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A. J. M. Ferreira, C. M. C. Roque, and R. M. N. Jorge
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The analysis of static deformations of functionally graded plates
is performed by using the collocation method, the radial basis func-
tions and a higher-order shear deformation theory. The collocation
method is truly meshless, allowing a fast and simple domain and
boundary discretization. We select the shape parameter in the ra-
dial basis functions by an optimization procedure based on the
cross-validation technique, and use the Mori-Tanaka homogeniza-
tion technique to deduce effective properties of functionally graded
materials. Numerical tests show that the method is reliable, robust
and produces accurate results.

Keywords meshfree method, radial basis functions, shape parameter
optimization, third-order shear deformation theory

1. INTRODUCTION
In this paper, we use a meshless collocation method based on

the radial basis functions (RBFs) for analysing static deforma-
tions of functionally graded (FG) plates with the shape parameter
in the basis function optimized adaptively.

The RBFs were first used by Hardy [1,2] for the interpolation
of geographical scattered data and later used by Kansa [3,4] for
the solution of partial differential equations (PDEs). Many RBFs
are reviewed in Liu [5], Fasshauer [6], Powell [7], and Wendland
[8, 9], among others. The method has also been applied to the
analysis of several engineering problems [10–12].

In functionally graded materials (FGMs), material properties
vary continuously as opposed to those in laminated composites
where such variation is discontinuous at layer interfaces. In an
FGM the material properties are varied by changing the volume
fractions of the constituents. An example of such materials is
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chanical and Industrial Engineering, University of Porta, Rua Dr.
Roberto Frias, 4200-465 Porto, Portugal. E-mail: ferreira@fe.up.pt

a FG coating deposited on top of a metallic substrate [13, 14].
FG plates have been studied by several authors [15–24] analyt-
ically [25] and by using either first-order or third-order shear
deformation plate theories (FSDT or TSDT respectively) and
finite element interpolation. Here we study FG plates by us-
ing a TSDT [15] and an interpolation scheme based on global
multiquadrics [3,4,26–28]. The TSDT includes some of the as-
sumptions of the classical plate theory by expanding the in-plane
FSDT displacements (u, v) as a cubic function of the thickness
coordinate.

The FG plate is assumed to be made of two interspaced
isotropic constituents and the macroscopic response of the plate
is assumed to be isotropic. Furthermore, the volume fractions
of the two constituents are assumed to vary in the thickness
direction only.

Meshless methods such as the element-free Galerkin [29,30],
hp-clouds [31], the diffuse element [32], the partition of unity
finite element [33], the natural element [34] and the meshless lo-
cal Petrov-Galerkin [35, 36] have gained popularity for finding
approximate solutions of boundary-value problems due to the
ease of node placement and accuracy of computed results. The
present global RBF method [3,4,28] neither requires a mesh nor
evaluation of domain integrals, rather it interpolates by the col-
location method the differential equations of the problem. The
essential boundary conditions are easily satisfied by colloca-
tion at the boundary nodes. This approach has been successfully
applied to the analysis of engineering problems [10,11,27]. Re-
cently the RBF method was applied with excellent results to
composite beams and plates [37, 38].

In previous research by the authors the shape parameter in
the global RBFs was selected based on trial and error. Here we
select this shape (or shift) parameter adaptively based on the
cross-validation technique, suggested by Rippa [39].

The rest of the paper is organized as follows. Section 2
gives a formulation of the RBF method, and Section 3 a strat-
egy to find the optimal value of the shape parameter in RBFs.
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Section 4 introduces the interpolation of governing equations
and boundary conditions. Section 5 illustrates how to interpo-
late the boundary-value problem (BVP) with RBFs. Results of
the analysis of static deformations of a simply-supported square
FG plate are presented in Section 6 and compared with solutions
obtained from other methods. Conclusions are summarized in
Section 7.

2. THE RADIAL BASIS FUNCTION (RBF) METHOD
The RBF method relies on the Euclidean distance between

two points and in some cases also on a user-defined shape pa-
rameter that is the object of various discussions. The value of
this parameter not only defines the RBFs but also may make the
resulting algebraic problem ill-conditioned giving poor quality
solutions.

The numerical solution of partial differential equations
(PDEs) is traditionally found by finite element methods, finite
volume methods or finite difference methods. All of these meth-
ods are based on local interpolation strategies and depend on a
mesh for local approximation. In these methods although the in-
terpolation functions are continuous across inter-element bound-
aries, some of their partial derivatives are generally discontinu-
ous [40–42].

An alternative approach for solving PDEs is based on gen-
erally discontinuous RBFs. An RBF depends only on the dis-
tance between two points and is of the form g(‖x j − x‖) where
‖x j − x‖ is the Euclidean norm. The RBF may also depend on
a shape parameter c, in which case g(‖x j − x‖) is replaced by
g(‖x j − x‖, c) [3, 4, 6, 27, 28, 43].

