(t) =

(11)

Note that £1 is a mesure of the kinetic energy and the temperature
deviation of the fluid particles from that in the rest state. £1 equals zero
implies that the fluid is at rest and the temperature is uniform throughout the
fluid and is 90, In the following, initial disturbances are taken to be those
for which £1 (0) + £2 (0) is finite.

With the assumptions

Cl = supK < 00,
p,9

C2 = eo inf ~ > 0,
p,o e

either n o2R(t) # e5
t>O

. f b
C3 = In - > 08 e 'or

(12)
C4 = 90inf A+(2f3)Jl

p,D 92>0,
Po = sup P < 00,

XeR
t>O

Cs = eo inf ~ > 0,
p,D e

n olR(t) #0.
t>O

I prove below the following result

and lim E2 (t) exists.
t-+ cx>

(13) E1 (t) -+- 0 as t -+- CX)

The assumption (12), states that there is a material subsurface of the
walls of the container to which the fluid always adheres. The conditions (12)
can be sharpened by taking the infimum or the supremum over those values of
p and e which are ever realized at any fluid particle. That this set of values
of p and e is bounded for the case when 01 R = oR follows from the

results of Hill and Knops [7].

"" ~"nT"U'" 1.1 1Q7."
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3. Proof of (13)

From (12)1,2, 3 and by using Poincare's inequality we conclude that
(Cr. [1]) :

where C6 = min (C2, C3) and Pl is a positive-valued function of Rand 82 R.
For the case when 82 R # 8R, Pl varies with time t and I assume that
it is bounded above and denote its supremum also by Pl. A similar remark
holds for the functionp2 appearing below in (15). Now by using (12)4, 5.6,7,

A Vk.k Vi. i+2 ~ V(i. j) V(i. j)

= (A+ ~~ )Vi.iVk.k+2~( V(i.j)- YO'i)( VO,j)

Poincare's inequality and Korn's inequality (cf. [1]), we obtain

90{ } 2 C7 p2 fP - AVk k V. .+21IV ( o O) V(I 0) dV~ - -v.vodVij . ',' ro,,} ,} - Po 2'"

where C7 = min (C4, cs) and P2 is a positive valued function of Rand 01 R.
(14) and (15) when combined with (10) give

(16) E1+E2 ~ -CSEl

with Cs = miD (2 C7 P2/PO, C6Pl/C1 Po). It follows from (16) that

( E1(t)+E2(t) ~ E1(0)+E2(0),
lim E1 (t) + E2 (t) exists.
t-+ CX)

(17)

Further, integration of (16) over (0, T), T being an arbitrary real positive
number, gives

Cs s: E1 (t) dt ~ [El (0)+E2 (0)].

Since the right-hand side of this inequality is independent ofT, we conclude
that

E1 (t)EL 1 (0, 00).
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Now using E2(t) ~ E1(O)+E2(O), we obtain from (16) the following

EI(t)eL1(O,00).

(18) and (19) imply (13)1 and (13)2 now follows from (17)2"

4. Remarks

For the special case when there exists a time to such that for t ~ to

Ez =0,

(16) reduces to

(21) E1 ~ -Cg E1, t ~ to,

and hence

f??\ El(t) ~ E1(to)e-c8t ~ [El (O)+E2(O)] e-c8t.

In [4] Shahinpoor and Ahmadi study the decay of the kinetic energy
of compressible micropolar fluids and make an assumption which, for
the present problem, reduces to (20). It is not entirely clear under what
circumstances (20) holds. Should (20) hold, then the kinetic and the
thermal energy of the fluid would decay monotonically and the rate of
decay would depend upon the thermomechanical properties of the fluid,
the size and shape of the container and the boundary conditions.

The assumption that a classical solution of (1)-(3) under boundary
conditions (5) and suitable initial conditions exits is made here to keep
the analysis simple. Otherwise one can assume the existence of a suitably
defined weak solution (e. g., see [1], [8]) and prove (13) by using essentially
the same arguments.
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