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Decay of the kinetic and the thermal energy
of incompressible micropolar fluids

by

R. C. BATRA*

ABSTRAcr. - We consider a heat conducting incompressible micropolar fluid at rest
and filling a closed rigid container. We account for the heat generated due to viscous
dissipation and show that the kinetic and the thermal energy of arbitrary disturbances of
the rest state decays exponentially. The rate of decay depends upon the viscosity coef-
ficients, heat conduction coefficients and the size and shape of the container.

REsUME. - Nous considerons ici un fluide en repos, incompressible et conducteur
de la chaleur, et remplissant un recipient solide et ferme. Nous prenons en compte la
chaleur engendree par la dissipation visqueuse et nous montrons que l'energie cinetique
et thermique de perturbation arbitraire de l'etat de repos tend vers zero exponentiel-
lement. Le decrement depend des coefficients de viscosite, des coefficients de conduction
de la chaleur, et de la taille et de la forme du recipient.

1. Introduction

The problem of the decay of the energy of incompressible micropolar
fluids and compressible micropolar fluids has been studied by Lakshmana
Rao [1] and, Shahin poor and Ahmadi [2]. These authors employ the
linear theory of micropolar fluids due to Eringen [3]. Ahmadi [4] has
recently studied the universal stability of thermo-magneto-micropolar
fluid motions. His results when specialized to thermo mechanical defor-
mations show that the kinetic and the thermal energy of arbitrary distur-
bances of the rest state of a micropolar fluid contained in a closed rigid
container decays exponentially. However, Ahmadi neglects the heat
generated due to viscous dissipation and assumes that the specific heat
is constant. Thus the energy equation becomes a linear parabolic equation.
His analysis does not appear to be applicable to the case when the energy
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equation is non linear and includes the term representing heat generation
due to dissipation. We note that whereas Ahmadi assumes the Boussinesq
equation of state, that is, the mass density depends linearly upon the change
of temperature, we assume that the mass density stays constant. This
assumption is consistent with the theory proposed by Eringen [3]. The
interaction between the flow and the temperature field is manifested through
the appearance of viscous dissipation term in the energy equation, tempe-
rature in the equation governing the rate of change of microrotation,
and the dependence of viscosity coefficients upon the temperature.

We remark that the region within the container is assumed to have
smooth boundary so that the divergence theorem [5], the Poincare ine-
quality [6] and the Korn inequality [6] are applicable.

2. Formulation of the problem

The field equations governing the thermomechanical deformations
of a linear micropolar fluid are [3]:

v. .=0'" ,
PVi = tki,k-P.Q.,i'

pj vr = mkr,k+Erks tks+ P lr,

pt = tksbks+mksvs,k+qk,k+ph,

(1)

in which

tks = - POks+ ~(Vk, s+Vs, k)+il bks)

mks = CXVr,rOks+/3Vk,s+YVs,k+"&Eksr9,r,

qk = X9,k+/3Ekrs Vr,s'

bks = vs, k - Eksr Yr.

(2)

Throughout this paper we use rectangular Cartesian coordinates and the
Cartesian tensor notation wherever convenient. Thus in the preceeding
equations Oks is the Kronecker delta, Eksr is the alternating tensor or the
permutation symbol, a comma followed by an index k indicates partial
differentiation with respect to Xk, and repeated subscripts imply summation
over the range 1, 2, 3 of indices. We have used spatial description of
the motion. In (1) and (2), v stands for the velocity of a fluid particle
that presently is at x, p is the mass density, tks is the Cauchy stress tensor,
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n is the potential of body forces and is assumed to be a function of x only,
j is the microinertia, v is the microrotation of the flow, .. is the supply
density of the microrotation, e is the internal energy density, q is the heat
flux per unit present area, 9 > 0 is the present temperature of the fluid
particle that currently occupies the place x, and a superimposed dot indicates
material time derivative. Furthermore, p is the arbitrary hydrostatic
pressure and is not determined by the flow; ~, 11, (x, 13 and 'Y are the viscosity

coefficients and x, a: and 13 are the heat conduction coefficients. We presume
that the fluid is homogeneous and that the viscosity and the heat conduction
coefficients are temperature dependent. The assumption of homogeneity
implies that the mass density p is constant which we take to be positive.

