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a b s t r a c t

We use the tight-binding potential and molecular mechanics simulations to study local

and global instabilities in shear and simple shear deformations of three initially defect-

free finite cubes of gold single crystal containing 3480, 7813, and 58,825 atoms.

Displacements on all bounding surfaces are prescribed while studying simple shear

deformations, but displacements on only two opposite surfaces are assigned during

simulations of shear deformations with the remaining four surfaces kept free of external

forces. The criteria used to delineate local instabilities in the system include the

following: (i) a component of the second-order spatial gradients of the displacement

field having large values relative to its average value in the body, (ii) the minimum

eigenvalue of the Hessian of the energy of an atom becoming non-positive, and (iii)

structural changes represented by a high value of the common neighborhood parameter.

It is found that these criteria are met essentially simultaneously at the same atomic

position. Effects of free surfaces are evidenced by different deformation patterns for the

same specimen deformed in shear and simple shear. The shear strength of a specimen

deformed in simple shear is more than three times that of the same specimen deformed

in shear. It is found that for each cubic specimen deformed in simple shear the evolution

with the shear strain of the average shear stress, prior to the onset of instabilities, is

almost identical to that in an equivalent hyperelastic material with strain energy density

derived from the tight-binding potential and the assumption that it obeys the

Cauchy–Born rule. Even though the material response of the hyperelastic body

predicted from the strain energy density is stable over the range of the shear strain

simulated in this work, the molecular mechanics simulations predict local and global

instabilities in the three specimens.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Atomistic simulations improve our understanding of the material response to applied loads, help engineer new alloys or
compounds, and may reveal additional physics to be incorporated in phenomenological models of material behavior.
Several challenging issues such as the delineation of regions containing dislocations, stacking faults, point defects, and
grain boundaries arise during these studies. Here, we focus on studying the initiation of local and global instabilities in an
atomic system, and on determining the corresponding deformation measures.

In a homogeneous continuous body, a strong singularity is associated with either the deformation gradient or the
displacement becoming discontinuous across a surface passing through a point; e.g., see Truesdell and Noll (1992). The
singularity is called weak when both displacements and their first-order derivatives are continuous everywhere in the body
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but a second- or a higher-order derivative of the displacement is discontinuous at one or more points of the body. The
initiation of a weak singularity at a point is synonymous with an acceleration wave not propagating through that point
(Hill, 1962). This is equivalent to the acoustic tensor evaluated at that point having a zero eigenvalue or equivalently a null
determinant. van Vliet et al. (2003) and Steinmann et al. (2007), amongst others, have used it to characterize local
instabilities in an atomic system.

The potential energy of a system of atoms is usually assumed to depend upon the current inter-atomic distances and the
relative angles between atomic bonds. From a continuum point of view, this is equivalent to assuming that an appropriately
defined strain energy density depends upon the state of deformation in the present configuration, or equivalently, the
material response is elastic. The material objectivity is satisfied since inter-atomic distances and the changes in angles
between atomic bonds are invariant with respect to superimposed rigid body motions.

The implementation of continuum concepts such as the acoustic tensor becoming singular at the onset of a local
instability is equivalent to assuming that the matrix of instantaneous values of elasticities, defined as the second-order
derivatives of the strain energy density with respect to the Green–St. Venant strain tensor, ceases to be positive definite. In the
phonon theory the acoustic tensor is called the dynamical matrix and is basically discrete. However, in continuum mechanics
the acoustic tensor is defined at every point in the continuum and is a continuous function of the deformation gradient. For
discrete systems Lu and Zhang (2006) have used an atomistic counterpart of the continuum acoustic tensor called the atomic
acoustic tensor to study the nucleation of local instabilities. It is equivalent to requiring that the energy of every atom in the
system in equilibrium be convex for variations of position vectors of other atoms given by a mono-mode perturbation.

The configuration of a system in equilibrium is globally stable if its potential energy in that configuration is the
minimum. Kitamura et al. (2004a) studied delamination of a nano-film from a substrate and found that the displacement at
which the minimum eigenvalue of the Hessian of the potential energy of the system vanished equaled that at which the
load–displacement curve became discontinuous (the displacement abruptly increased under the applied load). The same
criterion has been used to analyze strengths of thin films and cracked bodies (Kitamura et al., 2004b).

Instabilities in an atomic system have been studied also by the normal mode analysis (Dimitriev et al., 2005) which
exploits symmetries of the system to reduce the number of degrees of freedom (d.o.f.). For a system having no spatial
symmetries, the normal mode analysis is equivalent to the method used by Kitamura et al. (2004a, b). For a system having
no symmetries, the reduction of the number of d.o.f. is not possible. The implementation of a criterion which includes all
d.o.f. is prohibitive for a large system because of difficulties in finding an eigenvalue of a 3Na�3Na sparse matrix where Na

is the number of d.o.f. after the elimination of all prescribed displacements. Moreover, modal analysis shows not only
instabilities related to the constituent material but also structural instabilities that are influenced by the magnitude of
external loads and the type of constraints. Thus a local criterion helps characterize material instabilities, and determine the
permissible loading capacity of a system.

Regions where deformations of an atomic system first become unstable have also been identified by using geometric
measures of the local atomic structure. For example, for an FCC crystal Kelchner et al. (1998) used the centrosymmetry
parameter that measures the relative positions between six pairs of nearest atoms situated on opposite sides of the atom
whose centrosymmetric parameter is being calculated. Other quantities used include the slip vector (Zimmerman et al.,
2001), the atomic bond rotation angle (Li and Li, 2006), the common neighborhood parameter (CNP) (Tsuzuki et al., 2007),
and invariants of the infinitesimal strain tensor (Pasianot et al., 1993). Hartley and Mishin (2005) computed the local
deformation gradient by employing the least-squares method (LSM) and the Cauchy–Born rule, and used contour plots of
components of the Nye tensor to identify screw and edge dislocations in a system of copper atoms. Since the integration of
the Nye tensor over an area enclosed by Burger’s circuit equals the Burger vector, Hartley and Mishin (2005) asserted that
this technique identifies well dislocations. Zimmerman et al. (2001) used the slip vector for identifying dislocations and
finding an approximation of Burger’s vector.

Here we use the tight-binding (TB) potential and molecular mechanics (MM) simulations to study shear and simple
shear deformations of a system of gold (Au) atoms, and use (i) second-order gradients of the displacement field, (ii) the CNP
(Tsuzuki et al., 2007), (iii) eigenvalues of the local acoustic tensor, and (iv) eigenvalues of the Hessian of the local potential
energy to characterize the onset of local instabilities. We also investigate whether or not these four criteria are met
simultaneously at a point. We find the local Hessian of the TB potential by considering the bond energy between an atom
and other atoms included in the first shell of neighbors. The first shell of neighbors contains atoms located within one
atomic spacing of the atom whose stability is being investigated. In the physics literature, MM simulations are usually
referred to as the molecular static simulations.

Values of the first- and the second-order displacement gradients are found by using the modified smoothed particle
hydrodynamics (MSPH) method (Zhang and Batra, 2004). Values of the average Cauchy stress tensor for each system are
computed by using four definitions of the average stress tensor. Average stresses and strains for the simple shear
deformations are also compared with those deduced by assuming that the Cauchy–Born rule applies and the response of
the atomic system is equivalent to that of a simple hyperelastic body with the strain energy density equal to that given by
the TB potential. However, the Cauchy–Born rule is used till the onset of a global instability.

The global instability of the system is characterized either by a sharp discontinuity in the average shear stress—average
shear strain curve or the potential energy of the system ceasing to be the minimum.

