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Thermodynamics of simple materials
of differential type

par

R. C. BATRA*™

ABSTRACT. — Simple materials of differential type are studied according to an entropy
inequality proposed by Green and Laws. Propagation of weak waves in the theory
linearized about a uniform temperature distribution is investigated. It is shown that

the necessary condition in order that weak waves may propagate in materials whose
constitutive quantities depend upon the rate of change of temperature gradient iS opposite
of that required for materials whose constitutive quantities do not depend upon the rate

of change of temperature gradient.

RESUME. — On étudie les milieux matériellement simples de type différentiel a partir
d’une inégalité d’entropie proposée par Green et Laws. On envisage la propagation
d’ondes de discontinuité faible dans la théorie linéarisée autour d’une distribution uni-
forme de la température. On montre que la condition nécessaire pour que les ondes
puissent se propager dans les matériaux dont les grandeurs constitutives dépendent
du taux du gradient de température est I’opposée de celle exigée pour les materiaux
dont les grandeurs constitutives ne dépendent pas de ce taux.

. Introduction

Materials of differential type are simple materials whose local state
depends upon the present value of the constitutive variables and of their
time derivatives up to a certain order [1]. In thermomechanics of simple
materials the constitutive variables usually considered are the deformation
gradient F, the absolute temperature 6 and the spatial gradient g of 0.
For general simple materials the local state can depend upon the histories

of F, 0 and g; but for materials of differential type, the local state depends
. (L) ] (M) . (N) (n)
upon K, F, ..., K, 0,0,...,0,g, ¢, ..., g. Here f stands for the
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(0)
n'® material time derivative of fand f = f. We shall call such a material

a material of differential type of complexity (L, M, N). With this defi-
nition the materials of differential type studied in [2], [3] and [4] are,
respectively, of complexity (0, 1, 0), (1, 1, 0) and (N, 0, 0).

In this paper we study materials of differential type of complexity
(L, M, 0) and (1, 1, 1) according to the following entropy inequality
proposed by Green and Laws [5]:

(1) Poﬁ‘l‘(q—A) “Po£§0~
© /. a P

Here n is the specific entropy, p, 1s the mass density in the reterence
configuration, r is the supply per unit mass of the internal energy, q is
the heat flux per unit surface area in the reference configuration, ¢ > 0
is a constitutive quantity and A stands for differentiation with respect
to rectangular Cartesian coordinates X, of a particle in the reterence
configuration. The inequality (1) is more general than the Clausius-
Duhem inequality in which ¢ = 6. Green and Laws proposed an ine-
quality more general than (1) which for homogeneous bodies becomes (1).
We study herein homogeneous bodies only and therefore use (1).

We show that for materials of differential type of complexity (L, M, 0)
¢ is a function of 6 and 6 and that

either a(_p = () or A _ q _ 0,
06 (L) (M)
oF 00

provided L = 1, M > 1. However, for materials of differential type
of complexity (1, 1, 1) we prove that ¢ = ¢ (0, 0) and

op 0 on  on

or ==

00 0g JOF

either

Thus a necessary condition for the propagation of thermal disturbances

with finite speed in these materials 1s that 8(p/8é = (. This disagrees
with the result, obtained below, that for materials of differential type
of complexity (1, 1, 0), thermal disturbances may propagate with finite
speed in the theory linearized about a uniform temperature distribution

provided 6(p/5é # 0. When 5(p/6é = 0, the inequality (1) reduces to the
Clausius-Duhem inequality.
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2. Restrictions from the entropy inequality

We study materials for which the following balance laws hold:

‘ pJ:po, J=d€tF, FiA: i, A

Po I-Ji = SiA,A+ Po b;,

(2) '
| PoE=—ga at+diaXi atPor

Here x = x (X, t) gives the present position of the material particle that
occupied place X in the reference configuration, p 1s the mass density at
time ¢, b is the specific body force, S;, is the Piola-Kirchoft stress tensor
and ¢ is the specific internal energy. Introducing the definition

(3) ¥ =¢e-no,

and eliminating r from (2)s; and (1) we obtain the following inequality

(4) Po (\|’+n(b)“SiAJEi.A+ qA(p(P’Aé 0.