Assume that the initial disturbances are such that a classical solution
of (1) satisfying these initial conditions and the following boundary
conditions exists

(3)

I v(x, t)=O on oR, t>O,

v(x,t)=O on oR, t>O,

9=90 on olR(t), t>O,

\ Qjnj=-b(9, 90)(9-90) on o2R=oR-o1R, >0.

Here R is the region of space occupied by the fluid, a1 R c aR and the possi-
bilities a1R =:= 0 or a1R = aR are not excluded. In order that. heat

may flow out of the fluid when it is at a temperature higher than that
of the environment, b should be non-negative. We assume that b is also
a bounded function of 9 and 90. The boundary condition (3)1 implies
that the fluid adheres to the walls of the container and that once the fluid
is given the initial disturbance, the container is held at rest subsequently.
Thus the fluid always occupies the same region R of space.

The thermodynamical restrictions imposed by the Clausius-Duhem
inequality are [3]:

11 :?; 0, x :?; 0,

r - I ~ I :?; 0,

2~+'i1 ~ 0,

3(:£+/3+1 ~ 0,

ocp11 = - aG'
(4)

cp = 6-119.

Here 11 is the entropy density, and cp is the Helmholtz free energy. It is
shown in [3] that for incompressible micropolar fluids, E, 11 and cp are
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functions of 9 only.
around 9, we obtain

Expanding <p (90) in terms of finite Taylor series

<Po = <p(e)-11(eo-e)-K(e-eo)2,(5)

where

CPo == cP (90), K=-~ ~(9*)=~)
2 a92 29*'

c is the specific heat and 9* is a value of the temperature between 9 and 90.
Substitution for cp (9) from (5) into (4), gives

e-9011 = CPo+K(9-90f.

Also from (4)6. 7 one gets 8e/80 = 0 (811/80) and hence one can conclude
that

l-~)E
d 2"
-[K(9-90) ] = 8-9011 =
dt

(6)

in which

p [V2+ jv2+K{9-9o)2J dV.(8) E=

Thus E equal to zero implies that the fluid is at rest, there is no micro-
rotation of the fluid and the temperature of the fluid is uniform and

equals 90.
We now state the theorem we wish to prove below.

THEOREM. - For every initial disturbance of the rest state of the thermo-

micro polar fluid for which E (0) is finite and there exists a classical solution
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In order to arrive at the last equation, we have substituted for i from (1)4-

Taking the inner product of (1)2 with v, of (1)3 with v, setting 1 = 0,
integrating the resulting equations over the region occupied by the fluid,
simplifying by using (1)1' the divergence theorem and the boundary condi-
tions (3), and adding twice the result to respective sides of (6), we get
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of (1) satisfying these initial conditions and the boundary conditions (3),
the energy E satisfies the inequality

E(t) ~ E(O)e-dt(9)

provided that

Cl = inf2~ > 0,
9

C2 = inr[<x+ ~ +!, 1+/3]> 0,
0 3 3

. r 90 0C3 = In 2X> ,
0 9

. r b (9, 90) 0C4 = In > ,
0 9

Cs = supK < 00,
0

1 - 1 /31 ~ 0, "1"i ~ 0, h (9 - 90) ~ O.

A comparison of (10) with the requirements on the various coefficients
needed to prove a similar but somewhat weaker result for heat conducting
compressible micropolar fluids [7] reveals that only the definitions of Cl
and C2 are slightly different. Whereas the infimum here is taken of the
values of viscosity coefficients, in [7] the infimum is taken of the values
of viscosity coefficients divided by the temperature 9. The definitions (10)
of various constants can be sharpened by taking the infimum or the
supremum over those values of 9 which are ever realized at any fluid
particle. We note that (10)8 is satisfied even when there is no supply
of internal energy, i. e. h = O.