The rest of the paper is organized as follows. The TB potential is summarized in Section 2 where we also describe how
numerical simulations are conducted. Measures of the average stresses and strains are delineated in Section 3 where we
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provide details of the MSPH method used to compute displacement gradients at a point. The strain energy density of a
simple hyperelastic material equivalent to the Au crystal defined by the TB potential is derived in Section 3.3. Section 4
describes the shear test and the simple shear test. In Section 5 we present and discuss results of average stresses and
strains for the two shear tests. The criteria for the local and the global instabilities are described in Section 6. These are used
to characterize instabilities in shear and simple shear deformations of Au crystals. Conclusions of the work are summarized
in Section 7.

2. Molecular mechanics simulations

2.1. Molecular mechanics (MM) potential

We use the TB potential

V ðiÞ ¼ �
XN

j¼1
jai

z2 exp �2D
rðijÞ

r0
� 1

� �� �0
B@

1
CA

1=2

þ
XN

j¼1
jai

M exp � ~P
rðijÞ

r0
� 1

� �� �
(1)

proposed by Cleri and Rosato (1993) to describe interactions among atoms. In Eq. (1) N equals the total number of atoms in
the system, r0 the first-neighbor distance (a=

ffiffiffi
2
p

, where a is the lattice parameter), r(ij) is the magnitude of the position
vector between atoms i and j, and z, D, ~P, and M are constants characterizing a material. Values of material parameters for
Au are (Cleri and Rosato, 1993)
M ¼ 0.2061 eV, z ¼ 1.7900 eV, ~P ¼ 10:229, D ¼ 4.0360, r0 ¼ 2.8850 Å.
This potential has been used successfully to characterize the mechanical behavior of Au nanowires (Ju et al., 2004; Lee
et al., 2006, Lin et al., 2005). Pu et al. (2007) used three semi-empirical potentials, namely, the Voter and Chen’s (1987)
embedded atomic method (EAM) potential, the glue model potential of Ercolessi et al. (1998), and the TB potential (1). They
compared results of MD simulations for a tension test on an Au cluster composed of 256 atoms using three different
potentials, namely the glue model, the TB potential, and the EAM potential. The predictive capability of each inter-atomic
potential was determined by comparing its predictions of the potential energy in the relaxed configuration and the
ultimate force at the breaking point with the results obtained by using the Density Functional Theory (DFT) which were
taken as the reference values. The force at the breaking point for an atomic chain of Au atoms was also found
experimentally by Rubio-Bollinger et al. (2001) to be 1.570.3 nN. The results given by the TB potential of Cleri and Rosato
were found to agree well with the DFT results and the experimental data.

Since V(i) is essentially zero for r(ij)45.5 Å, the summation in Eq. (1) is carried out only for those values of j for which
r(ij)o6 Å to reduce the computational cost. Thus only atoms lying within a distance of 6 Å from the atom i contribute to the
potential energy of atom i. We note that the TB potential and its first derivatives are continuous at the cut off radius of 6 Å
within the accuracy of the machine.

The internal energy V of the system equals the sum of the energy V(i) of all atoms in the system. That is

V ¼
XN

i¼1

V ðiÞðrðijÞÞ: (2)

The interaction force vector f (ij) between atoms i and j equals the negative of the gradient of the internal energy with
respect to components of the relative position vector r(ij), or

f ðijÞa ¼ �
qV ðiÞ

qrðijÞ
þ
qV ðjÞ

qrðjiÞ

 !
rðijÞa
rðijÞ

. (3)

Here and below, the index a ranges from 1 to 3, and f ðijÞa equals the component of f (ij) along the xa-coordinate direction of
a rectangular Cartesian coordinate system.

2.2. Description of a numerical simulation

We study static deformations at 0 K, and start the numerical simulation by assigning the initial position vector XI
(i) of

each atom in the system in a perfect lattice configuration (cf. Fig. 1). Each atom is allowed to move freely till the potential
energy of the system has been minimized by using the conjugate gradient with warranted descent technique of Hager and
Zhang (2005). The minimization procedure is stopped when the magnitude of each component of the gradient of the
internal energy at every atom in the system equals at most 1�10�8 ev/Å. The position vector of an atom in this relaxed
configuration is denoted by XR

(i), and this configuration is called the reference configuration. This is equivalent to annealing
a specimen before conducting a mechanical test. Subsequently, after each increment in the prescribed displacements of
atoms on the bounding surfaces of the body, the total potential energy is minimized, i.e., the system is allowed to
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Fig. 1. Schematics of the initial, the relaxed (reference), and the current (deformed) configurations of an atomic system.
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equilibrate after every load step. The change in the potential energy of the system from that in the reference configuration
equals the strain energy required to deform the body or the system of atoms. The process is continued till atoms on the
bounding surface have been displaced by the prescribed amount.

In problems studied here, either an atom on the bounding surface has a displacement component prescribed or the
corresponding traction component is null in the sense that there is no external force applied at that atom.

3. Determination of macroscopic variables

3.1. Strains

Mott et al. (1992) studied 3D deformations of an atomic system, and interpolated displacements using a continuous,
piecewise-linear basis functions formed by a Delaunay tessellation of the atomic positions. Falk (1999) computed
infinitesimal strains based on the relative displacements between two neighboring atoms. Webb et al. (2008) have also
computed displacement gradients from atomic positions.

We employ the MSPH method (Zhang and Batra, 2004) to compute the spatial distribution of the deformation gradient F
and the second-order gradients G of displacements from positions of atoms in the current and the reference configurations.
The Cauchy–Born rule (Stakgold, 1950; Born and Huang, 1954; Ericksen, 2008, and references cited therein) states that for a
crystal with a simple Bravais lattice, relative position vectors r(ij) and R(ij) between atoms i and j in the current and the
reference configurations are related by r(ij)

¼ F(i)R(ij) where F(i) is the deformation gradient at the position of atom i in the
reference configuration. To partially account for non-local interactions in continuum mechanics, Kouznetsova et al. (2002)
also considered G in the kinematic description of the deformation. We propose to use components of the tensor G to
characterize local instabilities in an atomic system (cf. Section 6).

In the MSPH method it is assumed that a function j(X) (e.g., the position vector component rðiÞa ) has continuous
derivatives up to (n+1)th order. The three-term Taylor series expansion of j(X) at the point n ¼ (x1, x2, x3) in the
neighborhood of the point X ¼ X(i)

¼ (X1
(i), X2

(i), X3
(i)) is

jðxÞ ¼ jðX ðiÞÞ þ qj
qXðiÞa
ðxa � XðiÞa Þ þ

1

2

q2j
qXðiÞa qXðiÞb

ðxa � XðiÞa Þðxb � XðiÞb Þ, (4)

where summation on repeated Greek indices is implied, and qj=qXðiÞa ¼ qj=qXajX¼X ðiÞ .To evaluate the function j(X) and its
first- and second-order derivatives at the point X(i), we multiply both sides of Eq. (4) with a non-negative kernel function
W(|X�n|,h) of compact support, and by its first- and second-order derivatives, W,a(|X�n|,h) and W,ab(|X�n|,h); here W ;a ¼

qW=qxa and W ;ab ¼ q2W=qxaqxb, and h is the smoothing length which determines the size of the compact support of the
kernel function W. The magnitude of h usually equals three times the atomic spacing. For a three-dimensional (3D)
problem one needs at least ten atoms within the compact support of W(|X�n|,h). We integrate the resulting equations with
respect to n over the volume OR

T occupied by the system in the relaxed configuration, employ atomic positions as
integration points, and volumes associated with them as the corresponding weights to obtain a set of ten algebraic
equations for j(X), j,a(X), and j,ab(X). Setting j(X) ¼ rðiÞa gives values of F and G at the point X. Unless the function
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W(|X�n|,h) is a constant over its compact support, the influence of displacements of atom j on values of F and G at the point
X(i) occupied by atom i depends upon the relative values of W(|X�n|,h) at locations of atoms i and j. For a 3D problem, one
needs to solve three systems of ten simultaneous linear algebraic equations to find displacements, and F and G at a point.

