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ABSTRACT 

MARCHAND and Duffy have reported detailed measurements of the temperature and strain as a shear band 
develops in a HY-100 steel. Assuming their torsional tests in thin-wall tubes can be adequately modeled 
by a viscoplastic block undergoing overall adiabatic simple shearing deformations. we investigate the effect 
of modeling the viscoplastic response of the material by a-power law. and flow rules proposed by Litonski, 
Bodner and Partom, and Johnson and Cook. Each of these flow rules is first calibrated by using the test 
data at a nominal strain-rate of 3300 s-‘. Then predictions from the use of these flow rules at nominal 
strain-rates of 1400 s-’ and 1600 s-’ are compared with the experimental findings. It is found that the 
Bodner-Partom law and the dipolar theory proposed by Wright and Batra predict reasonably well the 
main features of the shear band formation in a HY-100 steel. 

1. INTRODUCTION 

THE DEVELOPMENT of shear bands in metals undergoing plastic deformations at high 
strain-rates usually precedes shear fractures. For this and other reasons their study 
has received considerable attention during the last ten years. ROGERS (1983) and 
TIMOTHY ( 1987) have surveyed various aspects of shear banding. BAI ( 198 I), CLIFTON 

(1980) and BURNS (1985) among others have investigated conditions which will lead 
to the growth or decay of perturbations superimposed on a viscoplastic body deformed 
homogeneously in simple shear. MOLINARI and CLIFTON (1987), TZAVARAS (1987) 

and WRIGHT (1990) have studied the problem in greater detail. For rigid/perfectly 
plastic materials, WRIGHT (1990) has developed a criterion that ranks materials 
according to their tendency to form adiabatic shear bands. 

The numerical study of shear banding has been conducted, among others, by 
SHAWKI et al. (1983) WRIGHT and BATRA (1985) BATRA (1987). BATRA and KIM 

(1990), ANAND et al. (1988), NEEDLEMAN (1989), LEMONDS and NEEDLEMAN (1986a, 

1986b), and BATRA and LIU (1989). These works have employed different viscoplastic 
flow rules and have examined, qualitatively, different aspects of shear banding in 
simple shearing and plane-strain compression problems. A material inhomogeneity 
or defect has been simulated by either introducing a temperature perturbation or 
assuming the existence of weak material at the site of the defect. 
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Most of the earlier experimental work (e.g. ZENER and HOLLOMON. 1944: Moss. 
1981 ; COSTIN et al.. 1980) has reported observations made after the shear band had 
formed. Recently HARTLEY et al. (1987), GIOVANOLA (1987), and MARCHANI) and 
DUFFY (1988) have given histories of the temperature and strain within a band as it 
develops. This facilitates a detailed comparison of the numerical and experimental 
results undertaken here. We presume that the torsional experiments of MARCHAND 
and DUFFY (1988) on thin-wall steel tubes can be analysed by studying the ther- 
momechanical deformations of a viscoplastic block undergoing overall adiabatic 
simple shearing deformations. We consider four different flow rules, namely the power 
law (e.g. see SHAWKI et al., 1983), and those due to LITONSKI (1977). BODNER and 
PARTOM (1975), and JOHNSOX and COOK (1983). Also, because of the presence of steep 
strain gradients near the edges of the shear band, we consider the effect of including 
strain gradients and the corresponding dipolar stresses in the analysis. We note that 
WRIGHT and BATRA (1987), COLEMAN and HODCDON (1985), and ZBIB and AIFANTIS 
(1988) have considered the effect of strain gradients in their works. DILLON and 
KRATOCHVIL (1970) motivated the consideration of strain gradients and dipolar 
stresses as one way to account for the interaction among dislocations. 

The computed results show that the dipolar theory predicts, quantitatively, various 
experimentally observed features of shear banding very well. The Bodner-Partom law 
for nonpolar materials also predicts well the initial growth of the shear band. Other 
flow rules fail to predict, in a noticeable way, one or more aspects of experimental 
results. This should not be taken as the final word for these viscoplastic laws since 
our calibration technique used to find values of various material parameters involves 
solving a nonlinear coupled thermomechanical initial-boundary-value problem and 
we may get the same stress-strain curve for different combinations of the values of 
material parameters. Nevertheless, the computed results do favor exploring further 

refinements of the dipolar theory and the Bodner-Partom law. 