2.1. MATERIALS OF DIFFERENTIAL TYPE OF COMPLEXITY (L, M, O)

In (2) and (4), S, q, ¥, n and ¢ are constitutive quantities. For materials
of differential type of complexity (L, M, 0), these constitutive quantities

are assumed to be smooth functions of the following local state variables :

. (L) . (M)
FF,. ., F;0,0,..., 0;g.

Here g, = 0 4. In order to distinguish between a function and its value
we denote the function by a superposed caret. That 1s, we use the notation

. L . (M)
(5) e(X,t)=¢(F,F, ..., F;06,06, ..., 0;g).

Substitution for S, q and € into (2), s gives field equations for x and 0.

Referring the reader to [2], [S] for details we use an argument due
to Coleman and Noll [6] and conclude that the following are necessary
and sufficient conditions for every solution of the field equations to
satisfy (4) :

oV 00 N~ 3
(6);., m"‘ﬂ—{f}—op Lel, W)_I_n ) = 0,
¢ F oF 06 00
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L~ G
qA) (I)(P _0, l=0, 1, 2, ...,L,

OF; B
. 35
da (m)—O’ m=2,3,...,M,
(6)3-6 L .
~ OO
QA)_—_= ’
/ ag(B
o0 - (O ~ 8
—(P‘QA'l_pO(P(_lll']'n_(p“):O:
| 06 08 A 0ga
o ~d0\ 2 -
7 ‘_I_Tl _Si Fi
? [p'”(am aF..:A) A] :

Mot [y L ap )\ ) g 4Q
+ ZOPG Tﬁ"’”% 0 -l-i A@(epgﬁéo
- 00 00 P

Throughout the paper the round parantheses around the indices indicate
symmetrization about the indices A, B, efc. (7) 1s called the residual ine-
quality. Assuming that q # 0 we conclude from (6); 4 s that

(8) ¢ = (6, 0)

and now from (6), , ¢ that

,.. - L
o Y _o Lz1; Yoo M22 Phapes V=0

5 o %0,

(L) (M)
By differentiating (9); with respect to F and 0 and using (9), , we arrive

at the following:

or iﬁg = o

0 (L) (M)
JF 060

(10) Either 20 =0 —0,

provided M = 2, L = 1.
~ We note that the left-hand side of (7) has the maximum value namely
zero in a process in which

(L) . " (M)

F=F=..=F=0 06=0=...—0=0, g=0,
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usually called equilibrium. The necessary conditions for this maximum
are

oV
|’| —m =0, l=1,2,...,L—'1,

0F |E

/A A
Uh e, 0

: () ((+1)
Fm e OFun OF 5 |

Y
&

62\|1
(m) (m+1)

0 20 |

lIA
f=

m=23,...,M=2; M>2,

~ FaN Fa

O’y | , on | do
3000 |, 00 |00 |
on | d¢
0 |.00 |
?ﬁ o Saﬁ 00 |
o0 |.09 | 08 | 00

Here the index E signifies that the quantity is evaluated in an equilibrium
process. We can sharpen these results further by setting ¢ [ = 0.