We use the following cubic spline kernel function W:

WðsÞ ¼
1

ph3

1�
3

2
s2 þ

3

4
s3

� �
; sp1;

1
4 ð2� sÞ3; 1osp2;

0; otherwise;

8>>><
>>>:

(5)

s ¼
jjX � njj

h
¼

r

h
. (6)

Other techniques like the LSM or the LSM in conjunction with smoothing functions (Gullett et al., 2008) can also be used
to find values of F(i) at the location of atom i.

From F(i) at the point x(i), we evaluate there the Almansi–Hamel strain tensor e(i) from

�ðiÞab ¼ ð1=2Þðdab � ðF
�1
Þ
ðiÞ
faðF

�1
Þ
ðiÞ
fbÞ;

where dab is the Kronecker delta. The volume averaged value, ē, of this tensor for the system is defined by

�̄ab ¼
1

OT

Z
O
�abðxÞdO ¼

XN

i¼1

OðiÞ

OT
�ðiÞab, (8)

where O(i) and OT equal, respectively, the volume assigned to atom i and the total volume of the system in the deformed
configuration. We set O(i) equal to the Voronoi volume associated with atom i. An approximation of the Voronoi volume is
given by (e.g., see Lin et al., 2005)

OðiÞ ¼
4p
3

a3
i ; ai ¼ kv

PNe

j¼1
jai

ðrðijÞÞ�1

PNe

j¼1
jai

ðrðijÞÞ�2

. (9)

Here Ne equals the number of atoms in the neighborhood of atom i for which rðijÞp
ffiffiffi
3
p

=2
� �

a, and we set the constant
kv ¼ 0.55. The value of kv was found by computing the Voronoi volume of an atom at the centroid of the specimen, and
equating it to the volume given by Eq. (9).

3.2. Stresses

For a system comprised of N atoms, the average values s̄ab of components of the Cauchy stress tensor are computed by
considering all atoms in the system and by using the relation

s̄ab ¼
1

2OT

XN

i¼1

XN

j¼1
jai

f ðijÞa rðijÞb . (10)

That is, s̄ab equals the average value of the corresponding component of the configurational part of the virial stress tensor
(Cornier et al., 2001).

The average value over volume O of the Cauchy stress tensor defined by

s̄ab ¼
1

O

Z
O
sab dO (11)

can be written as

s̄ab ¼
1

O

Z
O
safdfb dO ¼

1

O

Z
O
safxb;f dO,

¼
1

O

Z
O
ðsafxbÞ;f dO�

1

O

Z
O
saf;fxb dO, (12)

where xb;j ¼ qxb=qxj ¼ dbj. Using the divergence theorem on the first term on the right-hand side of Eq. (12), and the
balance of linear momentum with null body forces, we get

s̄ab ¼
1

O

Z
qO
safxbnf dS,

¼
1

O

Z
qO

taxb dS, (13)
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where n is a unit outward normal to the boundary qO of O, and t ¼ rn is the surface traction. Thus the average Cauchy
stress tensor multiplied by the volume of the region equals the first moment of tractions acting on the bounding surface of
the body.

For a discrete system, Eq. (13) can be written as

s̄ab ¼
1

OT

XNb

i¼1

xðiÞb f ðiÞa , (14)

where Nb equals the number of atoms on the bounding surface of the region whose deformations are being studied.
Assuming that the volume assigned to each atom is the same, Eq. (10) becomes

s̄ab ¼
1

N

XN

i¼1

1

2OðiÞ
XN

j¼1
jai

f ðijÞa rðijÞb ¼
1

N

XN

i¼1

oðiÞab, (15)

where oab
(i) is identified as the dipole force tensor (Potirniche et al., 2006). However, for a finite size specimen,

Eq. (15) is approximately valid since the volume assigned to an atom on the bounding surface equals 1/2 of that assigned
to an atom in the interior of the body. Also, the volume of an atom at a vertex is taken to equal 1/8 of that for an interior
atom.

3.3. Stress and strain tensors for simple shearing deformations

Consider a system of atoms with a simple Bravais lattice deformed homogeneously by the deformation gradient

FðksÞ
� �

¼

1 ks 0

0 1 0

0 0 1

2
64

3
75, (16.1)

for which

½�ðksÞ� ¼

0 ks=2 0

ks=2 k2
s =2 0

0 0 0

2
64

3
75, (16.2)

where ks is a positive constant. Assuming that the overall response of the system of atoms is equivalent to that of a simple
hyperelastic body with the strain energy density W0 defined by

W0ðFÞ ¼
XN

i

V ðiÞ

OðiÞR

; (17)

where OR
(i) is the volume associated with atom i in the reference configuration, and

PN
i¼1O

ðiÞ
R ¼ OT

R, the volume occupied by
the body in the reference configuration. The first Piola–Kirchhoff stress tensor P̄ is given by

P̄ ¼
qW0

qF
¼

q
qF

XN

i¼1

V ðiÞ

OðiÞR

 !
(18)

or equivalently by

P̄ab ¼
XN

i¼1

XN

i¼1
kai

1

OðiÞR

qV ðiÞ

qrðikÞ
qrðikÞ

qrðikÞg

qrðikÞg

qFab
¼
XN

i;k¼1
iak

1

OðiÞR

1

rðikÞ
qV ðiÞ

qrðikÞ
rðikÞa RðikÞb . (19)

For simple shear deformations, we get

½P̄ðksÞ� ¼
XN

i;k¼1
iak

1

OðiÞR

1

rðikÞ
qV ðiÞ

qrðikÞ
½FðikÞðksÞ�, (20)

where

FðikÞðksÞ

h i
¼

RðikÞxx þ ksRðikÞxy RðikÞxy þ ksRðikÞyy RðikÞxz þ ksRðikÞyz

RðikÞyx RðikÞyy RðikÞyz

RðikÞzx RðikÞzy RðikÞzz

2
66664

3
77775,

ðrðikÞÞ2 ¼ RðikÞx RðikÞx þ 2ksRðikÞxy þ 3k2
s ðR
ðikÞ
y Þ

2,



ARTICLE IN PRESS

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–31433122
and RðikÞxy ¼ RðikÞx RðikÞy ; RðikÞyy ¼ RðikÞy RðikÞy ; . . .. From expression (19) of the first Piola–Kirchhoff stress tensor, we obtain the
following formula for the Cauchy stress tensor:

½s̄ðksÞ� ¼
XN

i;k¼1
iak

1

OðiÞ
1

rðikÞ
qV ðiÞ

qrðikÞ
½YðikÞðksÞ�, (21)

where

½YðikÞðksÞ� ¼

RðikÞxx þ ksRðikÞxy þ ksðR
ðikÞ
xy þ ksRðikÞyy Þ RðikÞxy þ ksRðikÞyy RðikÞxz þ ksRðikÞyz

RðikÞyx þ ksRðikÞyy RðikÞyy RðikÞyz

RðikÞzx þ ksRðikÞzy RðikÞzy RðikÞzz

2
6664

3
7775

Here we have set O(i)
¼ JOR

(i)
¼ OR

(i) since J ¼ det[F] ¼ 1. We note that r(ij) and qV (i)/qr(ik) also depend upon ks. Thus one
cannot characterize the dependence of r̄ upon ks simply from the expression for bY(ik)(ks)c.