Consider a set of nodes x1, x2, . . . , xN ∈ � ⊂ R
n . The radial

basis functions centered at x j are defined as

g j (x) ≡ g(‖x j − x‖) ∈ R
n, j = 1, . . . , N (1)

Some of the most common RBFs are [3, 4, 6, 27, 28]:

Multiquadrics: g j (x) = (‖x j − x‖ + c2)
1
2 (2)

Inverse Multiquadrics: g j (x) = (‖x j − x‖ + c2)−
1
2 (3)

Gaussians: g j (x) = e−c2‖x j −x‖2
(4)

Thin Plate Splines: g j (x) = ‖x j − x‖2 log ‖x j − x‖
(5)

where c is a user-defined shape parameter. Here we use the
multiquadric RBFs and select c adaptively.

The RBFs are insensitive to spatial dimensions, making the
implementation of the method much easier than that of, e.g.,
finite elements [3, 4]. An important feature of the RBF method
is that it does not require a mesh. The only geometric properties
needed in a RBF approximation are the distances between two
points. Working with higher dimensional problems is not diffi-
cult as distances are easy to compute in any number of space
dimensions.

Here we use Kansa’s unsymmetric collocation method [3,4].
Consider a boundary-value problem defined on a domain � ⊂
R

n and a linear elliptic PDE of the form

Lu(x) = �(x) ⊂ R
n (6)

Bu(x)|∂� = �(x) ∈ R
n (7)

where ∂� represents the boundary of the domain �. We use
NB points on the boundary (x j , j = 1, . . . , NB) and (N − NB)
points in the interior (x j , j = NB + 1, . . . , N ).

Let the RBF interpolant to the solution u(x) be

s(x, c) =
N∑

j=1

α j g(‖x j − x‖, c) (8)

Collocation of the boundary data at boundary points and of
the PDE at interior points leads to the following equations:

sB(xi , c) ≡
N∑

j=1

α j Bg(‖x j − xi‖, c) = �(xi ), i = 1, . . . , NB

(9)

sL (xi , c) ≡
N∑

j=1

α j Lg(‖x j − xi‖, c)

= �(xi ), i = NB + 1, . . . , N

(10)

where �(xi ) and �(xi ) are computed from the given functions
�(x) and�(x) respectively. Equations (9) and (10) can be written
in the matrix form as [

Bg

Lg

]
[α] =

[
�

�

]
(11)

or

[
L

]
[α] = [

λ
]

(12)

It has been shown that for inappropriate values of c, the un-
symmetric coefficient matrix L can become ill-conditioned or
even singular [44].

Here we compute an optimal value of the shape parameter c
that does not solve the ill-conditioning issue, but avoids the trial
and error technique.

3. COMPUTING AN OPTIMAL c
An optimal shape parameter c can be obtained for an inter-

polation problem Aα = f, A = g(||x j − xi , c||), by the leave-
one-out cross validation technique in regression analysis. The
problem can be formulated as finding c in order to minimize a
cost function given by the norm of an error vector E(c) with
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components

Ei (c) = fi −
N∑

j=1, j �=i

α
(i)
j g(||x j − xi , c||) (13)

Here
∑N

j=1, j �=i α
(i)
j g(||x j − xi , c||) is the function value pre-

dicted at the i-th data point using RBF interpolation based on
a set of data that excludes the i-th point. From a computational
point of view this cross-validation method appears to be very
costly.

However, Rippa [39] has shown that this algorithm re-
quires on the order of N 3 operations—the same order of op-
erations required to solve the linear system for the interpolation
problem.

According to Rippa the components of the error vector can
be computed—for an interpolation problem—by the following
more efficient formula:

Ei (c) = αi

A−1
i,i

(14)

where αi is the i-th coefficient for the full interpolation prob-
lem and A−1

i,i is the i-th diagonal element of the inverse of the
corresponding interpolation matrix A. The same formula seems
to have been found by Wang [45]. While Rippa tried different
norms in his experiments and concluded that the �1-norm of the
error vector leads to a better prediction of the optimal c-value,
Wang used the �2-norm. Our numerical results below are based
on the use of the �1-norm.

However, both methods mentioned above use an interpola-
tion technique and rely on data given by a function f . In our
boundary-value problem (BVP) we have a set of partial differ-
ential equations in the domain and a set of boundary conditions
on the boundary nodes.

Since the only “data” we are given come from the right side
λ in Eq. (12) we cannot base the error vector for the cross-
validation algorithm on an actual error. Instead, we use the resid-
ual error, i.e.,

Ei (c) = λi −
N∑

j=1, j �=i

α
(i)
j Lg(||x j − xi , c||) (15)

This idea is quite natural and its use has been justified be-
fore in the context of greedy adaptive algorithms for both RBF
interpolation and collocation problems [46, 47] and as a guide
for finding an optimal shape parameter for collocation prob-
lems [48].

Now the generalization of the Rippa cross-validation algo-
rithm is straightforward. Our BVP is given by Eq. (12). We can

use the following formula that is analogous to Eq. (14):

Ei (c) = αi

L−1
i,i

(16)

where αi is the i-th coefficient for the full collocation prob-
lem (12) and L−1

i,i is the i-th diagonal element of the inverse of
the corresponding collocation matrix L. Having the cost func-
tion, we use the MATLAB function fminbnd to find a local
minimum.

The present approach provides excellent results for static de-
formations of FG plates, as can be seen from results presented
in Section 6.