2. FORMULATION OF THE PROBLEM 

A realistic modeling of MARcHAND and DUFFY’S (1988) experiments on the twisting 
of thin-wall tubes requires analysing three-dimensional thermomechanical dynamic 
deformations of a viscoplastic body. Postponing this ultimate goal and striving to find 
the most appropriate viscoplastic flow rule, we study here dynamic thermomechanical 
deformations of a viscoplastic block undergoing overall adiabatic simple shearing 
deformations. In terms of non-dimensional variables. the governing equations can be 
written as (e.g. see BATRA, 1987) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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ci, = I!I(s, CT, yp, d,,, 8, I). (2.6) 

These equations, written for dipolar materials, reduce to those for nonpolar materials 
when 1 is set equal to zero. Here p is the mass density, t’ is the velocity of a material 

particle in the direction of shearing, a superimposed dot indicates the material time 
derivative, s is the shearing stress, I a material characteristic length, 0 the dipolar 
stress, and a comma followed by y signifies partial differentiation with respect to y. 
Furthermore, k is the thermal conductivity, j, is the plastic strain-rate, (i, the dipolar 
plastic strain-rate, p the shear modulus, and 19 is the temperature change from that in 
the reference configuration. Whereas (2.1) expresses the balance of linear momentum 
and (2.2) the balance of internal energy, (2.3)-(2.6) are constitutive relations. The 
different viscoplastic flow rules differ in the functional forms of g and lz and are 
discussed below in the next section. 

For the initial conditions we take 

u(y, 0) = 0, S(J’, 0) = 0, G(J’, 0) = 0, 

0(y, 0) = ~(1 --_v~)~ eesY2. (2.7) 

That is, in the initial rest state of the block, it is taken to be stress free. The initial 
temperature distribution simulates the defect or inhomogeneity in the block assumed 
to be present near the pointy = 0 ; the value-of E represents the strength of the defect. 

We presume that the overall deformations of the block are adiabatic and the lower 
surface is at rest while the upper surface is assigned a velocity that increases linearly 
from 0 to 1 in time t, and then stays at the constant value of 1 .O. Thus, 

0,.(0, t) = 0,0,,.(1, t) = O,P(O, r) = 0, (2.8) 

v(1, 2) = r/t,, 0 < t d t,, 

=l, tat, (2.9) 

and for dipolar materials, we also assume that 

a(0, t) = 0, a(1, t) = 0. (2.10) 

Computations for the domain - 1 < y < 1 and with boundary conditions a( - 1, I) = 0, 
CJ( 1, t) = 0 have given ~(0, t) = 0. 

3. VISCOPLASTIC FLOW RULES 

3.1. Litonski’s law for nonpolar and dipolar materials 

WRIGHT and BATRA (1987) generalized the constitutive relation proposed by LITON- 

SKI (1977) to be applicable to nonpolar and dipolar materials. They assumed that 

(3.1) 

and postulated that 
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& = (s*+fJ*)i,‘*, (3.3) 

lj = 12s: I( > 1+ ; “. 
0 

(3.4) 

Here IJ may be viewed as an internal variable that describes the work hardening of 
the material. Its evolution is given by (3.4). In (3.2), (1 -x0) describes the softening 
of the material due to its heating, h and m characterize its strain-rate hardening, and 
$. and n its work hardening. Note that the rate of growth of II, is proportional to the 
plastic working. Besides the yield stress in a quasistatic simple shearing test which 

has been used to non-dimensionalize stress-like quantities, there are five material 
parameters a, b, nz, i. and n. For dipolar materials, we also need to specify I. 

In (3.2)-(3.4) it is implicitly assumed that 

s, = (l-c&) 1+* 
n 

( 1 $0 
(3.5) 

describes the loading surface, and if the local state given by (s, (T, $, 0) lies inside or 
on this surface, the plastic strain-rate and the dipolar plastic strain-rate vanish. 

3.2. Power law> 

For nonpolar materials, COSTIN et al. (1980) and MARCHAND and DUFFY (1988) 
have described the dynamic stress-strain curve for steels as 

(3.6) 

Here yr is the strain at yield in a quasistatic simple shear test for which j0 = 10-j s ‘, 
O. is the reference temperature and 8 the current temperature of a material particle in 
degrees Kelvin. In order to use the power law, we assumed that there is no loading 

surface and that 

(3.7) 

Thus in addition to the yield stress in a quasistatic simple shear test, there are five 
material parameters jio, yr, m, n and 1’. 