4. Simulation of deformations

4.1. Shear test

We simulate the shear test on cubic Au crystal specimens of three different sizes. System A with side �32 Å contains
3480 atoms, system B with side �50 Å has 7813 atoms, and system C with side �100 Å has 58,825 atoms. In each case,
atoms are located in planes parallel to the coordinate planes {10 0}, {0 10}, and {0 0 1}. After finding the initial relaxed
configuration, atoms on the bottom surface Y ¼ Ymin are constrained from moving in all directions. For atoms on the top
surface, Y ¼ Ymax, the Y- and Z-displacements are set equal to zero and the X-displacement is prescribed in increments of
0.0025 Å. The magnitude of the incremental X-displacement was halved if the potential energy of the deformed
configuration could not be minimized in a pre-assigned number of iterations. There are no external surface forces applied
on the remaining four bounding faces. A schematic of the problem studied is exhibited in Fig. 2a, in which atoms enclosed
in red boxes have prescribed displacements.

4.2. Simple shear test

The simulation of the simple shear test (cf. Fig. 2b) differs from that of the shear test described above only in boundary
conditions prescribed on the bounding surfaces. In this case, the three components of displacement are prescribed on all
bounding surfaces so that x ¼ X+ksY, y ¼ Y, z ¼ Z, where (x, y, z) are coordinates of the atom in the deformed configuration
that in the reference configuration was located at (X, Y, Z). Only interior atoms are allowed to move during the minimization
of the potential energy of the system. The non-dimensional constant ks ¼ tan(g) is increased in increments of 0.0025 to
induce additional deformations of the body.
X

x=Φ(XR)

Y
γ

X

Y

γ

Fig. 2. (a) Reference configuration of a gold specimen for the shear test. (b) Reference and deformed configurations of a gold specimen for the simple

shear test. Displacements of atoms enclosed in the red boxes are prescribed.
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5. Average stresses and strains from results of numerical simulations

5.1. Shear test

Fig. 3 shows the variation with the shear angle g of the average components of the Cauchy stress tensor defined by
Eqs. (10) and (14). Ideally, the two equations should give the same values of stress components. Results plotted in Fig. 3
for the three systems reveal that, in each case, the shear stress sxy and the normal stress syy are dominant, and their
values computed from Eqs. (10) and (14) are nearly equal to each other. Furthermore, the evolution of syy with the shear
angle g is qualitatively similar for the three specimens. Recall that the average stress defined by Eq. (14) is computed
from forces and positions of atoms at the boundaries. In Table 1 we have listed, for the three specimens, values
of the maximum shear stress sxy, the maximum von Mises stress sVM

max, sxy, and sVM at yield, and values of the angle g
at the proportionality limit and at the yield point. We note that the von Mises stress defined as sVM ¼

ð1=
ffiffiffi
2
p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs11 � s22Þ

2
þ ðs22 � s33Þ

2
þ ðs33 � s11Þ

2
þ 6ðs2

12 þ s2
13 þ s2

23Þ
2

q
, is proportional to the second invariant of the

Cauchy stress tensor. The yielding of the material is identified by a drop in the shear stress with an increase in the
shear strain. The variation of sxy with g is linear for gpglinear while values of sxz and syz are negligible as compared
to those of sxy up to g ¼ gyield where the first discontinuity in the shear stress vs. the shear angle curve appears.
The number of atoms in the system being studied affects significantly values of the yield stress and the yield strain.
Because of the scale used to plot results, it is not easy to delineate glinear in the stress vs. g curves. Whereas, glinear

for specimens B and C differ by �6%, gyield for specimen C is nearly 72% of that for specimen B. Similarly, the shear
stress at yield and the maximum shear stress for specimen C equal nearly 70% of those for specimen B. Because of the
limited computational resources available, larger specimens could not be studied. The simulation of the shear and the
simple shear deformations in larger specimens should give fully converged values of the yield stress and the maximum
shear stress.

We hypothesize that at g ¼ gyield there is a critical density of unstable atoms so that the local atomic structure changes
noticeably, dislocations originate, and the body subsequently deforms plastically. Unfortunately, we cannot compute the
Burger’s vector because at the onset of the global instability the local instability has initiated at nearly 40% of atoms. If we
adopt Considerè’s (1888) criterion according to which a system becomes globally unstable at the peak in the load
(or equivalently the shear stress for the problem being studied), then the global and the local instabilities initiate at
different values of the shear strain as should be evident from results of specimen C summarized in Table 1 and depicted in
Fig. 3e. For this specimen gyield ¼ 0.084, and sxy

max
¼ 2.408 GPa occurs at g ¼ 0.102. For specimen C there are two

discontinuities in the shear stress sxy vs. g curve, the first corresponding to the yielding of the material and the second
corresponding to the global instability discussed in Section 6. However, for specimens A and B only one sharp discontinuity
in the sxy vs. g curve is observed. Thus whether yielding is followed by the global instability or the two occur
simultaneously depends upon the number of atoms in the system studied.

Values of the shear modulus C44, based on the average shear stress, and obtained by linear regression of the shear
stress—the shear angle curve for points up to glinear, equal 32.23, 31.08, and 28.26 GPa for systems A, B, and C, respectively.
Since glinearp0.044, ksEg. We note that elastic constants for Au were used to find values of parameters in the TB potential
given by Eq. (1). Accordingly, we should have obtained C44 equal to 45 GPa. The difference in the computed and the ideal
values of C44 is partly due to changes in lattice parameter at points near bounding surfaces that occur during the relaxation
of the initial configuration; cf. Fig. 4a. Only at points close to the centroid of the specimen the lattice parameter a equals
4.079 Å, that is, the value for a pristine Au crystal. To eliminate the effect of inhomogeneous deformations of atoms near
free surfaces, we compute the value of C44 based on the shear stress averaged over a spherical representative volume (SRV)
of radius R around specimen’s centroid. From the results plotted in Fig. 4b, it can be observed that for small SRVs computed
values of C44 are close to that for a pristine crystal. However, with an increase in the value of R, the value of the shear
modulus saturates to a value of 28.26 GPa.

The evolution of components of the average Almansi–Hamel strain tensor with the shear angle g is plotted in Fig. 5. For
each one of the three systems, and for gogyield the variation of the averaged shear strain component exy with g is linear
while exz and eyz are negligibly small. The evolution of the averaged normal strains eyy and ezz for the three specimens is
essentially similar, but their magnitudes decrease with an increase in the number of atoms in the system studied. The
difference in the maximum values of axial or normal strains from system A to system C is about 40%. Prior to yielding, eyy

and ezz are negative but exx is positive. For specimen C magnitudes of normal strains are approximately an order of
magnitude smaller than that of exy. Subsequent to the system becoming globally unstable, stress components exhibit
oscillations with an increase in g; reasons for these oscillations are not obvious.

The evolution with the shear angle g of stresses and strains plotted in Figs. 3 and 5 suggests that for a given value
of g, the shear stress sxy and the shear strain exy have higher values than the other two shear stresses and the other
two shear strains, respectively. Whereas sxx and szz have negligible values until the discontinuity in the stresses
at g ¼ gyield appears, the normal stress syy is compressive and its magnitude is about 20% of that of the shear stress sxy.
Thus compressive normal tractions need to be applied to the top and the bottom surfaces. In the absence of these
normal tractions, the height of the specimen will increase. It confirms the Poynting effect in non-linear elasticity (Poynting,
1909).
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Fig. 3. Evolution with the shear angle g of the averaged components of the Cauchy stress tensor for the shear test computed from Eqs. (10) and (14): (a),

(c), (e) sxy, sxz, and syz for systems A, B, and C, respectively; (b), (d), (f) sxx, syy, and szz for systems A, B, and C, respectively.