4. THIRD-ORDER SHEAR DEFORMATION PLATE
THEORY (TSDT)

The TSDT [49] is based on the same assumptions as
the classical plate theory and the FSDT, except that the
assumption of straightness and normality of a transverse
normal after deformation is relaxed by expanding the in-
plane displacements (u, v) as cubic functions of the thick-
ness coordinate. That is, the displacement field is written
as

u(x, y, z) = uo(x, y) + zθx (x, y)

− 4

3h2
z3

(
θx (x, y) + ∂wo(x, y)

∂x

)
(17)

v(x, y, z) = vo(x, y) + zθy(x, y)

− 4

3h2
z3

(
θy(x, y) + ∂wo(x, y)

∂y

)
(18)

w(x, y, z) = wo(x, y) (19)

For infinitesimal deformations, the strain-displacement relations
are:

εxx = ∂u

∂x
, εyy = ∂v

∂y
, γxy = ∂u

∂y
+ ∂v

∂x
,

γxz = ∂u

∂z
+ ∂w

∂x
, γyz = ∂v

∂z
+ ∂w

∂y
(20)

Thus strains can be expressed as




εxx

εyy

γxy


 =




ε(0)
xx

ε(0)
yy

γ(0)
xy


 + z




ε(1)
xx

ε(1)
yy

γ(1)
xy


 + z3




ε(3)
xx

ε(3)
yy

γ(3)
xy


 (21)

{
γxz

γyz

}
=

{
γ(0)

xz

γ(0)
yz

}
+ z2

{
γ(2)

xz

γ(2)
yz

}
(22)
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where




ε(0)
xx

ε(0)
yy

γ(0)
xy


 =




∂uo

∂x
∂vo

∂y
∂uo

∂y
+ ∂vo

∂x




(23)




ε(1)
xx

ε(1)
yy

γ(1)
xy


 =




∂θx

∂x
∂θy

∂y
∂θx

∂y
+ ∂θy

∂x




(24)




ε(3)
xx

ε(3)
yy

γ(3)
xy


 = −c1




∂θx

∂x
+ ∂2wo

∂x2

∂θy

∂y
+ ∂2wo

∂y2

∂θx

∂y
+ ∂θy

∂x
+ 2

∂2wo

∂x∂y




(25)

{
γ(0)

xz

γ(0)
yz

}
=




∂wo

∂x
+ θx

∂wo

∂y
+ θy


 (26)

{
γ(2)

xz

γ(2)
yz

}
= −c2




∂wo

∂x
+ θx

∂wo

∂y
+ θy


 (27)

and c1 = 4
3h2 , c2 = 3c1.

The equilibrium equations of the TSDT are derived from the
principle of virtual displacements. The virtual strain energy δU ,
and the virtual work done by applied forces δV are given by

δU =
∫

�0

{ ∫ h/2

−h/2

[
σxx

(
δε(0)

xx + zδε(1)
xx − c1z3δε(3)

xx

)
+ σyy

(
δε(0)

yy + zδε(1)
yy − c1z3δε(3)

yy

)
+ τxy

(
δγ(0)

xy + zδγ(1)
xy − c1z3δγ(3)

xy

) + τxz

×(δγ(0)
xz + z2δγ(2)

xz ) + τyz
(
δγ(0)

yz + z2δγ(2)
yz

)]
dz

}
dx dy

=
∫

�0

(
Nxxδε(0)

xx + Mxxδε(1)
xx − c1 Pxxδε(3)

xx + Nyyδε(0)
yy

+ Myyδε(1)
yy − c1 Pyyδε(3)

yy + Nxyδγ(0)
xy

+ Mxyδγ(1)
xy − c1 Pxyδγ(3)

xy + Qxδγ(0)
xz + Rxδγ(2)

xz

+ Qyδγ(0)
yz + Ryδγ(2)

yz

)
dx dy (28)

and

δV = −
∫

�0

qδwo dxdy (29)

where �0 denotes the midplane of the laminate, q is the resultant
of the external distributed load applied on the top and the bottom
surfaces of the plate, and


Nαβ

Mαβ

Pαβ


 =

∫ h/2

−h/2
σαβ




1
z
z3


 dz (30)

{
Qα

Rα

}
=

∫ h/2

−h/2
σαz

{
1
z2

}
dz (31)

where α, β take the symbols x, y.
Substituting for δU and δV into the virtual work statement

δU −δV = 0, noting that the virtual strains can be expressed in
terms of the generalized displacements, integrating by parts to
transfer derivatives from the generalized virtual displacements to
the corresponding kinetic variables, and using the fundamental
lemma of the calculus of variations, we obtain the following
Euler-Lagrange equations [50]:

∂Nxx

∂x
+ ∂Nxy

∂y
= 0

∂Nxy

∂x
+ ∂Nyy

∂y
= 0

∂Qx

∂x
+ ∂Q̄y

∂y
+ q = 0

∂M̄xx

∂x
+ ∂M̄xy

∂y
− Q̄x = 0

∂M̄xy

∂x
+ ∂M̄yy

∂y
− Q̄y = 0 (32)

with

M̄αβ = Mαβ − 4

3h2
Pαβ (33)

Q̄α = Qα − 4

h2
Rα (34)