3.3. Bodner-Partom lall’ 

For nonpolar materials undergoing simple shearing deformations, the constitutive 
relation proposed by BODNER and PARTOM (1975) can be written as 
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(3.8) 

K= K,-(K,-K,)exp(-mW,). (3.9) 

Here 0 is the absolute temperature of a material particle, W, is the plastic work done, 
and K may be considered as an internal variable, Do is the limiting value of the plastic 
strain-rate and is generally set equal to 1 O* s- ‘. Besides Do, we need to specify a, K,, 
KO, m and b to characterize the material. We note that there is no loading or yield 
surface assumed in this case also. 

3.4. Johnson-Cook law 

JOHNSON and COOK (1983) tested several materials in simple shear and compression 

at different strain-rates and found that 

9, = exp 
[i (A+&&-~~) -1-O 111 c ’ (3.10) 

T = Co- 4M~m - 44, (3.11) 

describe well the test data. Here A, B, n, ‘&, c and 8, are to be determined exper- 
imentally. For 8, equal to the melting temperature of the material and Q0 equal to 
the ambient temperature, they tabulated values of other parameters for several 
materials. The relation (3.10) is valid for nonpolar materials and presumes that there 
is no loading surface. 

4. CALIBRATION PROCEDURE 

4.1. Determination of material parameters 

For HY-100 structural steel, MARCHAND and DUFFY (1988) have given the dynamic 
and quasistatic shear stress-shear strain curves found at strain-rates of 3300 s- ’ and 
lop4 s- ’ respectively. They also reported the values of the exponents m. n and v for 
the power law. 

In order to calibrate the various flow rules against the same test data we solved, 
numerically, the initial-boundary value problem outline in Section 2 with 

S(Y,O) = 1.0, yr(y,o) = 0.012, v(y,o) = y, ecy,o) = ooc, & = 0, 

~(1, t) = 1.0, ~(0, t) = 0, e,..(O, t) = 0, e,.(l, t) = 0, p = 7860kg/m3, 

c = 473 J/kg”C, k = 49.73 W/m“C, H = 2.5 mm, v,, = 3300s~‘. 

Here H is the height of the block and v0 is the average applied strain-rate. With no 
initial temperature perturbation, the block deforms uniformly and homogeneously 
and the dipolar effects vanish identically. In order to keep to a minimum the number 
of parameters to be varied, we kept, as far as possible, the values of the strain- 
hardening exponent and the strain-rate hardening exponent equal to those given by 
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0.00 0.15 0.30 0.45 0.60 

Average Shear Strain 

FIG. 1. A comparison of the shear stress-shear strain curves computed by solving an initial-boundary value 
problem with different Row rules with the experimental stress-strain curve of Marchand and Duffy at a 
nominal strain-rate of 3300 s- ’ for a HY-IO0 structural steel. __ experimental, -..-.. Bodner-Partom. 

. Litonski (non-polar), --- Litonski (dipolar), ----- Power, ------Johnson-Cook. 

MARCHAND and DUFFY (1988), and adjusted the values of parameters describing the 
thermal softening of the material till the computed stress-strain curve came out close 
to that given by Marchand and Duffy. For curves depicted in Fig. 1, we used the 
following values of various material parameters. Note that these curves approximate 
closely the experimental curve well beyond the value of the nominal strain at which 
the peak in the stress occurs. 
(a) Litonski law for nonpolar and dipolar materials : 

FX = 0.00185/-C, $0 = 0.012, n=0.107. nz=O.O117, b= 104s, /=0.005. 

(b) Power law : 

3; r() = 1om4 ss’, ;qr = 0.012, (3” = 300K, 177 = 0.0117, n = 0.107, 1’ = -0.75. 

(c) Bodner-Partom law : 

a = 1200K, b = 0, K, = 3.95, K. = 3.21, m = 5.0, II,, = IO* s-l. 

(d) Johnson-Cook law : 

A = 0.45, B = 1.433, n = 0.107, 8,--8,, = 12OO”C, c1 = 0.7, c = 0.0277. 

We note that the computed curves mimic reasonably well the experimental one till 
the shear stress begins to drop catastrophically. This rapid drop of the shear stress 
with increasing shear strain starting with an average strain of 0.50 in the experimental 
stress-strain curve is due to the initiation and growth of a shear band. We need to 
simulate a defect in the specimen in order to reproduce this part of the curve. 
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FIG. 2. Shear stress-shear strain curves computed with different flow rules but with the same initial 
temperature perturbation. See Fig. 1 for the description of various curves. 