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–31433124
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Table 1
From the results of the shear test, computed values of the shear modulus, the maximum shear stress, the shear stress at yield, the von Mises stress at

yield, the maximum von Mises stress, the shear strain at the proportional limit, and the shear strain at yield

Specimen glinear (rad) gyield (rad) sxy
yield (GPa) sxy

max (GPa) sVM
yield (GPa) sVM

max (GPa) C44 (GPa)

A 0.044 0.121 3.562 3.562 6.230 6.230 32.229

B 0.037 0.116 3.285 3.285 5.750 5.740 31.077

C 0.035 0.084 2.315 2.408 4.030 4.180 28.264
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Fig. 4. (a) Reference configuration of system C; fringe plots give the magnitude of the normalized displacement vector in going from the perfect lattice

configuration to the relaxed configuration (all distances in Å). (b) Variation of the shear modulus C44 with the radius of the sphere used to define the

representative volume around the specimen centroid.

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–3143 3125
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Fig. 5. Evolution with the shear angle g of the averaged components of the Almansi–Hamel strain tensor for the shear test: (a), (c), (e) exy, exz, and eyz for

systems A, B, and C, respectively; (b), (d), (f) exx, eyy, and ezz for systems A, B, and C, respectively.

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–31433126
Ogata et al. (2004), using DFT, found relaxed and unrelaxed shear moduli of Au to equal 17.9 and 22.9 GPa, respectively.
They applied an affine deformation to a perfect Au crystal to induce shear deformation along the {1,1,1}[�1,2,�1] slip
system. Boundary conditions were adjusted so that the only two non-zero components of the strain and the stress tensors
are those acting on the shear plane which is similar to that for pure torsional deformations of an isotropic linear elastic
body. Clearly, the boundary-value problem studied here does not have ideal conditions simulated by Ogata et al. (2004). It
can be seen from results exhibited in Fig. 3 that prior to the occurrence of sharp discontinuities in the stress–strain curves,
the normal stress syy has large negative values. The other two normal stresses, sxx and szz, are negligible until the
discontinuity appears in the stresses at g ¼ gyield. Thus the state of stress is quite different from that in Ogata et al.’s
numerical simulation.
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5.2. Simple shear test

Figs. 6 and 7 depict, respectively, evolutions with the shear angle g of the average stresses and strains for the three
specimens. In Table 2 we have summarized for the three specimens values of the shear stress, the von Mises stress, and g at
the proportionality limit and at the yield point. Magnitudes of all three compressive normal stresses increase with an
increase in g and are comparable to the magnitude of sxy. This is because all bounding planes are restricted from moving in
normal directions. Thus in the absence of normal tractions applied to the bounding planes, the cube will expand. As for the
shear test, the material exhibits the Poynting (1909) effect.

Fig. 6 also exhibits values of the average stress components computed from Eqs. (10), (14) and (21); the three sets of
values agree with each other until g ¼ gyield. At g ¼ gyield stress components computed for the equivalent hyperelastic body
do not show any sudden drop, and the slope of the sxy vs. g curve continues to increase. One may say that the hyperelastic
body exhibits a hardening effect in the sense that its tangent modulus continues to increase with an increase in g. The close

agreement between stresses computed from results of MM simulations and the analytic expression verifies our code, and

validates the MM results. Evolutions of strains plotted in Fig. 7 reveal that Eqs. (8) and (16.2) give nearly the same values of
strain components.

The value of sxy
yield derived from the results of the simple shear deformations is nearly four times that from the shear

test results. Even for system C with 58,825 atoms, the two values of the yield stress differ noticeably. The main difference
between the tests is the presence of four free surfaces in the shear deformations and no free surface in the simple shear
deformations. For the simple shear test involving displacements prescribed on all bounding surfaces, the onset of local
instabilities is delayed, that increases the yield stress.

The slope of the average shear stress sxy vs. the shear angle g for gpglinear gives values for the shear modulus C44 equal
to 51.64, 49.88, and 46.40 GPa for specimens A, B, and C, respectively. These values are closer to the 45 GPa than those
derived from simulations of the shear test, and converge to this value with an increase in the number of atoms in the
system. As shown in Fig. 4b, the computed value of C44 for SRVs of different radii centered at specimen’s centroid is nearly
constant and equals 45.5 GPa.
5.3. Comparison between different measures of the average Cauchy stress tensor

In Fig. 8 we have plotted the evolution of the average shear stress sxy for system B computed with the following four
definitions: the configurational part of the virial stress tensor (Eq. (10)), the total force acting on atoms at the bounding
surfaces (Eq. (14)), the average local stress tensor (Eq. (15)), and the Mechanics of Materials approach (the tangential force
per unit surface area). It is evident that all these stresses agree with each other. During the computation of average stresses
from the virial and the local stress tensors, all atoms in the system, including those with prescribed displacements, were
considered. In the limit of very large number of atoms in the system, using only active or all atoms in the computation of
stresses should give essentially the same results. We note that the average shear stress computed from the total tangential
force acting on the top and the bottom surfaces agrees well with that obtained by using Eqs. (10), (14) and (15).

For both shear and simple shear tests, values of the shear modulus and the yield stress determined with different ways
of finding average stresses are summarized in Table 3. It is clear that these methods give nearly the same values of the shear
modulus and the yield stress. However, their values for the shear and the simple shear tests are different.
6. Analysis of instabilities

6.1. Instability criteria

6.1.1. Local instability

We assume that an atom is stable at the position r(i) if its potential energy V(i) there is minimum. Recall that while
finding the relaxed configuration of a system of atoms, the sum of potential energies of all atoms, but not every atom, is
minimized. Thus it is possible that the overall system is in stable equilibrium, but one or more atoms are either in neutral
or unstable equilibrium positions.

An alternative criterion for local stability is the following. An atom in its present position is stable provided that an
acceleration wave can propagate through that point. Since the wave speed is proportional to an eigenvalue of the acoustic
tensor, one can ascertain the local stability of an atom by finding eigenvalues of the acoustic tensor evaluated in the
deformed configuration of the atomic system.

Following Hill (1962), van Vliet et al. (2003) postulated a criterion for the stability of a representative volume composed
of a discrete number of particles and termed it the K criterion. That is, a material point is unstable if

Kðw; nÞ ¼ ðCabfrwawf þ sbrÞnbnrp0, (22)

where Cabfr are components of the isothermal elasticity tensor, w is the polarization vector and n is the wave vector. The
authors postulated that a local instability initiates at the spatial position where the minimum value of K vanishes.
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Fig. 6. Evolution with the shear angle g of the averaged components of the Cauchy stress tensor for the simple shear test computed from Eqs. (10), (14),

and (21): (a), (c), and (e) sxy, sxz, and syz for systems A, B, and C, respectively; (b), (d), and (f) sxx, syy, and szz for systems A, B, and C, respectively.

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–31433128
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Fig. 7. Evolution with the shear angle g of the average values of components of the Almansi–Hamel strain tensor for the simple shear test computed with

the MSPH method and Eqs. (8) and (16.2); (a), (c), and (e) exy, exz, and eyz for systems A, B, and C, respectively; (b), (d), and (f) exx, eyy, and ezz for systems A,

B, and C, respectively.

Table 2
From the results of the simple shear test, computed values of the shear modulus, the maximum shear stress, the shear stress at yield, the von Mises stress

at yield, the maximum von Mises stress, the shear strain at the proportional limit, and the shear strain at yield

Specimen glinear (rad) gyield (rad) sxy
yield (GPa) sxy

max (GPa) sVM
yield (GPa) sVM

max (GPa) C44 (GPa)

A 0.050 0.173 10.780 10.780 20.220 20.220 51.644

B 0.043 0.165 9.944 9.944 18.390 18.390 49.883

C 0.040 0.162 9.170 9.170 17.190 17.190 46.401

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–3143 3129
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(14), (15) and the Mechanics of Materials approach (force/area): (a) shear test and (b) simple shear test.