The stress-strain relations for a linear elastic isotropic plate with
σzz = 0 are



σx

σy

τyx

τyz

τxz




=




Q11 Q12 0 0 0

Q12 Q11 0 0 0

0 0 Q33 0 0

0 0 0 Q44 0

0 0 0 0 Q55







εx

εy

γyx

γyz

γxz




(35)

where the elastic constants Qi j are given by

Q11 = E

1 − ν2
; Q12 = νE

1 − ν2
;

Q33 = Q44 = Q55 = E

2(1 + ν)
(36)

E is Young’s modulus and ν Poisson’s ratio.
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The material properties E and ν at a point are determined
by the Mori-Tanaka homogenization technique. For a ran-
dom distribution of isotropic particles in an isotropic matrix,
the bulk modulus K , and the shear modulus G are given
by

K − K1

K2 − K1
= V2

1 + (1 − V2) K2−K1

K1+ 4
3 G1

(37)

G − G1

G2 − G1
= V2

1 + (1 − V2) G2−G1
G1+ f1

(38)

where f1 = G1(9K1+8G1)
6(K1+2G1) and subscripts 1 and 2 represent the

ceramic and the metal phases respectively. Young’s modulus and
Poisson’s ratio are related to the bulk and the shear moduli by

K = E

3(1 − 2ν)
(39)

G = E

2(1 + ν)
(40)

It is assumed that the volume fraction of the ceramic phase
varies only in the thickness direction according to the relation
V1 = ( 1

2 + z
h )

p
, where p is an exponent factor, h the plate thick-

ness, and −h/2 ≤ z ≤ h/2.
The Euler-Lagrange equations (32) written in terms of dis-

placements by substituting for strains from Eqs. (21)–(27), stress
resultants from Eqs. (30), (31), (33) and (34), and stresses from
Eq. (35) are

A11
∂2uo

∂x2
+ A12

∂2vo

∂y∂x
+ B11

∂2θx

∂x2
+ B12

∂2θy

∂y∂x

− 4

3h2
E11

(
∂2θx

∂x2
+ ∂3wo

∂x3

)
− 4

3h2
E12

(
∂2θy

∂y∂x
+ ∂3wo

∂y2∂x

)

+ A33

(
∂2uo

∂y2
+ ∂2vo

∂y∂x

)
+ B33

(
∂2θx

∂y2
+ ∂2θy

∂y∂x

)

− 4

3h2
E33

(
∂2θx

∂y2
+ ∂2θy

∂y∂x
+ 2

∂3wo

∂y2∂x

)
= 0 (41)

A33

(
∂2uo

∂y∂x
+ ∂2vo

∂x2

)
+ B33

(
∂2θx

∂y∂x
+ ∂2θy

∂x2

)

− 4

3h2
E33

(
∂2θx

∂y∂x
+ ∂2θy

∂x2
+ 2

∂3wo

∂y∂x2

)
+ A12

∂2uo

∂y∂x

+ A22
∂2vo

∂y2
+ B12

∂2θx

∂y∂x
+ B22

∂2θy

∂y2

− 4

3h2
E12

(
∂2θx

∂y∂x
+ ∂3wo

∂y∂x2

)

− 4

3h2
E22

(
∂2θy

∂y2
+ ∂3wo

∂y3

)
= 0 (42)

A55

(
∂θx

∂x
+ ∂2wo

∂x2

)
− 8

h2
D55

(
∂θx

∂x
+ ∂2wo

∂x2

)

+ 16

h4
F55

(
∂θx

∂x
+ ∂2wo

∂x2

)
+ A44

(
∂θy

∂y
+ ∂2wo

∂y2

)

− 8

h2
D44

(
∂θy

∂y
+ ∂2wo

∂y2

)
+ 16

h4
F44

(
∂θy

∂y
+ ∂2wo

∂y2

)

+ 4

3

[
E11

∂3uo

∂x3
+ E12

∂3vo

∂y∂x2
+ F11

∂3θx

∂x3
+ F12

∂3θy

∂y∂x2

− 4

3h2
H11

(
∂3θx

∂x3
+ ∂4wo

∂x4

)
− 4

3h2
H12

(
∂3θy

∂y∂x2
+ ∂4wo

∂y2∂x2

)

+ 2E33

(
∂3uo

∂y2∂x
+ ∂3vo

∂y∂x2

)
+ 2F33

(
∂3θx

∂y2∂x
+ ∂3θy

∂y∂x2

)

− 8

3h2
H33

(
∂3θx

∂y2∂x
+ ∂3θy

∂y∂x2
+ 2

∂4wo

∂y2∂x2

)
+ E12

∂3uo

∂y2∂x

+ E22
∂3vo

∂y3
+ F12

∂3θx

∂y2∂x
+ F22

∂3θy

∂y3
− 4

3h2
H12

(
∂3θx

∂y2∂x

+ ∂4wo

∂y2∂x2

)
− 4

3h2
H22

(
∂3θy

∂y3
+ ∂4wo

∂y4

) ]
1

h2
= −q (43)

− A55

(
θx + ∂wo

∂x

)
+ 8

h2
D55

(
θx + ∂wo

∂x

)