2.2. MATERIALS OF DIFFERETNIAL TYPE OF COMPLEXITY (1, 1, 1)

For these materials S, q, V, n and ¢ are smooth functions of F, F, 0, f—), g
and g. We denote the function defining any of these by the same symbol

with a surperposed tilde. Proceeding in the usual manner (e. g. see
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[21, [4], [5], [6]), we obtain the following restrictions imposed by the
entropy inequality on the constitutive functions:

N 0 N~ 00 N~ 0
g g
(12) ~5F oF ,.._, 00 0 ) )
~ O ~ 0 ~ O ~ 0
( QA)—(I) = 0, dA) -(p =0, dA) = 0, da -(l) = 0,
028 0g B OF; 8 OF;

o ~00N: [l ~ 00\,
(13) po '—l'll"l‘Tl'“(E 0+ ‘"‘“\"{'i"n—"(g ga
50 o9 dg.  Oga

T | Po v +1 % _§iA FEA"!"%_A E'(EgA"i"‘"@éA < 0.
0F;a 0F;a ¢ \ 00 5ie,

Assuming that q # 0, we conclude from (12), 5 ¢ , that ¢ = ¢ (6, i—)).
Therefore equations (12); 3 simplify to

o _ v _,
oF 0g

(14)

Differentiation of (12), with respect to F and g and the use of (14) gives
equations which imply that
6(?___0 or 51_]__61:'——-0.
00 oF 08

(15) either

We simplify (13) by substituting ¢ = ¢ (0, é) into it and derive the follow-
ing restrictions on the equilibrium values (i. e. when F = 6 = g = g = 0)

of the constitutive functions:

oV |~ 00 - o
o +1 IE"‘(E =0, Sia |E=Po—¢ ,
00 g 00 |g JF.\ |g
.|~ 00 35,
Po P IE‘E +da ‘E—(p = 0, “A >0,
| 02a |E 00 |g oF 5 g
1o | 06 YRR IS
aA E_(p =0: _?ié —EE éos
09 |k 028y 'E00 |g
% | 0| o M| 20| _on| 09
- 0gpy [£09 g 00 [gd0 g 09 g 00 |[E
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3. Propagation of weak waves

We now study the process of heat conduction in a stationary body
made of material of differential type of complexity (1, 1, 1). The relevant
field equation obtained from the balance of the internal energy is

de: og Ot - 0% -
(17) pUI:'—e—I—"Te_I_HgA-I-—-gA:l
0 00 0ga 0ga

0q 0.+  0q 0 s -
= — Ii—A'gA‘F Ly _(égB,A'l' _-—(AgB,A T Pot.
do 00 a83) 585)

Assuming that 0, 0, g, é, g, gap and r are continuous across a singular
surface and third order derivatives of 0 are discontinuous, the jumps|0]

[2], [9], [2], [ga 8] across the wave vanish and since (17) holds on both
sides of the wave,

0g - O a o
(18) Po —18al =— _?(—A [gB,A]'
0ga @gﬂ)
From the theory of moving singular surfaces ([7], p. 506), we have

[gA] — Cuf NA »

[éB, A] = —CU, NNy,

(19)

where ¢ = [0 sgc] 7a 75 e # 0, 1, 15 the unit wave normal and u, 1s the
wave speed. Substitution of (19) into (18) yields
0 5, 0qa

(20) PoC= NpalU, =—
oga agB)

If 05/30 # 0, then by (15), (14) and (3), 8/6g = 0 and, therefore,
from (20) v, = 0. Thus weak discontinuities in & do not propagate in

these materials 1if 55[3/66 # 0. However, when 6(3/66 =0, 0e/0 ga

and 65( A/@éﬁ) are not restricted by the entropy inequality and (20) may
have a non-zero solution for u,.

In a theory linearized about a uniform temperature distribution, the
speed of propagation of weak disturbances 1s given by

£ 0
(21) Po—a'-g— Ma Uy =“n& R Rg.