Table 3
Comparison of the shear modulus and the yield stress computed with different averaged stresses for system B

Method Shear Simple shear

Shear modulus C44 (GPa) Yield stress sxy
yield (GPa) Shear modulus C44 (GPa) Yield stress sxy

yield (GPa)

Eq. (14) 31.375 3.304 52.802 9.857

Eq. (10) 31.077 3.285 49.883 9.944

Eq. (15) 30.346 3.254 49.904 10.187

Force/area 30.399 3.304 51.272 10.383
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Lu and Zhang (2006) have proposed that the atomic acoustic tensor Q(i) defined by

Q ðiÞabðn̂Þ ¼
XNe

j¼1
jai

XNe

k¼1
kal

ðrðijÞ � n̂Þ
qV ðiÞ

qrðijÞa qrðklÞ
b

ðrðklÞ � n̂Þ (23)

be used instead of the K criterion to characterize local instabilities; in Eq. (23), jn̂j ¼ 1. Thus an atom is stable in the present
position if and only if all eigenvalues of Q(i) there are positive. Equivalently, the position of an atom is unstable if
det[Q(i)] ¼ 0.

The condition that all eigenvalues of the local acoustic tensor Q(i) be positive is equivalent to requiring that the potential
energy of atom i given by Eq. (1) be a convex function of the relative position vectors between atom i and all other atoms.
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For simulations of the shear and the simple shear deformations described above, we compute Q(i) after every increment
in the prescribed displacements, and find the unit vector n̂ that minimizes eigenvalues of Q(i). If the lowest eigenvalue of Q(i)

is non-positive, then the atom is unstable in the present position. Note that the unit vector n̂ can be expressed in terms of
the longitude and the latitude angles as n̂ ¼ ½cos j cos y; cos j sin y; sin j�. Thus we need to find angles f and y in the
range 0pyp2p and �p/2pjpp/2 that minimize eigenvalues of Q(i). We accomplish this by evaluating the determinant of
Q(i) on a grid of 1800 points obtained by dividing the ranges for f and y into equal segments of length p/30.

Steinmann et al. (2007) have used molecular dynamics simulations to study simple shear and uniaxial tensile
deformations of an FCC crystal oriented in the {1,1,1} plane. They related the local (material) instability with the loss of
ellipticity expressed by the Legendre–Hadamard condition (Truesdell and Noll, 1992). That is, the acoustic tensor Q at a
material point of a continuous system given by

Q ðN̂Þik ¼ LiMkK N̂MN̂K (24)

is singular for a unit vector N̂. In Eq. (24)

LiMkK ¼
qP̄iM

qFkK
(25)

is the elasticity matrix evaluated at the present value of F, and the unit vector N̂ gives the direction of propagation of the
disturbance in the reference configuration. An eigenvector of Q is parallel to the disturbance vector. Steinmann et al. (2007)
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found that the strain at which the determinant of Q vanished coincided with that at which deformations departed from
those dictated by the prescribed boundary conditions. The effect of boundaries was suppressed by prescribing
displacements of atoms near the bounding surfaces so that other atoms in the interior did not interact with under-
coordinated atoms (the coordination number is the total number of nearest neighbors of a central atom, and equals 12 for
an FCC crystal). For the Au crystal this can be generally satisfied by prescribing displacements of atoms within 6 Å of the
bounding planes.

Recently Miller and Rodney (2008) performed 2D and 3D simulations of nano-indentation of an FCC crystal. Based on
the results of their simulations, they proposed that the initiation of an instability at an atomic position is not due to
deformations in the neighborhood of that point but is the result of deformations at several atoms surrounding the one
whose stability is being studied. Furthermore, they showed that a vanishing of the eigenvalue of the Hessian matrix
corresponding to the d.o.f. of atoms within the surrounding region implied the nucleation of a local instability.

In an attempt to correlate the onset of local instabilities with highly inhomogeneous deformations near the specimen
boundaries, we propose that an atom i becomes unstable when the energy V(i) due to atoms in the SRV with R ¼

ffiffiffi
3
p

=2
� �

a Å
ceases to be positive definite; atoms in the SRV of R ¼

ffiffiffi
3
p

=2
� �

a Å are usually referred to as those within the first shell of
atom i. For a pristine FCC crystal, the number of atoms in the first shell of an atom equals 12. This criterion is motivated by
the form of the inter-atomic TB potential and the observation that the contribution to the local energy from these atoms is
more than 97% of that due to all atoms in the system, and this is so even when an atom is close to a free surface; e.g., see
Fig. 9 in which the energy of atom i due to contributions from atoms in shells 1, 2, 3, and 4 are plotted. Shells 2, 3, and 4 are
SRVs with R approximately equal to ð3=2Þ

ffiffiffi
3
p

=2
� �

a,
ffiffiffi
3
p

a, and ð5=2Þ
ffiffiffi
3
p

=2
� �

a Å, respectively. Thus an atom becomes unstable
when the local Hessian matrix

HðiÞjk ¼
XNf

k¼1
kai

XNf

j¼1
jai

q2V ðiÞ

qrðijÞqrðikÞ
(26)
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Fig. 10. Variations with the shear angle g of the total strain energy density (blue line) and the minimum value of the determinant of the atomic acoustic

tensor Q(i) for system B: (a) shear test and (b) simple shear test.
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has a non-positive eigenvalue. Here Nf equals the number of atoms in the first shell of atom i. The condition for local
stability is therefore minflðiÞk g40, where lðiÞk is an eigenvalue of H(i).

In order to find a correlation, if any, between atoms that become locally unstable and also have a relatively large value of
the CNP we compute the CNP for atom i defined by

CNPðiÞ ¼
1

Nf

XNf

j¼1

XNij

k¼1

ðrðikÞ þ rðjkÞÞ

					
					
2

; (27)

where Nij is the number of common neighbors between atoms i and j. For a perfect crystal the value of the CNP for every
interior atom is essentially zero; it exceeds 20 for atoms on bounding surfaces, and is greater than 2 for atoms located at
points where crystallographic defects appear.

Finally we explore a correlation between regions of local instabilities and those of relatively large values of one or more
components of G.

6.1.2. Global instability

As in continuum mechanics, the configuration of a system comprised of a collection of atoms is globally stable if the
potential energy of the system in that configuration is minimum. The potential energy equals the strain energy of
deformation less the work done by external forces. For boundary conditions considered here (i.e., either displacements or
null external force prescribed), the potential energy of the system equals its strain energy which for the discrete system
being studied equals the sum of strain energies of all atoms in it.

For potential energy of the system to be minimum, the Hessian matrix with elements equaling second derivatives of the
potential energy with respect to relative position vectors between atoms in the current configuration and evaluated at their
current positions must be positive definite. Equivalently, all eigenvalues of this Hessian matrix must be positive. When
computing eigenvalues of the Hessian matrix, rows and columns corresponding to atoms with prescribed displacements
are eliminated to get the reduced Hessian matrix. With each atom having three d.o.f., the size of the reduced Hessian
matrix equals 3Na�3Na where Na equals the number of active atoms in the system being studied. Thus the system of atoms
will become globally unstable when at least one eigenvalue of the reduced Hessian matrix equals zero.

In terms of the Considerè criterion (1888), the system will become globally unstable when the load (which for the shear
and the simple shear deformations implies the shear stress in the plane of deformation) becomes the maximum. Thus at
the onset of the global instability, the shear stress–shear angle curve will exhibit a sharp discontinuity.