− 16

h4
F55

(
θx + ∂wo

∂x

)
+ B11

∂2uo

∂x2
+ B12

∂2vo

∂y∂x
+ D11

∂2θx

∂x2

+ D12
∂2θy

∂y∂x

4

3h2
F11

(
∂2θx

∂x2
+ ∂3wo

∂x3

)

− 4

3h2
F12

(
∂2θy

∂y∂x
+ ∂3wo

∂y2∂x

)
− 4

3

[
E11

∂2uo

∂x2
+ E12

∂2vo

∂y∂x

+ F11
∂2θx

∂x2
+ F12

∂2θy

∂y∂x
− 4

3h2
H11

(
∂2θx

∂x2
+ ∂3wo

∂x3

)

− 4

3h2
H12

(
∂2θy

∂y∂x
+ ∂3wo

∂y2∂x

)]
1

h2
+ B33

(
∂2uo

∂y2
+ ∂2vo

∂y∂x

)

+ D33

(
∂2θx

∂y2
+ ∂2θy

∂y∂x

)

− 4

3h2
F33

(
∂2θx

∂y2
+ ∂2θy

∂y∂x
+ 2

∂3wo

∂y2∂x

)

− 4

3

[
B33

(
∂2uo

∂y2
+ ∂vo

∂y∂x

)
+ F33

(
∂2θx

∂y2
+ ∂2θy

∂y∂x

)

− 4

3h2
H33

(
∂2θx

∂y2
+ ∂2θy

∂y∂x
+ 2

∂3wo

∂y2∂x

)]
1

h2
= 0 (44)

− A44

(
θy + ∂wo

∂y

)
+ 8

h2
D44

(
θy + ∂wo

∂y

)

− 16

h4
F44

(
θy + ∂wo

∂y

)
+ B12

∂2uo

∂y∂x
+ B22

∂2vo

∂y2

+ D12
∂2θx

∂y∂x
+ D22

∂2θy

∂y2
− 4

3h2
F12

(
∂2θx

∂y∂x
+ ∂3wo

∂y∂x2

)
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− 4

3h2
F22

(
∂2θy

∂y2
+ ∂3wo

∂y3

)
4

3

[
E12

∂2uo

∂y∂x
+ E22

∂2vo

∂y2

+ F12
∂2θx

∂y∂x
+ F22

∂2θy

∂y2
− 4

3h2
H12

(
∂2θx

∂y∂x
+ ∂3wo

∂y∂x2

)

− 4

3h2
H22

(
∂2θy

∂y2
+ ∂3wo

∂y3

) ]
1

h2
+ B33

(
∂2uo

∂y∂x
+ ∂2vo

∂x2

)

+ D33

(
∂2θx

∂y∂x
+ ∂2θy

∂x2

)

− 4

3h2
F33

(
∂2θx

∂y∂x
+ ∂2θy

∂x2
+ 2

∂3wo

∂y∂x2

)

− 4

3

[
E33

(
∂2uo

∂y∂x
+ ∂2vo

∂x2

)
+ F33

(
∂2θx

∂y∂x
+ ∂2θy

∂x2

)

− 4

3h2
H33

(
∂2θx

∂y∂x
+ ∂2θy

∂x2
+ 2

∂3wo

∂y∂x2

)]
1

h2
= 0 (45)

where

(Ai j , Bi j , Di j , Ei j , Fi j , Hi j ) =
∫ h

2

− h
2

Qi j (1, z, z2, z3, z4, z6)dz

(46)

5. INTERPOLATION WITH RADIAL BASIS FUNCTIONS
Using the RBFs, the governing differential Eqs. (41)–(45) are

interpolated, at each node i , as

N∑
j=1

α
uo
j

[
A11

∂
2g j

∂x2
+ A33

∂
2g j

∂y2

]
+

N∑
j=1

α
vo
j

[
(A12 + A33)

∂
2g j

∂y∂x

]

+
N∑

j=1

α
wo
j

[ (
− 8

3h2
E33 − 4

3h2
E12

)
∂

3g j

∂y2∂x
− 4

3h2
E11

∂
3g j

∂x3

]

+
N∑

j=1

α
θx
j

[ (
B11 − 4

3h2
E11

)
∂

2g j

∂x2
+

(
B33 − 4

3h2
E33

)
∂

2g j

∂y2

]

+
N∑

j=1

α
θy
j

[ (
B12 − 4

3h2
E12 + B33 − 4

3h2
E33

)
∂

2g j

∂y∂x

]
= 0 (47)

N∑
j=1

α
uo
j

[
(A33 + A12)

∂2g j

∂y∂x

]
+

N∑
j=1

α
vo
j

[
A33

∂2g j

∂x2
+ A22

∂2g j

∂y2

]

+
N∑

j=1

α
wo
j

[ (
− 8

3h2
E33 − 4

3h2
E12

)
∂

3g j

∂y∂x2
− 4

3h2
E22

∂3g j

∂y3

]

+
N∑

j=1

α
θx
j

[ (
B33 − 4

3h2
E33 + B12 − 4

3h2
E12

)
∂

2g j

∂y∂x

]

+
N∑

j=1

α
θy
j

[ (
B33 − 4

3h2
E33

)
∂2g j

∂x2

+
(

B22 − 4

3h2
E22

)
∂

2g j

∂y2

]
= 0 (48)