4.2. Determination of the size of the perturbation 

MARCHAND and DUFFY (1988) found that the thickness of their specimens was 
uniform in the circumferential direction but varied from 5%10% in the axial direction. 
This and possibly the slight variation in the material properties served as the triggering 
mechanism for the initiation of a shear band. Here we model the cumulative effect of 
these inhomogeneities by assuming a nonuniform initial temperature distribution as 
given by Eq. (2.7). BATRA and Lru (1990) have shown that different ways of modeling 
a material inhomogeneity give similar results. 

Ideally, the same value of E in (2.7) when used with different flow rules should 
initiate a shear band, as indicated by the rapid drop of the shear stress, at the value 
of the nominal strain observed experimentally. Unfortunately, as shown in Fig. 2. for 
E = 1 “C, different flow rules predict shear band initiation at widely different values of 
the nominal strain. No value of E could be found that will cause the shear band to 
initiate at the same value of the nominal strain with the different flow rules. We thus 
have the following two choices. One, to use different values of e with the various flow 
rules and the other, to fix E and find the values of material parameters so as to match 
the computed stress-strain curves with and without the temperature perturbation 
with the corresponding experimental ones. This would necessitate changing the values 
of the strain hardening exponent and/or strain-rate hardening exponent also. This 
program, though feasible, is very arduous and could be interpreted as manipulating 
parameters to obtain the desired results. We note in passing that for presumably the 

same experimental data, HARTLEY et al. (1987), KLEPACZKO et al. (1987), and 
MOLINARI and CLIFTON (1987), have given different values of the strain hardening 
exponent, strain-rate hardening exponent and the thermal softening exponent in the 
power law. This alludes to the difficulty in obtaining values of various material 
parameters. Here we adopt the first approach and find E so that different flow rules 
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cause the band to initiate at approximately the same value of the nominal strain. This 

is justifiable because we compare computed results with experimental findings mostly 
during the growth of the localization process, i.e. post initiation period. Also, we 
note that the calibration is done at a nominal strain-rate of 3300 s- ‘, and the com- 
parison of results is made for deformations occurring at nominal strains of 1600 se ’ 
and 1400 s- ‘. For an assigned value of E, the initial-boundary value problem outlined in 
Section 2 with t, = 0.033 was solved by the finite element method. Values of E equal 
to 1°C 2’C, 5°C and 9°C for the Litonski law for nonpolar and dipolar materials, 
power law, the Bodner-Partom law and the Johnson-Cook law, respectively, result 
in stress-strain curves shown in Fig. 3. Subsequently. these values of E for the 
various flow rules were used. 

5. COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENTAL FINDINGS 

The curves plotted in Fig. 3 vividly reveal that until the time the shear stress begins 
to drop rapidly, all of the flow rules considered predict material behavior in reasonable 
agreement with the experimental observations. For nonpolar materials Litonski’s law, 
the power law and the Johnson-Cook law give essentially a catastrophic drop in the 
shear stress with virtually no increase in the nominal shear strain. This does not agree 
with the experimental data since Marchand and Duffy observed that during the drop 
of the shear stress, the nominal strain increases by approximately 5%. The Litonski 
law for dipolar materials and the Bodner-Partom law for nonpolar materials do 
predict the gradual drop in the shear stress in agreement with the experimental data. 
However, for the Bodner-Partom law the shear stress does not drop as much as it 

1.80 

50 

Average Shear Strain 

FIG. 3. Shear stress-shear strain curves computed with different tlow rules and with different initial 
temperature perturbation. The objective is to find the size of the initial temperature perturbation in order 
to initiate a rapid drop of the shear stress at an average strain close to that found experimentally. See Fig. 