6.2. Results of numerical simulations

6.2.1. Local instabilities

6.2.1.1. Shear test. The local instability criterion in terms of the minimum eigenvalue of the local acoustic tensor Q(i)

becoming non-positive predicted instabilities for small values of the shear angle when no discontinuity in a stress–strain
curve or a change in the curvature of the local energy vs. the shear angle curve was observed. Fig. 10a shows variation with
the shear angle of the minimum value of the determinant of Q(i) for any atom in system B. Atoms where instabilities first
occurred are located close to the left and the right free surfaces of the system.

We note that the strain energy density vs. the shear angle curve in Fig. 10a exhibits a discontinuity at the value of the
shear angle that is much larger than the one where det[Q(i)] ¼ 0.

Fig. 11a exhibits the evolution of the minimum eigenvalue of the local Hessian H(i) among all atoms in the system where
displacements are not prescribed. This value remains positive until g ¼ 0.066, 0.053, and 0.042, respectively, for systems A,
B, and C, when the minimum eigenvalue of H(i) becomes negative and stays negative during subsequent deformations for at
least one atom in the specimen. Fig. 11b shows evolution of the fraction of atoms that have become unstable. This
percentage increases rapidly for system C. The increase in the number of unstable atoms is very similar for specimens A and
B. The dashed vertical lines correspond to the shear angle values at which the global instability ensues (see Section 6.2.2). It
is clear that for each one of the three specimens only about 8% of atoms have become unstable just prior to the onset of the
global instability, and this number has increased to nearly 30% for systems B and C, and �50% for system A at the end of the
drop in the total energy density vs. the shear angle curve.

Fig. 12 shows, for system C, distributions of the minimum eigenvalue of H(i) and the CNP. Figs. 12a and b correspond to
the strain level when local instabilities were detected first at g ¼ 0.042. Only atomic positions where the local instability
condition has been satisfied are depicted in Figs. 12a, c, e, g, and t. Similarly, only atoms with high values of the CNP are
exhibited in Figs. 12b, d, f, h, and u. The eight blue points in Fig. 12a are diametrically opposite to each other and are in
regions where the atomic volume O(i) is greater than its value in the reference configuration; i.e., det(F(i))41. In Fig. 12b
only atoms at the bounding surfaces have large values of the CNP.

Figs. 12c and d correspond to the shear angle of 0.0872 that is just prior to the occurrence of the first discontinuity in the
sxy�g curve; at this point the number of unstable atoms has increased mainly in the four corners and in the top and the
bottom surfaces (planes parallel to the xz plane). It can be observed that unstable atoms are distributed in 10 sub-volumes
symmetrically distributed with respect to planes passing through the diagonals of the xy plane. If one excludes atoms on
the bounding surfaces, then there is a reasonable correlation between atoms having large values of the CNP and those
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where the minimum eigenvalue of the local Hessian matrix is non-positive. Figs. 12e and f correspond to the shear angle of
0.0921 that is just after the first steep drop in the sxy�g curve; it can be observed that on the edges Y ¼ Ymax, X ¼ 0 and
Y ¼ 0, X ¼ Xmax groups of new unstable atoms have appeared. These new atoms are located on crystallographic planes
{1,1,1} of high density where shear deformation is accommodated by changing the stacking sequence in the crystal. As for
the previous case, these atomic positions correlate well with the interior atoms exhibited in Fig. 12f where the CNP has
relatively high values. Figs. 12g and h correspond to the shear angle of 0.102 just prior to the system becoming globally
unstable when the most pronounced drop in the sxy�g curve occurs. Between the instants of g ¼ 0.0921 and 0.102,
considerably more atoms have become unstable. Figs. 12t and u correspond to the shear angle of 0.1069 that corresponds to
the strain level right after the sharp drop in the sxy�g curve when nearly 30% of atoms in the system have become unstable.
Atoms with non-positive values of the minimum eigenvalue of the local Hessian matrix H(i) and those with large values of
the CNP are similarly situated, and their numbers are essentially equal. We have not investigated if a large value of the CNP
corresponds to a higher magnitude of the negative eigenvalue of H(i). However, results presented in Fig. 12 imply that there
is a good correlation between locations of unstable atoms and those having a large value of the CNP.

For system C, Fig. 13 exhibits atoms with a large value of the norm ||G|| defined by

jjGjj ¼ ða maxðjGabgjÞ.

Here maxðjGabgjÞ equals the maximum value of any one of the 27 components of G at any point in the system, and it is
multiplied by the lattice parameter a to get a non-dimensional number. Results plotted in Figs. 13a and b correspond to
g ¼ 0.0872 and 0.0921, respectively; that is, instants immediately preceding and following the first drop in the shear
stress–shear angle curves. Results plotted in Figs. 12c–f also correspond to these strain levels. Figs. 13c and d correspond to
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g ¼ 0.102 and 0.1069, respectively, the same values of the shear angle for which results are depicted in Figs. 12g,h and t,u.
We note that regions with a large value of ||G|| have high inhomogeneous deformations.

Atoms evinced in Figs. 13c and d having a large value of ||G|| when compared with those included in Figs. 12g,h and t,u
suggest that shapes and locations of geometric regions of high values of ||G||, large values of the CNP, and non-positive
values of the minimum eigenvalue of H(i) are essentially identical. Thus any one of these three criteria can be used to
characterize a local instability. Each one of these three methods predicts that atoms on a bounding plane become unstable
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first. However, the local instability does not seem to propagate from atoms on the boundaries to those in the interior of the
cube since the interior unstable atoms are not necessarily bonded to those on the bounding surfaces.

Fig. 14 shows the variation of the derivative with respect to g of the expected value /||G||S of ||G|| computed from a
kernel approximation of the probability density function of its distribution at each load step. From the probability density
functions (not shown) for g ¼ 0.0227 and 0.0426, the distributions of ||G|| in the specimen are essentially zero and the
expected values are 0.0104 and 0.0138, respectively. Between these two configurations the change in the expected value
with respect to g, d/||G||S/dg, is only 0.171. From the probability densities for g ¼ 0.0872 and 0.0921 which correspond to
distributions shown in Figs. 12c and f, d/||G||S/dg ¼ 0.755 which is substantially higher than 0.171. Similarly, between
g ¼ 0.102 and 0.1069, d/||G||S/dg ¼ 6.26. Thus a large value of d/||G||S/dg also signifies that a major part of the system has
undergone severe inhomogeneous deformations, and has become locally unstable.

6.2.1.2. Simple shear test. For the simple shear test, non-positive values of the minimum eigenvalue of Q(i) were found at
atoms close to the bounding surfaces just prior to the system becoming globally unstable. None of the local instability
criteria are satisfied for values of the shear angle g that are noticeably less than the one where the system becomes globally
unstable.

Fig. 15a exhibits the evolution of the minimum eigenvalue of the local Hessian H(i). Unlike in the shear test, no
pronounced local inhomogeneities occur before the onset of the global instability. It could be due to the fact that
displacements prescribed on all bounding surfaces constrain deformations of all interior atoms. The first local instability at
four atoms occurs simultaneously just prior to the onset of the global instability at g ¼ 0.155, and the relative positions of
the four atoms and the shear strain at the onset of the instability are essentially independent of the specimen size. Nearly
40% of atoms become unstable at g ¼ 0.1752, 0.1675, and 0.1644 for specimens A, B, and C, respectively. Fig. 15a also shows
the evolution of the minimum eigenvalue of the local Hessian for the hyperelastic material. Although the minimum
eigenvalue of the Hessian decreases with an increase in the shear strain, it does not become negative. Since the shear stress



ARTICLE IN PRESS

Fig. 13. Distribution of the norm (a max(|Gabg|)) of G for the shear test in system C: (a) c ¼ 0.0872, (b) c ¼ 0.0921, (c) c ¼ 0.102, and (d) c ¼ 0.1069.
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Fig. 14. Derivative with respect to g of the expected value of the norm (a max(|Gabg|)) of G for shear test in system C.
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vs. the shear strain curve for the hyperelastic material basically coincides with that derived from the MM simulations till
the onset of instabilities, it is reasonable to conclude that the Cauchy–Born rule used to derive the strain energy density
from the atomic potential holds for averaged quantities till the initiation of instabilities.