N∑
j=1

α
uo
j

[
4

3h2
E11

∂3g j

∂x3
+

(
8

3h2
E33 + 4

3h2
E12

)
∂3g j

∂y2∂x

]

+
N∑

j=1

α
vo
j

[
4

3h2
E22

∂3g j

∂y3
+

(
8

3h2
E33 + 4

3h2
E12

)
∂3g j

∂y∂x2

]

+
N∑

j=1

α
wo
j

[
− 16

9h4
H11

∂4g j

∂x4
− 16

9h4
H22

∂4g j

∂y4

+
(

− 8

h2
D55 + 16

h4
F55 + A55

)
∂2g j

∂x2

+
(

− 8

h2
D44 + 16

h4
F44 + A44

)
∂2g j

∂y2

+
(

− 32

9h4
H12 − 64

9h4
H33

)
∂4g j

∂x2∂y2

]

+
N∑

j=1

α
θx
j

[ (
A55 − 8

h2
D55 + 16

h4
F55

)
∂g j

∂x

+
(

4

3h2
F11 − 16

9h4
H11

)
∂3g j

∂x3

+
(

8

3h2
F33 + 4

3h2
F12 − 32

9h4
H33 − 16

9h4
H12

)
∂3g j

∂y2∂x

]

+
N∑

j=1

α
θy

j

[ (
16

h4
F44 + A44 − 8

h2
D44

)
∂g j

∂y

+
(

4

3h2
F12 − 16

9h4
H12 + 8

3h2
F33 − 32

9h4
H33

)
∂3g j

∂x2∂y

+
(

4

3h2
F22 − 16

9h4
H22

)
∂g j

∂y3

]
= −q (49)

N∑
j=1

α
uo
j

[(
− 4

3h2
E33 + E33

)
∂2g j

∂y2

+
(

− 4

3h2
E11 + B11

)
∂2g j

∂x2

]

+
N∑

j=1

α
vo
j

[(
− 4

3h2
E33 − 4

3h2
E12 + E33 + B12

)
∂2g j

∂y∂x

]

+
N∑

j=1

α
wo
j

[(
− 4

3h2
F11 + 16

9h4
H11

)
∂3g j

∂x3

+
(

− 8

3h2
F33 + 32

9h4
H33 + 16

9h4
H12 − 4

3h2
F12

)
∂3g j

∂x∂y2

+
(

− 16

h4
F55 + 8

h2
D55 − A55

)
∂g j

∂x

]

+
N∑

j=1

α
θx
j

[(
− 8

3h2
F11 + 16

9h4
H11 + D11

)
∂2g j

∂x2

+
(

16

9h4
H33 − 8

3h2
F33 + D33

)
∂2g j

∂y2
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+
(

− A55 − 16

h4
F55 + 8

h2
D55

)
g j

]

+
N∑

j=1

α
θy

j

[(
16

9h4
H33 − 8

3h2
F12 − 8

3h2
F33

+ 16

9h4
H12 + D33 + D12

)
∂2g j

∂y∂x

]
= 0 (50)

N∑
j=1

α
uo
j

[(
− 4

3h2
E33 + E33 − 4

3h2
E12 + B12

)
∂2g j

∂x∂y

]

+
N∑

j=1

α
vo
j

[(
− 4

3h2
E22 + B22

)
∂2g j

∂y2

+
(

− 4

3h2
E33 + E33

)
∂2g j

∂x2

]

+
N∑

j=1

α
wo
j

[(
− 4

3h2
F22 + 16

9h4
H22

)
∂3g j

∂y3

+
(

− 4

3h2
F12 + 16

9h4
H12 − 8

3h2
F33 + 32

9h4
H33

)
∂3g j

∂y∂x2

+
(

8

h2
D44 − 16

h4
F44 − A44

)
∂g j

∂y

]

+
N∑

j=1

α
θx
j

[(
16

9h4
H33 + D33 − 8

3h2
F12 + 16

9h4
H12

− 8

3h2
F33 + D12

)
∂2g j

∂x∂y

]

+
N∑

j=1

α
θy

j

[(
16

9h4
H22 − 8

3h2
F22 + D22

)
∂2g j

∂y2

+
(

D33 + 16

9h4
H33 − 8

3h2
F33

)
∂2g j

∂x2

+
(

− A44 − 16

h4
F44 + 8

h2
D44

)
g j

]
= 0 (51)

For each boundary node, we use the RBFs to interpolate the
corresponding boundary condition. For example at a simply sup-
ported edge x = a the five boundary conditions (note that in the
following equations, g j stands for g j ≡ g j (x = a), for simplic-
ity of notation)

w(x = a) = 0 (52)

v(x = a) = 0 (53)

θy(x = a) = 0 (54)

Nx (x=a) = A11
∂uo

∂x
+ A12

∂vo

∂y
+ B11

∂θx

∂x
+ B12

∂θy

∂y

− 4

3h2
E11

(
∂θx

∂x
+ ∂2wo

∂x2

)
− 4

3h2
E12

(
∂θy

∂y
+ ∂2wo

∂y2

)
= 0

(55)