1 for the description of various curves. 
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FIG. 4. Growth of the local shear strain within the band as the specimen deforms. See Fig. I for the 
description of various curves. The experimental data points are denoted by a A. 

does during the tests. The computed value of the shear stress reaches a plateau. Since 
curves plotted in Fig. 3 were for calibration purposes, these remarks should be 
regarded as general observations rather than a test of the validity of any of the flow 

rules. 
For a nominal strain-rate of 1600 s- ‘, Marchand and Duffy have also given values 

of the shear strain within the band at five different values of the nominal strain. We 
note that each data point was obtained in a different test and that explains the rather 
noticeable difference in the values of the local strain within the band for essentially 
the same value of the nominal strain for the last two data points. These and the 
corresponding numerically computed results with the different flow rules are plotted 
in Fig. 4. Whereas the Litonski law, the power law and the Johnson-Cook law give 
a rapid increase in the local strain once a shear band initiates, the Bodner-Partom 
law and the Litonski law for dipolar materials give general trends in agreement with 
the experimental data. We should add that the values of the material parameters and 
the size of the temperature perturbation were those found earlier and outlined in the 
preceding section. Also, the computed local strain equals the strain at the center. 

With the power law and the Johnson-Cook law, the plastic strain started to oscillate 
during the time the shear stress was dropping. This was earlier pointed out by BATRA 

and KIM (1990) and has also been noticed by WRIGHT and WALTER (1989). A possible 
explanation for this is the interplay between the material hardening due to the strain 
and strain-rate effects and the thermal softening. This explains the discontinuities in 
the curves computed with these two flow rules. 

The experimental data points plotted in Fig. 5 were taken from the data given in 
table 4 of Marchand and Duffy’s paper. Each data point represents a different test 
performed at an average strain-rate of approximately 1600 s- ‘. Since the nominal 
strain y,*& at which the shear stress attained the maximum value s,,, is different in 
each test we have plotted in Fig. 5 y_/y&, vs s/s,,, during the time the shear stress is 
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Shear Stress / Mow. Shear Stress 

FIG. 5. Plot of normalized shear strain vs the normalized shear stress during the time shear stress is dropping 
with increasing strain. See Fig. 1 for the description of various curves. 

dropping. There is too much scatter in the experimental data to draw any conclusions. 
Since test points 2 and 3 have abscissa values 0.6667 and 0.6546, we take the midpoint 
P on the line joining these two points as representing the average of the results for 
these two tests. If we take the smooth curve passing through the test point I, point P 
and the midpoint of the line joining points 5 and 6, we obtain a curve essentially 
parallel to that computed with the Bodner-Partom law and the Litonski law for 
dipolar materials. The scarcity of the available experimental data makes a better 
comparison difficult at this time. 

Figures 68 depict. respectively, the spatial variation of the plastic strain, the temper- 
ature and the flux of linear momentum when s/s,,,,, = 0.667 and IjaVg = 1600 s- ‘. 
We note that the flux of linear momentum equals the shear stress for nonpolar 
materials and (s---g,,) for dipolar materials. By the time the momentum flux drops 
to two-thirds of its maximum value. the shear band should have well developed. In 
order to highlight the variation of the shear strain. temperature and the shear stress 
within and near the region of localization of the deformation, we have plotted these 
quantities on an expanded scale in the region around the shear band center. Both the 
Johnson-Cook law and the Litonski law for nonpolar materials predict a rather sharp 
drop in the shear strain at the edges of the band. The Litonski law for dipolar materials 
gives nearly constant values of the temperature and shear strain within the band. The 
power law and the Bodner-Partom law give a rather gradual drop of the shear strain 
and the temperature with the distance from the center of the band. With the dipolar 
theory the momentum flux takes on the least value at the band center and increases 
rapidly as we move away from the center and then decreases and stays constant 
through most of the specimen. The Johnson-Cook law gives a slightly higher value 
of the shear stress at the center of the band as compared to that at the specimen 
boundary and the rate of change of the shear stress is constant. With the other flow 
rules the computed values of the shear stress came out to be essentially constant 
throughout the specimen. 
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FIG. 6. Spatial variation of the plastic strain when s/s,,, - 0.667. See Fig. I for the description of various 
curves. 

Defining the band width as the width of the region over which the plastic shear 
strain varies by no more than 5% of its value at the center, the computed bandwidth 
with the Litonski law, the power law, the Bodner-Partom law, the Johnson-Cook 
law, and the Litonski law for dipolar materials is found to be 2 pm, 14 pm, 14 pm, 6 
pm and 51 pm respectively. For s/s,,, = 0.66, Marchand and Duffy found the band- 
width to be between 20 pm and 55 pm depending upon the point of observation 
around the circumference of the tube. This comparison favors the Bodner-Partom 
law, the power law and the Litonski law for dipolar materials over the other two flow 
rules. 