ARTICLE IN PRESS

0 0.05 0.1 0.15 0.2
Shear angle γ [rad] 

M
in

im
um

 e
ig

en
va

lu
e 

lo
ca

l H
es

si
an

SYSTEM B
SYSTEM C
SYSTEM A - Hyperelastic
SYSTEM B - Hyperelastic
SYSTEM C - Hyperelastic

-1

0

0.5

-0.5 SYSTEM A

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

Shear angleγ [rad] 

Fr
ac

tio
n 

of
 u

ns
ta

bl
e 

at
om

s

SYSTEM A
SYSTEM B
SYSTEM C

Fig. 15. For the shear test, variation with the deformation of (a) the minimum eigenvalue of the Hessian of the local energy, and (b) the percentage of

unstable atoms.

A.A. Pacheco, R.C. Batra / J. Mech. Phys. Solids 56 (2008) 3116–31433138
Fig. 16a shows locations of the four atoms where local instabilities ensue for system C at g ¼ 0.155. In Figs. 16a, c and e
positions of only unstable atoms are exhibited. At g ¼ 0.1655 two geometrically opposite columns of unstable atoms have
formed (see Fig. 16c). After the next load step, g ¼ 0.1703, a considerable number of atoms distributed over atomic planes in
the interior of the system have become unstable. Thus both local and global instabilities occur almost simultaneously in the
simple shear test but the initiation of local instabilities precedes that of the global instability by a large value of the shear
strain in the shear test having four out of six bounding surfaces free of external forces.

Figs. 16b, d, and f show distributions of the CNP for specimen C at g ¼ 0.155, 0.1655, and 0.1703, respectively. For shear
angles of 0.155 and 0.1655 atoms that become unstable are located close to the bounding surfaces (CNP�20) at two
diametrically opposite corners where det(F(i))S 1 locally. The CNP parameter also has the same high value for those atoms
on bounding surfaces where no instability was detected. After the occurrence of the global instability, the distribution of
unstable atoms correlates well with the distribution in the values of the CNP. No major change in the structure of the
system was predicted by the CNP prior to the onset of the global instability. The presence of planes of unstable atoms
before the occurrence of the global instability is not observed in the simple shear deformation.

Figs. 17a and b show the distribution of ||G|| for specimen C at g ¼ 0.1655 and 0.1703, respectively. As for the shear
deformations, the maximum value of ||G|| occurs at points located mainly near the bounding surfaces. From the probability
density functions of ||G|| for strain levels just before and just after the occurrence of the global instability, the expected
values are 0.0120 and 0.0948, respectively. Thus d/||G||S/dg has a very large value of 17.25 when the global instability
occurs.

Fig. 18 shows the evolution with the shear angle of d/||G||S/dg and confirms that it is essentially zero till the onset of a
global instability when it increases rapidly.
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Fig. 16. For the simple shear test, distribution of the minimum eigenvalue of the local Hessian and the CNP in system C: (a, b) g ¼ 0.1555, (c, d) g ¼ 0.1655,

and (e, f) g ¼ 0.1703.
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6.2.2. Global instabilities

The variation with the shear angle g of the system’s strain energy density for the shear and the simple shear tests is
shown in Fig. 19. In the simple shear deformations, the energy continuously increases up to a point where the global
instability occurs. For the shear deformations, slight changes in the curvature of the energy vs. the shear angle g curve are
observed due to the presence of unstable atoms.
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For specimens A and B deformed in shear, the energy continuously increases with no major changes in the curvature of
the energy vs. g curve. For specimen C at g ¼ 0.0921, the presence of two diametrically opposite defects is reflected in a
small change of curvature in the energy vs. g curve. Subsequently, the energy continuously increases till g ¼ 0.102 where a
sudden drop in the energy occurs and the system becomes unstable.

Recalling results depicted in Figs. 11 and 15, we conclude that the shear strain at the onset of the global instability equals
that at which the percentage of atoms becoming unstable increases the most, and energy of the system drops noticeably.

For the system of Au atoms deformed in simple shear (Fig. 19b), the strain energy density increases monotonically till
g ¼ 0.1675 when it suddenly drops by a large amount. For the three specimens, differences among the strain levels at the
onset of the global instability are not as pronounced as it is for the shear deformations.

In an attempt to see if the minimum eigenvalue lmin
H of the Hessian matrix H suddenly jumps at the onset of a global

instability, we have plotted in Figs. 20a and b the evolution of the change in lmin
H with respect to g for the two types of

deformations for specimen B. These two plots reveal that indeed dlmin
H /dg increases noticeably with g when the system

becomes globally unstable. Whereas the evolution with the shear angle of dlmin
H /dg is oscillatory for shear deformations, it

is smooth for the simple shear deformations.
7. Conclusions

We have used MM simulations with the TB potential to analyze deformations of three cubes of different sizes comprised
of gold atoms deformed in shear and simple shear. In shear, displacements are prescribed of atoms lying on the top and the
bottom surfaces of the cube with the other four bounding surfaces kept free of external forces. However, while simulating
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simple shear deformations, displacements are prescribed of atoms on all six bounding planes. Continuum measures of
stress and strain are derived from the results of MM simulations. The following four criteria are used to characterize
instability at a point: (i) the local atomic acoustic tensor has at least one non-positive eigenvalue, (ii) the minimum
eigenvalue of the Hessian of the potential energy of an atom is non-positive, (iii) one or more components of the second-
order gradients of displacements becomes very large as compared to its value in the homogeneously deformed regions, and
(iv) high values of the CNP. The system is said to be globally unstable when its potential energy ceases to be the minimum
in that configuration. Salient results of this work are summarized below.
�
 Cauchy stresses derived from the following four definitions agree with each other: (i) average of the configurational part
of the virial stress tensor, (ii) volume average of the first moments of total forces at atoms on bounding surfaces,
(iii) average dipole force tensor, and (iv) the average force per unit area on bounding surfaces.

�
 For the simple shear deformations, average stresses for an equivalent hyperelastic material with strain energy density

derived from the TB potential and the Cauchy–Born rule agree with those computed from the results of the MM
simulations.

�
 Both for the shear and the simple shear deformations normal stresses act on planes where displacements are prescribed,

and the specimens exhibit the Poynting effect.

�
 A discontinuity in the average shear stress vs. the shear angle curve does not imply that the system has become globally

unstable; however, a sharp drop in the average shear stress does imply the onset of global instability.
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�
 For the shear deformations, the onset of local instabilities precedes significantly that of the global instability. However,
for the simple shear deformations the local and the global instabilities occur almost simultaneously.

�
 The first local instability for the simple shear test occurs nearly at the same shear strain level in the three specimens

having widely different number of atoms.

�
 For the two shear tests studied, the initiation of the local instability is not accurately predicted by a vanishing of an

eigenvalue of the local atomic acoustic tensor.

�
 The occurrence of local instabilities is related with one or more components of the second-order spatial gradients of the

displacement becoming very large as compared to their average values in the body.

�
 The initiation of global instabilities is indicated by the slope of the minimum eigenvalue of the Hessian vs. the shear

strain curve becoming very large.
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