M̄x (x=a) = B11
∂uo

∂x
+ B12

∂vo

∂y
+ D11

∂θx

∂x
+ D12

∂θy

∂y

− 4

3h2
F11

(
∂θx

∂x
+ ∂2wo

∂x2

)
− 4

3h2
F12

(
∂θy

∂y
+ ∂2wo

∂y2

)

− 4

3

[
E11

∂uo

∂x
+ E12

∂vo

∂y
+ F11

∂θx

∂x
+ F12

∂θy

∂y

− 4

3h2
H11

(
∂θx

∂x
+ ∂2wo

∂x2

)

− 4

3h2
H12

(
∂θy

∂y
+ ∂2wo

∂y2

)]
1

h2
= 0 (56)

are written as
N∑

j=1

α
uo
j g j = 0 (57)

N∑
j=1

α
vo
j g j = 0 (58)

N∑
j=1

α
wo
j g j = 0 (59)

N∑
j=1

α
uo
j

[
A11

∂g j

∂x

]
+

N∑
j=1

α
vo
j

[
A12

∂g j

∂y

]

+
N∑

j=1

α
wo
j

[
− 4

3h2
E11

∂2g j

∂x2
− 4

3h2
E12

∂2g j

∂y2

]

+
N∑

j=1

α
θx
j

[
B11

∂g j

∂x
− 4

3h2
E11

∂g j

∂x

]

+
N∑

j=1

α
θy

j

[
B12

∂g j

∂y
− 4

3h2
E12

∂g j

∂y

]
= 0 (60)

N∑
j=1

α
uo
j

[(
B11 − 4

3h2
E11

)
∂g j

∂x

]

+
N∑

j=1

α
vo
j

[(
B12 − 4

3h2
E12

)
∂g j

∂y

]

+
N∑

j=1

α
wo
j

[(
16

9h4
H12 − 4

3h2
F12

)
∂2g j

∂y2

+
(

16

9h4
H11 − 4

3h2
F11

)
∂2g j

∂x2

]

+
N∑

j=1

α
θx
j

[(
D11 − 8

3h2
F11 + 16

9h4
H11

)
∂g j

∂x

]

+
N∑

j=1

α
θy

j

[(
D12 − 8

3h2
F12 + 16

9h4
H12

)
∂g j

∂y

]
= 0 (61)

The algebraic Eqs. (46)–(60) are solved simultaneously for
the unknown α’s.
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TABLE 1
Comparison of the centroidal deflection of a simply supported square FGM1 plate of aspect ratio a/h = 20

Non-dimensional centroidal deflection

Optimal c

c = 2/
√

Na ; Na = 11 MLPG code of Present (9 × 9) Present (11 × 11) Present (15 × 15)
Exponent p [53] Qian, Batra & Chen [51] grid grid grid

0 0.02050 0.02118 0.0200 0.0204 0.0207
0.5 0.02760 — 0.0268 0.0274 0.0270
1.0 0.03050 0.03150 0.0297 0.0305 0.0308
2.0 0.03300 0.03395 0.0321 0.0328 0.0338
Metal 0.04430 0.04580 0.0432 0.0442 0.0447

TABLE 2
Comparison of the centroidal deflection of simply supported square FGM1 and FGM2 plates, for a/h = 5

(a) FGM1

Non-dimensional centroidal deflection

Optimal c

c = 2/
√

Na ; Na = 11 MLPG code of Present (9 × 9) Present (11 × 11) Present (15 × 15)
Exponent p [53] Qian, Batra & Chen [51] grid grid grid

0.0 0.02477 0.02436 0.0243 0.0247 0.0248
0.5 0.03293 — 0.0323 0.0328 0.0330
1.0 0.03666 0.03634 0.0360 0.0365 0.0368
2.0 0.04009 0.03976 0.0394 0.0400 0.0402
Metal 0.05343 0.05253 0.0524 0.0531 0.0536

(b) FGM2

0.0 0.00909 0.00902 0.00891 0.00905 0.00901
0.5 0.01871 — 0.01835 0.01858 0.01876
1.0 0.02381 0.02391 0.02336 0.02370 0.02387
2.0 0.02903 0.02918 0.02847 0.02892 0.02910
Metal 0.05343 0.05253 0.05245 0.05313 0.05358

TABLE 3
Comparison of the centroidal deflection of a simply supported square FGM1 plate

MLPG [51], 8 × 8 grid [53], c = 2/
√

Na ; Na = 15 Optimal c; (15 × 15) grid

a/h p = 0 p = 1.0 p = 2.0 Metal p = 0 p = 1.0 p = 2.0 metal p = 0 p = 1.0 p = 2.0 Metal

5 0.02436 0.03634 0.03976 0.05252 0.02476 0.03666 0.04009 0.05342 0.02469 0.03651 0.03998 0.05313
15 0.02115 0.03152 0.03401 0.04583 0.02090 0.03103 0.03354 0.04510 0.02069 0.03075 0.03323 0.04479
25 0.02123 0.03158 0.03404 0.04569 0.02062 0.03061 0.03305 0.04448 0.02030 0.03013 0.03267 0.04388
45 0.02158 0.03203 0.03456 0.04655 0.02057 0.03054 0.03295 0.04437 0.02007 0.02993 0.03293 0.04351
75 0.02190 0.03252 0.03501 0.04728 0.02062 0.03061 0.03302 0.04448 0.01981 0.02938 0.03173 0.04292