Proof of the Theorem. - Recalling (2) and using the definitions

1
V(k,s) = 2(Vk.S+VS,k),

1
V[k,.] = ;;(Vk,s-VS,k),

d 1
Vk,s = Vk,s- 3V",OkS
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we note that

(12) tksbks+mks vs.k ( 13 Y)= 2JlV(k.s)V(k.s)+ (:L+ 3 + 3 vr.rvs.s

d d - e
+(y+ 13) V(k. s) V(k. s) +(y-l3) V[k. sJ V[k. sJ + (:Leksr . r Vs. k

~ Cl V(s. k) V(s. k) + C2 V(k. s) V(k. s) + a:ekSre. r Vs. k'

We have used (10) to obtain the preceeding inequality (12). Multiplying
both sides of (12) by [1 + (eo/e)], and then integrating it over the region
occupied by the fluid and noting that

f a:eksr e. r vs. kdV = f a:eksr e.r vsnk dA = 0,

in view of (3)2' we conclude the following

(13) f( 1 +~)(tksbkS+mkSVS.k)dV~[ ClfV(S.k)V(S.k)dV+C2fV(S.k)V(k'S)dV J.

The use of Poincare's inequality [6]:

v2dV,

~)~2 r p(v2+jv1dV.
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Vk"Vk,.dV ~ Pi

and Korn's inequality [6]:

(15) f V(k..)V(k..)dV ~ P2 f Vk..Vk..dV,

in (13) gives the following

(16) f ( 1 +~ ) (tk. bk.+ mk. Y" k) dV ~ min( Ci,- -.,

Here Pi and P2 are constants whose values depend upon the region R.
By using the divergence theorem we obtain

f( 1- ~)qk'kdV =f (1- ~)qknkdA-f~qk9'kdV.

Substitution of the boundary conditions (3)304 and the constitutive rela-
tion (2)3 for qk into the right-hand side of the preceeding equation, and the
observation that
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in which a = C3P1. However, if a1R = 0, then we can use Poincare's
inequality in the form ([8], p. 355):

,.
(9-9o)2dA+ G.,G.,dV ~ Pi f (G-Go)2dV,

and again conclude (18) from (17) with a = min (C3' C4)Pl' Putting (16)

and (18) into (7) and recalling (10)8' we arrive at (9) with

d=min(~lPIP2 C2PIP2 a

pjp pcs,

Since P1 and P2 depend upon the region R, i. e, the size and the shape of
the container and the values of C1, C2, etc. depend upon the heat conduction
and viscosity coefficients, the value of d depends upon the size and the
shape of the container, the density p, the microinertia j, and the heat
conduction and the viscosity coefficients.

3. Remarks

We have assumed here the existence of a classical solution of (1) to
keep the analysis simple. Otherwise, one can suitably define a weak
solution and arrive at (9) essentially by using the same arguments
(cJ. [9] and [10]). The problem of existence of solutions of (1) has not
been studied so far. Recently, Lange [11] studied the existence of solutions
of initial-boundary value problems for equations which describe the homo-
thermal flow of incompressible micropolar fluids.
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enables us to conclude the following

When n a1 R (t) > 0, that is, there is a material subsurface of the
t>O

boundary surface aR on which the temperature is prescribed to be 90,
the Poincare inequality (14) holds with P1 now being a real positive valued
function of time t. Denoting its infimum also by P1 and assuming that
it is positive, we conclude that
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The estimates of constants Pi and P2 appearing in the Poincare inequality
and the Korn inequality can be improved by requiring that the functions
also satisfy the field equations (1) and (2). But this is rather a hard problem.
For estimates of Korn's constants the reader is referred to the work of
Bernstein and Toupin [12], Payne and Weinberger [13] and Dafermos [14].

We note that because of the assumed boundary condition (3)2' the heat

conduction coefficients a: and ~ do not appear in (13) and (17). Thus
for the problem discussed herein the decay rate of the energy does not

- -
depend upon a: and ~ and this is why we did not require that a: and ~ satisfy

any inequalities. However, should the container be partially filled with
the fluid or there be some slipping at the contact surface, (3)1.2 will not

hold on the entire boundary and terms involving a: and ~ will appear
in (13) and (17). We remark that Batra ([9], [15], [16]) has studied
the stability of non-polar heat conducting fluids partially filling the
container.
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