In another series of tests on HY-100 steel conducted at a nominal strain-rate of 
approximately 1400 s-‘, Marchand and Duffy measured the temperature within the 
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FIG. 7. Spatial variation of the temperature when s/s,,,,, = 0.667. See Fig. 1 for the description of various 
curves. The temperature in .‘C is obtained by multiplying the nondimensional value by 108.9. 

band. The data taken from table 5 of their paper is plotted in Fig. 9 along with the 
computed results for yave = 1400 s- ‘. They measured the temperature over a spot 

width of 35 pm which is larger than the band width. In plotting their data. we have 
assumed that the reported temperature in the band occurred at the maximum value 
of the nominal strain in a test. In order to minimize the variation in the results among 
different tests we have plotted the measured maximum temperature in the band vs 

L,lY&, . Even though it is hard to draw a smooth curve through the test data, the 
detector output plotted in fig. 19 of Marchand and Duffy’s paper reveals that the 
temperature rises during the last stage of the localization process when the shear stress 
is dropping and that the increase in the average strain during the time temperature 
rises is about 8%. This observation is in closer agreement with the results computed 
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FIG. 8. Spatial description of the flux of linear momentum when s/s,,, _ - 0.667. See Fig. 1 for the description 
of various curves. 

with the Litonski law for dipolar materials. Also, the computed temperature rise of 
539°C with this flow rule when Y&_ * = 1.91 agrees well with the average value of 
475°C found in the eight tests. We should note that the computed temperature within 
the band of 50 pm width came out to be nearly uniform. Marchand and Duffy 
estimated that the maximum temperature in the band reached a little over 9OO’C. 
Since we do not have any failure criterion included in our work, it is hard to decide 
when to stop the computations and thus estimate the maximum temperature rise. 

Figure 10 shows how the temperature at the center increases after the peak in the 
shear stress has been attained. It is interesting to note that the temperature, when the 
shear stress attains the maximum value, is essentially the same for all flow rules. 
However,the rate of rise of temperature with the drop in the shear stress for the 
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Shear Strain / Shear Strain at Mar. S 

FIG. 9. Temperature at the center vs the normalized shear strain. The experimental data points are denoted 
by a A. See Fig. I for the description of various curves. 

Johnson-Cook law. the power law and the Bodner-Partom law is nearly the same 
but differs significantly from that for the Litonski law for nonpolar and dipolar 
materials. The transition in the slope of the curves near s/smax = 1 .O indicates the point 
when the rapid drop in the shear stress occurs and the plastic strain rate rises sharply. 
Thus, the computed temperature rise will depend upon the point when the material 
is taken to have failed. As pointed out by Marchand and Duffy, once the shear stress 
begins to collapse, the load carrying capacity of the member is drastically reduced 
and the material has failed. 

0.85 0.90 0.95 

Shear Strain / Shear Strain at Max. S 

FIG. 10. The evolution of the temperature at the center vs the normalized shear strain during the time the 
shear stress is dropping. See Fig. 1 for the description of various curves. 
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6. CONCLUSIONS 

873 

We have modeled the dynamic torsional tests of Marchand and Duffy on thin-wall 
steel tubes by analysing the dynamic deformations of a viscoplastic block undergoing 
overall simple shearing deformations. A material defect or inhomogeneity has been 
represented by an initial nonuniform temperature distribution. The focus of the work 
has been to compare predictions of the various flow rules with the experimental 
findings during the growth of a shear band. For this purpose, we have also used a 
dipolar theory and Litonski’s flow rule as modified by Wright and Batra and studied 
extensively by Batra and his coworkers. Whereas it maybe premature to draw definitive 
conclusions, the Bodner-Partom law and the dipolar theory predict many features of 
shear banding that are in closer agreement with the experimental observations than 
the predictions from the power law, the Johnson-Cook law and the Litonski law for 
nonpolar materials. We note that when finding the values of material parameters for 
different flow rules, we kept the value of the strain hardening exponent and the strain- 
rate hardening exponent as close to the test value as possible and varied the parameter 
describing the thermal softening of the material till the computed stress-strain curve 
essentially replicated the corresponding experimental curve for nominal strain-rate 
equal to 3300 s- ‘. With values of material parameters kept unchanged, computed 
results for nominal strains equal to 1600 s- ’ and 1400 s- ’ were compared with the 
corresponding experimental findings. 
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