0ga IE 0gp)y |E
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For isotropic materials, € is an isotropic scalar function of its variables.
Therefore, 0g/0g is an isotropic vector and Je/dg|y = 0. However,
5§(A/6§B) [E may not be zero for isotropic materials. Thus in the theory
linearized about a uniform temperature distribution, weak waves do
not propagate in isotropic materials of differential type of complexity

(1, 1, 1).
Specializing the results of section 2.1 to materials of difterential type

of complexity (1, 1, 0), we investigate the speed of propagation of thermal
disturbances. The pertinent equation i1s

OE ... o O oq
(22) Po— 0] = — (Po | s ) [ga]— A |28, 4l
d0 0ga 39 0gp)

where we have assumed that 0, é, o are continuous across the singular
surface and have denoted the constitutive functions by a superimposed
bar. Substituting for various jumps from the theory of moving singular
surfaces, we obtain

" %,
(23) poa‘?uﬁD-—+(p0~ai+_qi)nAu D——aq(ADHAnB,
0ga 00 0Zp,

where D = [0 ,g5] 14 ng. The two solutions u, of this equation are either
both real or both complex. In the theory linearized about a uniform
temperature distribution (23) becomes

Ot oq 5q
08 pour® (poi + 94a )_ﬁ_
00 |E 0ga & 00 & 0gsy |E

Recallmg (11)7 we note that (24) has real roots when 55/59 e > 0.

- to be positive it is necessary that aq)/ae e # 0. [cf.(11)5].
Thus in this case thermal disturbances may propagate with finite speed.
We remark that for isotropic materials the first term on the right-hand

side of (24) vanishes.

‘4. Remarks

The function o (0, é) for materials of differential type of complexity
(1, 1, 0) need not be the same as ¢ (8, 8). However, if we make an assump-
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tion, proposed by Miiller [3], that across any singular surface g, n,/¢
is continuous whenever g, n, and 0 are continuous, then we can show
that ¢ = @. Indeed, consider a material singular surface separating
bodies made of materials of differential type of complexity (1, 1, 0) and
(1, 1, 1) and assume that O is continuous across the material singular
surface. Since the balance of internal energy requires that the normal
component of heat flux be continuous, the preceeding assumption gives

that the normal component of the entropy flux is also continuous. Hence

¢ (0, é) = o (0, é). In this case the condition 65/66 # 0 allows for
the possibility of propagation of thermal disturbances with finite speed
in the linear theory of materials of differential type of complexity (1, 1, 0)
but disallows the propagation of thermal waves in materials of differential
type of complexity (1, 1, 1).

In [37, Miiller studied fluids of differential type of complexity (1, 1, 0)
according to his own inequality for supply free bodies and showed that
in these materials thermal disturbances can propagate with finite speed
in the theory linearized about a uniform temperature distribution provided

the coldness function A (0, 9) depends upon 0. If we study 1sotropic
materials of differential type of complexity (1, 1, 1) according to Miiller’s
theory we can show that entropy flux = (heat flux) (coldness A), the

coldness A is a universal function of  and 0 in the sense that A (0, B) is
the same function for materials of differential type of complexity (1, 1, 0)
and (1, 1, 1) and that a necessary condition for the propagation of thermal
disturbances with finite speed in isotropic materials of differential type

of complexity (1,1, 1) 1s 5/\/86 = (.

When 00/00 = 0, then ¢ = ¢ (6) = & (6) g =0 and the entropy
inequality (1) becomes the Clausis-Duhem inequality. Thus the Clausius-
Duhem inequality does allow the propagation of thermal disturbances
with finite speed in materials of differential type of complexity (1, 1, ).

In [8], Batra studied non-simple elastic materials whose local state

depends upon F, F; , g, 0, é, g. It is shown therein that whereas Clau-
sius-Duhem inequality allows the dependence of the constitutive functions
upon F;, g, the mequahty (1) does not provided we assume that ¢ in (1)

does depend upon 0.

That ¢ in (1) is not a function of 0 and 0 for all materials is clear from
the non-simple rigid heat conductors studied by Batra [9]. For these
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materials the local state is assumed to depend upon 0, é, é, g, 2, Za -
It is proved in |9] that for isotropic homogeneous bodies made of such a

material ¢ 1s a function of 6, 0 and g.
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