125 0.02225 0.03304 0.03562 0.04802 0.02069 0.03072 0.03314 0.04464 0.01959 0.02922 0.03144 0.04270
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TABLE 4
Comparison of stress σxx at the centroids of the top and the bottom surfaces of a simply supported square FGM1 plate

MLPG [51], 8 × 8 grid [53], c = 2/
√

Na ; Na = 15 Optimal c; (15 × 15) grid

Exponent p a/h σxx (−h/2) σxx (h/2) σxx (−h/2) σxx (h/2) σxx (−h/2) σxx (h/2)

0 (ceramic) 20 0.29175 −0.29200 0.28650 −0.28650 0.28648 −0.28648
1 20 0.22617 −0.37875 0.17815 −0.38428 0.22232 −0.37186
2 20 0.24497 −0.40650 0.21278 −0.45899 0.24111 −0.39955
∞ (metal) 20 0.29175 −0.29200 0.28650 −0.28650 0.28648 −0.28648
1 5 0.22540 −0.38812 0.20232 −0.43643 0.22788 −0.38349
1 10 0.22420 −0.37760 0.19812 −0.42737 0.22362 −0.37447
1 15 0.22502 −0.37742 0.19738 −0.42577 0.22255 −0.37236
1 20 0.22617 −0.37875 0.19719 −0.42537 0.22232 −0.37186
1 200 0.23310 −0.38980 0.19841 −0.42800 0.22058 −0.36882

6. COMPUTATION AND DISCUSSION OF RESULTS
Results for a simply-supported FG square plate comprised

of aluminum/ceramic, referred to as FGM1, and for an alu-
minum/silicon carbide square plate referred to as FGM2, are
presented in Tables 1–4. Values of material properties of con-
stituents of FGM1 and FGM2 are listed below.

FGM1: E1 = 70 GPa, ν1 = 0.3; E2 = 151 GPa, ν2 = 0.3

FGM2: E1 = 70 GPa, ν1 = 0.3; E2 = 427 GPa, ν2 = 0.17

In the Tables and Figures to follow, the vertical or the trans-
verse displacement w, the axial stress σxx , the thickness coordi-
nate z, and the pressure q applied on the top surface of the plate
have been non-dimensionalized as follows:

w̄ = w/h, σ̄xx = σxx/q, q̄ = q/E1h4, z̄ = z/h

Henceforth the superimposed bar has been dropped for simplic-
ity. We employ multiquadrics RBFs defined by Eq. (2) with a
Na × Na regular grid where Na is the number of collocation
points in either the x− or the y-direction.

Computed results are compared with those obtained by Qian
et al. [51] who employed a meshless local Petrov-Galerkin
(MLPG) formulation and a 5th order shear and normal defor-
mation theory of Batra and Vidoli [52], and also with those
of [53] in which a formulation similar to present formulation is
used but without optimizing the shape parameter c in the RBFs.
In that case, c = 2/

√
Na was chosen, and it gave acceptable

results. In all cases, a uniform load parameter, q = 1 is ap-
plied. We note that Gilhooley et al. [54] have used the RBFs,
the MLPG formulation, and the K th order shear and normal de-
formable plate theory [52] to analyze deformations of a thick FG
plate.

For Na = 9, 11 and 15, we have compared in Table 1 the
centroidal deflection of the simply supported square FGM1

plate. For p = 0, 0.5, 1.0, 2.0 and ∞, the centroidal deflec-
tion computed with c = 2/

√
11 is close to that computed

with the present formulation. The same is observed in Tables 2
and 3.

For different values of the index p and the aspect ratio
a/h, Table 4 compares the axial stress, σxx , at centroids of
the top and the bottom surfaces of the simply supported square
FGM1 plate. Here, the use of the optimization technique im-
proves results, in some cases by 8%, when compared to those of
[53].

Figure 1 shows the deformed shape of the plate for
15 × 15 nodes, a/h = 20, p = 1. Figure 2 exhibits
through-the-thickness variation of the non-dimensional ax-
ial stress σxx . Except for very large or very small val-
ues of p, the axial stress varies smoothly through the plate
thickness.
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FIG. 1. Non-dimensional deflection,w, for FGM 1 plate, with N = 15, a/h =
20, p = 1.
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FIG. 2. Through-the-thickness variation of the non-dimensional axial stress for FGM 1 plate with N = 11, a/h = 20

7. CONCLUSIONS
We have used the meshless collocation method employing

multiquadrics basis functions and a third-order shear deforma-
tion theory to analyze static deformations of a simply supported
square functionally graded plate with the volume fraction of
constituents varying only in the thickness direction. A unique
feature of the analysis is that it adaptively finds the optimum
value of the shape parameter appearing in expressions of the
basis functions. Effective material properties are derived by us-
ing the Mori-Tanaka homogenization technique. Computed re-
sults are found to match well with those obtained from other
analyses. The collocation method is truly meshless and neither
requires a mesh nor a numerical evaluation of domain integrals,
and may be computationally less expensive than other meshless
methods.
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